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Abstract

This work deals with hypersensitive vibration behavior of plates. The aim of the proposed method is to
detect structural zones inducing such behavior. It is based on a residual calculation, which takes into
account structural uncertainties, and has a low numerical cost since it requires only the resolution of the
problem for the nominal structure. Then, this solution is used to calculate energy residuals on different
parts of perturbed structures in order to detect which zones will produce an hypersensitive behavior. The
basis of the method is first developed on a simple problem, a rod, and then applied to a typical
hypersensitive structure, a plates network. Finally, one can show that the proposed tool is able to detect
which zones of the plates network are responsible for hypersensitive behavior.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Because of manufacturing cost, uncertainties in structural parameters are inevitable, bringing
dispersions in eigenfrequencies and responses of the structures, which can induce acoustical
problems when shifted structural eigenfrequencies are coinciding with cavity ones. In this way,
two objects manufactured with the same constraints can have very different acoustical behavior.
Fortunately, in most cases, this problem does not exist, and uncertainties in manufacturing
processes are expected to entail small variations in eigenvalues, eigenvectors and responses of
structures, allowing one to predict the behavior of a set of structures on the basis of results
obtained for the nominal one. Hypersensitivity appears when these dispersions become larger,
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bringing large differences between the nominal structure and some of other structures belonging
to the same manufacturing set. This problem has been raised many times, and many people are
interested in reducing dispersion without increasing manufacturing cost. In Ref. [1,2],
measurement results are shown on nominally identical structures, and many differences can be
observed in the whole frequency domain, although these papers are mainly related to the effects of
uncertainties in the high-frequency range. Results presented by Bernhard [2] concern frequency
responses for sound pressure due to mechanical excitation for a population of 98 nominally
identical vehicles. Large differences can be observed, mostly in medium- and high-frequency
ranges. Frequency responses of vibrating 3-beams systems are used to understand these
behaviours. Similar results have been presented by Fahy [1], concerning 41 nominally identical
structures.

Many existing methods allow one to evaluate dispersion but only when uncertainties are
small: statistical dynamics is a classical field of research [3—5]. But if a given parameter is
hypersensitive, in other words if a small variation of this parameter brings a large variation
of the response, those methods are unable to evaluate the corresponding dispersion. Never-
theless, several efficient ways can estimate the response sensitivity for small variations of
parameters. Many stochastic approaches have been developed, some of them need a short
calculation time (FORM, SORM), giving good results for small variations in particular cases,
while others are more expensive but have a better accuracy and have been developed to be
integrated with existing methods, like the finite element method (FEM) [6]. Among new
developments, fuzzy methods may be mentioned [7,8]. Like stochastic methods, when the
formulation is adapted for large variations of input parameters, a good agreement with real
dispersion values can be obtained only if the calculation time is about the same as in a Monte
Carlo simulation. This is still the only method capable of estimating correctly the response
sensitivity in every case, even if hybrid methods using partial Monte Carlo simulations are
considered [9].

An alternative way to these high calculation cost methods for hypersensitivity cases could be to
develop a tool that would be able to detect, without high calculation time, which part of the
structure causes high sensitivity. This tool could be used to direct a design modification of
sensitive parts in order to reduce response dispersions. Following this concept, we have developed
a method that is based on only the resolution of the nominal problem, used for estimation of an a
posteriori error, which supplies an indicator evaluated for the whole structure, or for different
parts of it, and which then allows one to detect causes of hypersensitivity. This paper presents a
theoretical background, necessary before an explanation of the method, which is developed in
detail on a typical hypersensitive structure.

2. Theoretical background

The aim of this part is to present a short description of the tool used here. A simple way to
understand the basic ideas of the tool is to consider a simple problem, like a displacement
description of a forced longitudinal vibrating structure (Fig. 1). The classical local formulation of
the problem can be written in the following terms. The displacement field U must satisfy the
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while continuity of forces and displacements for x = xy imposes

Ux:xa - l]|x:x+9 (5)

dU dU
ES ES, — 6
e 0¥ e (6)

where U, is known and the notation U=, indicates the value of U extended by continuity on
x = xo with x<xy.

Usually, everything in the previous equations is known except the displacement field U. The
solution Uy, of this problem can be calculated with different methods. One way to obtain it, is to
find the field that minimizes the residual

ESl )1 1 [d dU s 2

+ES1<

2 dU dU :
[]|x X0 []PC:X(T) +ES]< ESigt dx\x Xy _ESZEW Xy )

1 1 (d dU 5 : dU :
+2/12w2pS2<dx[ Szd ]—l—w pSzU—F> dx+E—S2<ES2dxx_ —F()) (7)

This residual has interesting properties:

® R(U) is stationary if and only if U = Uy,;, which means that the solution can be found using
numerical approaches;

® R(U)=0 and R(U,y) = 0, which means that the steadiness of the residual is a minimum and
that the residual can be used to estimate the quality of a solution. If an approximate solution
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field U,p, has been calculated on the domain Q = [0, L], the value of R(U,,,) is a measurement
of the difference between Uy, and U,,.

This residual has been derived using natural weighting of the various terms, in order that it
could be linked to energy and work expressions, although these weights values are not
mathematically necessary to keep the above properties true.

Moreover, a localization of differences between the two fields can be performed using a
decomposition of the residual along the rod: R(U) = Ri(U) + Ry(U) + R3(U) + R4(U) + Rs(U),
where

ES
R(U) = 1(U|v 0— Uo) ,
1 1 dU
R = —_— d
2(U) /prS1<dx[ " }+w pSi ) X,
ES, dU dU 2
Ry(U) = <U|Y % 7 U Y) < ESriy dX je=x; _ESzaxxJ ’
1 1 d 2
Ry(U) = = F
«(U) /,zwzp&(dx[ G| HotesU - F) ax
L dU
RA(U) = (ESzd . L+F0> . @®)

If the field U used for the estimation is not Uy, at least one of the values of R;(U) is different
from zero, allowing one to know on which part of the structure the field is not correct. Let us
note that R, and R4 can be decomposed in many parts in order to have a better localization of
errors.

These expressions are very similar to those which are used for adaptive mesh in vibration
analysis. Fundamental works have been presented by Ladeveéze and Leguillon [10] and Babuska
[11], while Verfurth gives in Ref. [12] an overview of the most popular error estimators. As
far as an acoustic field is concerned, Bouillard and Ihlenburg have adapted these methods in
Ref. [13].

Another application of error in the constitutive law has been presented by Guyader in Ref. [14],
relating to bounding of eigenfrequencies of imperfectly characterized structures. This work shows
the validity of the Love—Kirchhoff plate assumption, but as far as bounding is concerned,
calculated eigenfrequencies boundaries are unfortunately often very large.

3. A method for hypersensitivity cause detection

Many methods are able to determine the sensitivity of a result according to a given parameter,
but none of them allows one to detect structural causes of hypersensitivity. This is the aim of this
paper. Until now, the only efficient way to detect these causes is to perform a high cost Monte
Carlo simulation, solving the problem many times. An alternative way of low numerical cost is
proposed here.
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First, the problem must be solved with nominal parameters. That is to find the displacement
field Uy, verifying Egs. (1)-(6). If the displacement field is a good approximation of the exact
solution, then using it in the residual should give a result close to zero.

Then, using residual (8) adapted to the structure, its variable parameters and solution of the
nominal problem allows one to estimate the quality of the solution field of the nominal problem in
perturbed operators. For each chosen part of the structure on which we perform this post-
processing calculation, the estimator indicates the sensitivity according to variable parameters.

This method requires only one resolution of the whole problem, then the nominal solution field
is used to perform the calculation of an estimator on perturbed structures.

4. A structure with a high sensitivity

To demonstrate the interest of the proposed method, one requires highly sensitive structures. A
relatively simple analytic one is a network of plates. Rebillard and Guyader have shown [15] that
the sensitivity of two plates (Fig. 2) coupled with an angle 0 was maximum for a nominal value of
the connecting angle 0 of 4°, so the structure presented in Fig. 3 presents three presumed
hypersensitive connections, which are numbered 4, 5 and 7. If the connecting angle 6 does not
exist, there is no reflected wave, the entire incident one is fully transmitted. As soon as 0 has a non-
null value, transmitted power decreases quickly, and coupling effects between in-plane and
bending movements imply that the most sensitive angle has a value of 4°. This value depends on
the chosen geometry and structural parameters [16]. The analytical model used is presented in Ref.
[15] and consists in a semi-modal decomposition combined to a wave formulation, and takes into
account coupling effects between flexural and in-plane motions due to connecting angles.

The steel plates (E =2 x 10" Pa, # =102 v =0.3) have a common width of 40cm and
thickness of 2mm. The structure, which could be a kind of hood of a machine is contained in a
box of size 0.4 m x 0.54 m x 1.7 m. The plates are simply supported on the uncoupled sides, and
the connecting angles can be classified in two categories: hypersensitive for numbers 4, 5 and 7
(their nominal value is 4°), while the other ones are not sensitive (45°, 86° and 90° for nominal
values).

In order to study the sensitivity of angular parameters, assume that their values are randomly
distributed in a 1° range around the nominal one. A Monte Carlo simulation allows one to
confirm the high sensitivity of the connecting angles. Fig. 4 shows the variability of flexural
velocity response of the plate located between angles 7 and 8, when an harmonic excitation is

Fig. 2. Notations for two coupled plates.
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Fig. 4. Displacement responses versus frequency for variation of all connecting angles, 20 cases.

applied to the plate located between angles 1 and 2. Connecting angles 1-8 are chosen in a random
way, according to their nominal value with a 1° uncertainty (Gaussian distribution, with a %
standard deviation).

The sensitivity is important, almost in the band 140-200 Hz. One can determine the influence of
each connecting angle in the frequency range 150-200 Hz. Fig. 5 shows the variability of the
response when only angle 4 is varying, Fig. 6 for angle 5, Fig. 7 for angle 7. Then, Fig. 8 allows

one to conclude that other connecting angles have a very small sensitivity. These remarks are
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Fig. 5. Sensitivity of connecting angle no. 4. Displacement (m) versus frequency (Hz), 20 cases.

made without using any measure for hypersensitivity, which could be done in many ways. Such a
tool could be based among other things on the differences of eigenvalues, or modulus of response
at a precise frequency or in a range [15]. One could also take into account one or many statistical
moments of variables, but this is not the purpose of this work. What matters here is that the
considered structure is highly sensitive to identified parameters, and this can be done easily
observing Figs. 5-7.

In conclusion, the developed method should be able to detect, with the residual, the three angles
numbered 4, 5 and 7 as hypersensitive ones.

5. Application of the method to hypersensitive structures
5.1. One simple example: a rod of variable cross-section

What is to be expected when applying the method is the detection of the connecting angles 4, 5
and 7 as hypersensitive ones. In order to apply the proposed method to the previously presented
case, one needs an expression of the residual adapted to plates. However, because the
mathematical expression to handle plates is complicated, we first present the simple case of a
rod of variable cross-section at point xo, like the one presented in Fig. 1. The equations that have
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Fig. 6. Sensitivity of connecting angle no. 5. Displacement (m) versus frequency (Hz), 20 cases.

to be satisfied in this case are numbered (1)—(6). The solution Uy, of this problem is expected to be
known, and of course satisfies Egs. (1)—(6). Moreover, using this displacement field in residual (7)
or (8) produces a null value. Now consider another structure, which is the same as the previous
one, except its section size S|#S; on part I; =]0,xo[ of the rod. If one considers structural
operators of this second rod, using the solution Uy, of the first problem produces

%[Esgdsj;o’ ] + @?pS| Uy =0 in I; =10, xo], 9)
%[ESgdg?l} + S Uy =F in I =]x, LI, (10)
Usor x=0 = Up, (11)

ESzdg;Ol =T (12)

Usol x=x; = Usol [x=x; > (13)

gsdUd g Ui (14)

‘l .
dx p=x; dx pe=xf
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Fig. 7. Sensitivity of connecting angle no. 7. Displacement (m) versus frequency (Hz), 20 cases.

The only equation that Uy, does not satisfy is the one relative to continuity of normal force at
xo (Eq. (14)). Using the residual expression (8) adapted to the second structure (using S} instead of
S1) with solution Uy, one obtains

Ry (Ut) = 2 (U — U= 0,

Py g (dx[ } )

Ry(Uso) = : / wz,loSz (dx[ d(aj):)l} + @SV = F>2 v =0

Ry(Usor) = S, <E52dc(1];l|x_L + Fo> = 0. (15)

The only part of the residual which is not satisty zero is the third part R5(U). It is related to
Eq. (13) (which is satisfied, so the first term of R} does vanish) and Eq. (14) (Wthh is not satisfied).
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Fig. 8. Sensitivity of other angles. Displacement (m) versus frequency (Hz), 20 cases.

Therefore,

L (, dUy AU\’
Ri(Usp) = == ES] — ES 0.
3(Usal) ESI< Pdx =y, > dx |x_xg> ”

Of course this expression has been derived for the 1-D formulation, and needs to be adapted to
the plate network problem. But before this derivation, let us remark that the estimator
corresponding to R3 that we will use will be a relative one. In order to have a non-dimensional
quantity, define

2 2
5 (Vg = Uiy ) +5(ES%, — ES% )

- A lv— v+
dix|x=x; dx [x=x]

e3(U) = (16)

2 2°
%(l]pc:xa + lj|x:x8r) +%(E5d—U +ESd_U )

dx|x=x; dx |x=x;

5.2. The plate network

The detailed adapted formulation for the problem is given here, according to the notation
defined in Fig. 2. In this part one is interested only in sensitivity due to the connecting angles. All
other parameters are supposed to keep their nominal values. This means that the nominal solution
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satisfies all the equations of the problem with varied angles except continuity conditions at plates
junctions. According to that, we will not develop the expression of the whole residual
corresponding to Eq. (8), but only the one corresponding to Eq. (16), adapted for the plate
network formulation, which is given here. Define: the displacement field on plate i: U; =
ui(x;i, v)Xi + vi(xi, y)¥ + wi(x;, ¥)Z;, the flexural rotation on plate i along axis y: ﬁ,-.f/ = Ri(x;,y), the
generalized forces on plate i F i = Fyi(xi, )X + F, i(x;, )y + F.i(x;,y)Z; and the generalized
momentum on plate i along axis y: M,-.ﬁ = Mi(;x, ).

These quantities are linked by the following continuity conditions, which assume rigid
connections at plate junctions: Vye|0, a]

ui+100,y) = ui(l, y)cos i1 + willy, y)sin 0141 = ul(l;, ), (17)
vir1(0,) = vili, ), (18)

wi1(0, ) = wili, y)cos 01 — ui(ly, y)sin 0.1 = wi(li, y), (19)
Fri1(0,p) = Fyi(li, y)cos 041 + Foi(l, y)sin 0,4y = FY (1, ), (20)
Fyi1(0,y) = Fyi(li, p), 21)

F.i11(0,y) = F.(li, y)cos i1 — Fyi(li, p)sin 0,1 = FZ(1;, p), (22)
Ri+1(0,y) = Ril;, ), (23)

M;1(0,y) = M1, ). (24)

Note that the star symbol (e.g., in uf(/;, y)) is used here in order to simplify notations, and that
all equations must be satisfied Vye[0,a]. Then one can define the following estimator, based on
expression (16):

Jo att (Wi — uf)* dQ + [ %@M — 092 dQ+ [1o B0 — wH)? dQ
T S + Y AQ+ fog vy + 002 AQ [ BOvir + wE) dQ
ot S U Fiyt — FEP AQ+ [0 20 F, i1 — F)? dQ
et faQ %(Exyi+l + F:kz)z dQ + fag 2a(1é/1+v)(Fy,i+l + Fy*,i)z dQ
ot faQ %(Fz,i+l - in)z dQ + faQ %(Rm - R;'k)z dQ + faQ %(MM B M;k)z dQ
+ oo 5oy + FX2dQ + [0 2(Ripy + R dQ + [ &( My + MF)? dQ

where integration domains 0Q are coupling lines and « is the common width of the plates. With
such an expression, the method can now be applied to the plate network.

The first step is the resolution of the nominal system, using semi-modal decomposition. For a
given frequency, the calculation provides the solution field on the structure. See Ref. [15] for
details.

To perform the second step, variable parameters must be defined. In the present case, these are
connecting angles. So each angle is supposed to have a Gaussian distribution, on a 1° width range

e

(25
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Fig. 9. Residual value vesus connecting angle number, mean of 40 calculations: (a) f = 175Hz and (b) f = 195 Hz.

% standard deviation). Locations chosen for the evaluation of the estimator are the coupling
lines. For each of these the calculation of expression (25) is carried out, using the displacement
field solution of the nominal problem. These calculations are performed using angles randomly
chosen in the range, and finally the mean of 40 evaluations for each coupling line is presented, for
both frequencies 175 and 195 Hz.

Fig. 9 clearly shows that the estimator is able to detect connecting angles which bring
hypersensitive behavior. Using the nominal solution field in a perturbed estimator produces a near
zero result for all angles except as those with a nominal value of 4° which have a large residual.

6. Fast hypersensitivity detection

The first aim of the method is a fast detection of hypersensitive zones, so the number of cases
used for evaluation of the mean of estimators should be small, since calculation time grows up
with the number of cases. The method is then applied with only three evaluations of the
estimators. Fig. 10 clearly shows that two consecutive calculations do not give the same results,
which is obvious considering the high sensitivity of parameters. Nevertheless, each of the three
hypersensitive zones can be detected, allowing one to obtain a very fast detection of these areas.

7. Hypersensitivity causes versus frequency

The presented method allows one to determine sensitivity causes for several frequencies. The
calculation performed in a frequency range are presented in Fig. 11, which shows the influence of
connecting angles versus frequency, in the 80-200 Hz band. The agreement with Figs. 4-6 is good,
since each time the estimator indicates a low value, the sensitivity of the parameter is weak. This
can be observed for angle 4 at 115Hz or for angle 5 at 142 Hz. Large values of residual indicates
that the connecting angle is highly sensitive, but the value itself has not been related to any
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Fig. 10. Residual value versus connecting angle number, mean of 3 cases, f = 195 Hz: (a) 1st calculation, (b) 2nd
calculation.
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Fig. 11. Residual value versus frequency. Monte Carlo simulation 2000 cases: -x-, angle 4; - + -, angle 5; -o0-, angle 7; —,
other angles.

sensitivity value of the response. As far as connecting angle 7 is concerned, the residual indicates
that its sensitivity goes down between 150 and 200 Hz, and this is in agreement with Fig. 6. On
the other hand, for particular frequencies like 125Hz (for angle 7), the Monte Carlo analysis
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Fig. 12. Sensitivity of connecting angle no. 7. Displacement (m) versus frequency (Hz), 20 cases.

seems to show that the sensitivity is weak, whereas the estimator is not able to detect it. The
reason for this difference is that the proposed estimators are global ones, and take into account
the solution field on whole structure, even if the post-processing calculation are performed
only on a part of it, whereas sensitivity Figs. 4-6 are obtained with a calculation at a particular
point of the structure. This means that if one performs another Monte Carlo calculation
with the same excitation as the one used for Fig. 6, but measuring displacement response on
another point on the same plate, the parameter will be more sensitive, as shown in Fig. 12. This
phenomenon can be easily understood if the point used for the evaluation of estimator is located
on a node.

8. First order analysis of estimators

As far as the present particular structure is concerned, it is possible to obtain an analytical
expression of the mean of estimators, using a first order decomposition relating to varying angle.
Suppose that the connecting angle 0 = 0 + 0’ has a nominal value 0 and that its variation is
|0 — 0’|« 1. The first order estimation of Eq. (25) is developed here. The fields which are not signed
with a star are supposed to satisfy Egs. (17)—(24), according to angle 0 while those with a star do
not exactly verify them, because of 0.
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The first step is to evaluate the first term of Eq. (25) using Eq. (17):
(110, ) — u*(Li, »))* = (is1 — ; c0s 0 — w; sin 0)*

Using the first order decomposition of sinusoidal functions cosf=cos 0 —0'sin0 and
sinf ~sin 0 + 0'cos 0 brings

(uiv1 — u¥)? = 0”(w; sin 0 — w; cos 0)*
As far as the fields relating to the y-axis are concerned, the assumption is that the nominal
calculation is correct, so that Egs. (18), (21), (23), and (24) are satisfied:

&k &k
Vit1 — U = 0, Fy,i+1 - Fy,i =0,

Rip1 — Rf =0, M — M} =0.

A similar calculation can be performed in order to estimate the other terms of the numerator in
Eq. (25) and lastly, assuming that zeroth order terms are larger than first order one, the evaluation
of the estimator is

B Jq0 0" %(u, sin § — w; cos 0_)2+Q3(u,- cos 0 + w; sin 9_)2
Bh_> D2 Dp?
4faQ[a(1 U7+ aati Vi T eWia T oR
+- 4 a(l " (FA isin — F.; cos 9) +“4(Fx ;icos 0+ F.;sin 0_)2] dQ

(1-v?) 2 2 1+» 2 2 2
+'“+aEh )Fn+1+ WCHIF, z+1+ Fz+1+ Mi+1]dQ

Considering only the first order estimation, this estimator is proportional to 0" and a statistical
calculation can be performed to determine its mean. Denoting o, the standard deviation of 0’ and
assuming a Gaussian centered distribution:

Sl = — 1 —exp [~
0 oy 2m 205, ’

one can calculate the distribution of 9'2, which is zero on ] — o0, 0[, and on ]0,+ oo :

1 It
v = X .
fb 2(;“) 7y /—27'C,u p ( 20_3/)
This_can be_ found using the cumulative distribution function Fy(k) = PO*<k) =

P(—/k<0' < \/k)

+\/Z \ﬂ 2 Iy
Fya(k) = /_ i Jo(w dp = /0 me"p (‘Q) an

using the substitution ¢ = > brings:

ko t
F(_)/Z(k) = A ﬁe p 20_ ds.
6/
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Then one can evaluate the mean of 0
o] 2 o0
0% = [ wpwdn=a- [ ew(-f)di=
0 \/E 0

Finally, this brings one to estimate the first order mean of the residual:
fag i Vz)(ul sin 0 — w; cos 0) L (ui cos 0 + w sin 0)
4 [oolamtti + stV + Wi T 2R
+- +“(1 v )(Fw»sinﬂ_— F.-cose) +4 4 (Fyicos 0+ F.; sm@) ]dQ

1 2a(1+
_}_.”_*_a(Ehv )F£l+1+ a( V)F21+1+ F21+1+ i+1]dQ

Cfirst order = g’

(26)

This expression allows one to have a very fast means of obtaining the estimator frequency
evolution, since only one post-processing calculation has to be performed. Fig. 13 shows the
frequency evolution of estimator (2), and has to be compared with Fig. 11. The first order
estimation is close to the Monte Carlo simulation. The small differences are due to higher order
terms, but the first order estimation is close to the expected result.

Finally, for this particular case, the first order analysis is a very fast way to obtain pertinent
informations about frequency evolution of the estimator. One should be precise that this first
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Fig. 13. Evolution of first order linearization of residual value versus frequency.
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order analysis is not necessary to find structural zones which are responsible for hypersensitive
behavior, as shown in Section 6. Nevertheless, it allows one to obtain more precise results. In the
present case, there is only one structural parameter which is supposed to vary, and the first order
analysis expression is quite easy to obtain. For a different structure, with many varying
parameters, it could be that it is impossibile to obtain an analytical expression of the estimator like
Eq (26). In this case the estimator should be evaluated numerically, with the calculation cost
growing with the number of parameters. However, if one is interested only in first order
estimation, the computational time will be much less than a Monte Carlo approach.

9. Conclusions

A new tool has been presented for the detection of causes of vibration hypersensitivity. It is
based on the concept of post-processing error estimation, since only the nominal problem is
solved, then the solution is used in a residual functional to localize hypersensitive zones. After a
short theoretical background, a specific formulation has been developed and tested on a
hypersensitive structure. The proposed method is able to detect hypersensitive zones of the
structure, for the studied case three particular connecting angles have been successfully localized.
A quick analysis can be performed in order to have a fast estimation of hypersensitive zones, even
if results cannot be very precise. Another point is that the tool is able to supply a frequency
evolution of hypersensitive zones, and for a particular structure a first order analysis has been
performed and brings satisfactory results. The next step in the evolution of the method will be an
FEM implementation.
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