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Abstract

A practical and effective semi-active on–off damping control law using semi-active actuators is developed
for vibration attenuation of a natural, multi-degree-of-freedom suspension system, when its operational
response mode is specified. It does not need the accurate system parameters and semi-active actuator
dynamics. It reduces the total vibratory energy of the system including the work done by external
disturbances and the maximum energy dissipation direction of the semi-active actuator is tuned to the
operational response mode of the structure. The effectiveness of the control law using a single semi-active
linear mount is illustrated with a three-degree-of-freedom excavator cabin suspension model.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

As the need for reduced noise and vibration increases, the suspension systems of machines and
structures are becoming even more complex and more important than ever. Among others, the
semi-active suspension system is known to be a good candidate for practical applications because
it combines the advantages of passive and active suspension systems [1]. It provides far better
performance than the passive suspension system, not requiring high-power actuators or supplies.
Its performance is often not better, but it costs far less than the active suspension system, although
the controller implementation remains almost identical.
Semi-active control laws, which are often developed by modifying active control laws, require

an accurate and yet robust mathematical model of the structure and the control devices. Clipped-
optimal control is perhaps one of the most commonly used semi-active control algorithms, due to
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its robustness to change of the system parameters. On the other hand, semi-active control devices
possess inherent non-linearity so that development of optimal control laws becomes challenging.
As the suspension technology advances, many passive suspension systems have been replaced by
semi-active suspension systems. The stringent performance requirement for semi-active
suspension systems is the simple implementation, not the best isolation. Thus, numerous semi-
active on–off control algorithms have been developed and adopted for semi-active control
systems, which are robust to modelling uncertainties. The ‘sky-hook’ damper control algorithm
has been commonly adopted for vehicle suspension systems and demonstrated its improved
performance over passive systems when applied to a single-degree-of-freedom system [2].
Recently, a control algorithm based on Lyapunov’s direct stability theory has been proposed for
electro-rheological fluid dampers [3,4]. It reduces the responses by minimizing the cost function,
the rate of change of a Lyapunov function, where the state weighting matrix is to be properly
selected. The decentralized bang–bang controller [5] acts to minimize the total energy in the
structure. The maximum energy dissipation controller [6] uses the total relative vibratory energy
in the system as a Lyapunov function. In this paper, an efficient semi-active on–off damping
control law for a multi-degree-of-freedom suspension system is developed from Lagrange’s
equations of motion, using the idea of Lyapunov’s direct method. It minimizes the total vibratory
energy of the structure, including the work done by external disturbances, whereas the dissipative
energy of the semi-active control device is maximized for the specified vibrational response of the
system. A numerical example is treated to demonstrate the application of the proposed control
algorithm to a three-degree-of-freedom cabin suspension system with a single semi-active linear
mount.

2. Lagrange’s equations of motion

The equations of motion of a vibratory system can be derived from the Lagrangian L; expressed
in terms of generalized co-ordinates as [7]

L ¼ T � V ; ð1Þ

where T and V represent the kinetic and potential energies of the system, respectively. The
extended Lagrange’s equation, including the dissipative energy term, can be stated, for an n-
degree-of-freedom system, as

d

dt

@L

@ ’qk

� �
�

@L

@qk

þ
@R

@ ’qk

¼ Qk; k ¼ 1; 2;y; n; ð2Þ

where qk is the generalized co-ordinates, Qk denotes the non-potential forces and R is the Rayleigh
dissipation function.

3. Semi-active control system

Semi-active control system originates from a passive control system that has been subsequently
modified to allow for adjustment of mechanical properties. The mechanical properties of the
system may be adjusted based on feedback of the excitation and/or the measured response. The
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control force in a semi-active control system normally acts to oppose the motion of the system,
promoting the global stability of the structure. Semi-active control systems maintain the reliability
of passive control systems and, yet, take the advantage of the adjustable parameter characteristics
of active control systems. Among others, energy dissipation devices, which dissipate energy
through various mechanisms such as shearing of viscous fluid, orificing of fluid, and sliding
friction, have commonly been modified to behave in a semi-active manner [8]. Without loss of
generality, a semi-active control force, Fi; may be modelled as a linear damper with controllable
damping, i.e.,

Fi ¼ viðtÞ’riðq; ’q; ’yÞ; ð3Þ

where riðq; yÞ is the relative position between two ends of the ith semi-active device, q and ’q

denote the n-dimensional vectors with components of generalized co-ordinates qk and generalized
velocities ’qk; respectively, yðtÞ and ’yðtÞ are the d-dimensional external disturbance vectors with
components of dispacements yj and velocities ’yj; j ¼ 1 to d; where d is the number of external
disturbances, viðtÞ is the variable damping coefficient with 0pvi minpviðtÞpvi max; i ¼ 1 to p; where
p is the number of semi-active devices, vi min and vi max are the smallest and largest allowable values
for vi; respectively. For a semi- active vibration control system, Rayleigh’s dissipation function R
can be expressed as

R ¼ Rv þ Rc; ð4Þ

where

Rv ¼
1

2

Xp

i¼1

ðvi ’r
2
i Þ and Rc ¼

1

2

Xpþs

i¼pþ1

ðci ’r
2
i Þ;

ci and ri; for i ¼ p þ 1 to p þ s; are the damping coefficient of a passive device and the relative
position between two ends of the device, where s is the number of the passive devices. Here, Rv

and Rc are the Rayleigh dissipation functions derived from the semi-active control forces and the
original passive dissipative forces, respectively. We assume that the original system (2) is always
stable.

4. Control strategy: maximizing energy dissipation rate

Let us introduce the Hamiltonian function, H, defined by

H ¼
Xn

k¼1

@L

@ ’qk
’qk � L: ð5Þ

For a natural system, the Hamiltonian reduces to the total energy of the system [7]

H ¼ T þ V ¼ E: ð6Þ

Then, the rate of change in the total system energy is expressed as

’H ¼ ’Hq þ ’Hy; ð7Þ
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where

’Hq ¼
Xn

k¼1

d

dt

@L

@ ’qk

� �
’qk �

@L

@qk
’qk

� �
and ’Hy ¼ �

Xd

j¼1

@L

@yj
’yj:

Here, ’Hq is the rate of change in the system energy and ’Hy is the energy inflow rate due to the
external disturbances applied to the system. Because the kinetic energy of the system does not
depend on yj; @L=@yj ¼ 2@V=@yj: When there are dissipative forces derived from the Rayleigh
dissipation function R in Eq. (4), we can obtain, using Lagrange’s equation (2),

’Hq ¼ ’Hv þ ’Hc; ð8Þ

where

’Hv ¼ �
Xp

i¼1

vi ’ri

Xn

k¼1

’ri

@ ’qk
’qk

 !
and ’Hc ¼ �

Xpþs

i¼pþ1

ci ’ri

Xn

k¼1

’ri

@ ’qk
’qk

 !
:

Here, ’Hc is the energy dissipation rate due to the original passive dampings in the system and is
not directly controllable by changing the semi-active control forces. So, a semi-active control
effort should be made such that the magnitude of ’Hv; the energy dissipation rate due to the semi-
active control forces, is maximized. The semi-active control strategy, proposed in this work, is
based on a fundamental physical observation: if the total energy of a mechanical system is
continuously dissipated, then the system, linear or non-linear, must eventually settle down to an
equilibrium point. The mathematical extension of this observation is the basic philosophy of
Lyapunov’s theory [9]. The variable damping coefficients of the semi-active control devices should
be set to be dissipative for interested generalized co-ordinates of the system and thus to make ’Hv

negative. But, because of the semi-active nature of control forces restrictions and the presence of
external disturbances, it is impractical to keep ’Hv always negative. However, it becomes feasible to
keep ’Hv negative while the semi-active control is activated. For that purpose, the variable
damping coefficient vi ðtÞ may be determined as

if ’ri

Xn

k¼1

rik

@’ri

@ ’qk
’qk

 !
X0; then vi ¼ vi max; ð9aÞ

if ’ri

Xn

k¼1

rik

@’ri

@ ’qk
’qk

 !
o0; then vi ¼ vi min; ð9bÞ

where rik is the weighting factor imposed on the kth generalized co-ordinate associated with the
ith semi-active device. For a single-degree-of-freedom system, the proposed control, Eq. (9),
reduces to the well-known ‘sky-hook’ damper control. Typical applications to two-degree-of-
freedom systems include the pitch–plane model of a vehicle and the quarter car suspension model
of a vehicle. For the pitch–plane model, control algorithm (9) with ri1 ¼ ri2 ¼ 1 is equivalent to
the sky-hook damper control applied to the ith semi-active actuator which is mounted in parallel
to the ith suspension. On the other hand, for the quarter car suspension model, it is equivalent to
placing a passive damper in parallel to the suspension element.
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From Eq. (9), ’Hv becomes, since p ¼ pu þ pl ;

’Hv ¼ �
Xn

k¼1

@Rv

@ ’qk
’qk

¼ �
XPu

i¼1

vi max jj’rijjPn
k¼1 rikð@’ri=@ ’qkÞ ’qk

�� ���� �� X
n

k¼1

rik

@’ri

@ ’qk
’qk

 ! Xn

k¼1

@’ri

@ ’qk
’qk

 !
�
XPuþPl

i¼Puþ1

vi min ’ri

Xn

k¼1

@’ri

@ ’qk
’qk

 !
;

ð10Þ

where Pu and Pl are the numbers of the semi-active control devices in operation which satisfy
conditions (9a) and (9b), respectively. For most of practical cases where we can assume that vi min

is zero, Eq. (10) reduces to

’Hv E�
Xp

i¼1

vijj’rijjPn
k¼1 rikð@’ri=@ ’qkÞ ’qk

�� ���� �� X
n

k¼1

rik

@’ri

@ ’qk
’qk

 ! Xn

k¼1

@’ri

@ ’qk
’qk

 !
¼ �

Xp

i¼1

ai

Xn

k¼1

Xn

l¼1

rik

@’ri

@ ’qk

@’ri

@ ’ql
’qk ’ql

 !
:

¼ �
Xp

i¼l

ai ’q
TDi ’q �

Xp

i¼1

’Hvi

 !
¼ �’qT

Xp

i¼1

aiDi

" #
’q ¼ �’qT½a1D1 þ a2D2 þ?þ apDp	’q;

ð11Þ

where ai ¼ vijj’rijj=
Pn

k¼1 rikð@’ri=@ ’qkÞ ’qk

�� ���� ��; Di is an n 
 n real symmetric matrix with elements of

rikð@’ri=@ ’qkÞð@’ri=@ ’qlÞ; and ’Hvið’qÞ � �ai ’q
TDi ’q is the ith term of ’Hv:Note that, by control action (9),

’Hv becomes a quadratic form of generalized co-ordinates only.

5. Determination of weighting factors

The semi-active control algorithm (9) necessitates proper assignment of the weighting factors
rik:

5.1. The maximum principle

For a real symmetric matrix A, the quadratic form Qð’qÞ ¼ ’qTA’q produces a real number for
every vector ’q in Rn: Since Qð’qÞ is a continuous function in Rn; it attains a maximum on the
closed, bounded set of vectors jj’qjj ¼ 1: The quadratic form attains the maximum l1 at ’q ¼ u1;
where l1 is the largest eigenvalue of matrix A and u1 is the eigenvector corresponding to l1. Then
for every unit vector ’q orthorgonal to u1;Qð’qÞpQðu1Þ: But, on the subset ’q � u1 ¼ 0; jj’qjj ¼ 1;
Qð’qÞ again attains a maximum l2 at ’q ¼ u2 where l2 is the second eigenvalue of the matrix A and
u2 is the eigenvector corresponding to l2. Continuing in this way we can get a set of mutually
orthorgonal unit vectors uk at which the local extremal value lk is attained on the subset jj’qjj ¼ 1:
We can also easily find that uk is in fact the kth eigenvector of A and that the value lk is the
corresponding eigenvalue, l1Xl2X?Xln [10].
From simple calculation, it is easily derived that matrix Di, has only two non-zero eigenvalues

irrespective of the matrix dimension, n; except when all weighting factors are identical. The
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eigenvalues are obtained to be

li
þ ¼

1

2

Xn

k¼1

@’ri

@ ’qk

� �2

rik þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

@’ri

@ ’qk

� �2
s0

@
1
AX0; ð12Þ

li
� ¼

1

2

Xn

k¼1

@’ri

@ ’qk

� �2

rik �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

k¼1

@’ri

@ ’qk

� �2
s0

@
1
Ap0 ð13Þ

and the kth component of eigenvector ui
þ corresponding to li

þ can also be easily obtained as

ji
þk ¼

@’ri

@ ’qk

1þ rik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

l¼1

@’ri

@ ’ql

� �2
s0

@
1
A,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

l¼1

@’r

@ ’ql

� �2

1þ ril

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

l¼1

@’ri

@ ’ql

� �2
s0

@
1
A

2
vuuut ; ð14Þ

where

Xn

k¼1

@’ri

@ ’qk

rik

� �2

¼ 1 ð15Þ

and the superscript i denotes that the eigensolutions are calculated from the matrix Di. When all
weighting factors are identical, leading to the sky-hook damper control, there exists only one non-
zero, positive eigenvalue. This can be easily deduced from Eqs. (12) and (13). From the previous
discussion, ’Hvi attains its maximum energy dissipation rate on ui

þ: The weighting factors should
then be properly assigned such that the eigenvector ui

þ corresponding to li
þ is aligned with the

excessive vibrational motion of interest. In this case, because the eigenvalues li
� is negative, the

vibration motion or mode corresponding to ui
� is little damped. It has little effect on ’Hvi because

of the semi-active nature of control forces restrictions. So, ’Hvi produces a sum of squares as [10]

’Hvi ¼ �ai ’q
TDi ’q ¼ �aiðl

i
þðZ

i
þÞ

2 þ li
�ðZ

i
�Þ

2Þ ¼ �ail
i
þðZ

i
þÞ

2: ð16Þ

where Zi
þ ¼ ’qT � ui

þ and Zi
� ¼ ’qT � ui

�: Then, ’Hv can be rewritten as

’Hv ¼ �
Xp

i¼1

ai ’q
TDi ’q ¼ �

Xp

i¼1

ail
i
þðZ

i
þÞ

2: ð17Þ

Contrary to ’Hv; ’Hc explicitly contains both the generalized co-ordinates and the external
disturbances. So, it can be divided into two terms with the co-ordinates and the external
disturbances, respectively, that is,

’Hc ¼ ’Hcq þ ’Hcy ð18Þ

and ’Hcq; in general, can be represented in the quadratic form of

’Hcq ¼ �’qTC’q; ð19Þ

where C is the passive system damping matrix with elements of @’ri=@ ’qk and ci: When the system is
linear or can be linearized in the neighborhood of an equilibrium, the damping matrix becomes
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constant. Algebraically, ’Hcq produces a sum of squares as

’Hcq ¼ �
Xn

k¼1

lkðZkÞ
2; ð20Þ

where lk denote the kth eigenvalue of the matrix C; Zk ¼ ’qT � uk and uk is the kth eigenvector of
the matrix C corresponding to lk. Then, the dissipation rate of the system energy ’Hq can be
rewritten as

’Hq ¼ ’Hcq þ ’Hcy þ ’Hv ¼ �
Xn

k¼1

lkðZkÞ
2 �

Xp

i¼1

ail
i
þðZ

i
þÞ

2 þ ’Hcy: ð21Þ

It is useful to note that, because the matrix Di in Eq. (11) is also a function of @’ri=@ ’qk; which is
related to the location of the ith semi-active control device, we can adjust the eigenvectors of Di,
by changing the location of the ith semi-active control device.

5.2. Target vector selection

For proper assignment of the weighting factors, the excessive dominant vibrational motion of
interest, namely the target vector should be specified to be aligned with the eigenvector ui

þ
corresponding to li

þ: The specified vibrational motion of interest may vary depending on the
vibrational chracteristics of the system related to the energy storage and dissipation elements, the
excitation and operational conditions, and the user’s subjective requirement on the performance.
In practice, the forced vibrations of many systems are often dominated by the so-called
operational deflection shape, which can be a single natural mode or a combination of many
natural modes. When the target vector is chosen as the dominant operational deflection shape of
the interested system, its general form becomes a combination of natural modes. On the other
hands, the least damped mode, which often causes excessive vibration, may be selected as the
target vector. For example, we can select the target vector such that

#ui � un; ð22Þ

where un is the eigenvector corresponding to the least eigenvalue ln and #ui is the target vector
imposed on the ith semi-active device. In case when the least damped mode, un, is to be aligned
with all the eigenvectors ui

þ for i=1 to p, implying that all semi-active control devices are engaged
with a single target vector, the dissipation rate of the system energy ’Hq can be rewritten, from
Eq. (21), as

’Hq ¼ �
Xn�1

k¼1

lkðZkÞ
2 � ln þ

Xp

i¼1

ail
i
þ

 !
ðZnÞ

2 þ ’Hcy: ð23Þ

Note that the amount of energy dissipation is significantly increased along with the target
vector un.

5.3. Optimization

Eqs. (12) and (13) suggest that, in order to make li
þ large and li

� small, all the weighting factors
should be positive. With such constraint, the actuator eigenvector ui

þ may not become aligned to
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the specified target vector. Thus we find the n-dimensional weighting vector qi ¼ fri1ri2yring for
the ith semi-active control device, which minimizes the cost function

f ðqiÞ ¼ 1� cðui
þðqiÞ; #uiÞ ð24Þ

subject to the n inequality constraints, from Eq. (15),

0prikp
1

@’ri=@ ’qk

�� ��; k ¼ 1 to n; ð25Þ

where 0pcða; bÞ ¼ jaTbj=jjajjbjjp1 is a measure of alignment between two vectors a and b. Note
that, when two vectors a and b are in line, cða; bÞ ¼ 1; whereas cða; bÞ ¼ 0 for a>b.

6. Illustrative example

As an example, vibration control of a three-degree-of-freedom excavator cabin suspension
system is considered. Fig. 1 shows the dynamic model of the excavator cabin with a semi-active
linear mount in the suspension, accounting for the bounce, pitch and roll motions of the cabin.
For simplicity, it is assumed that the principal moment of inertia axes of the cabin coincide with
the Cartesian co-ordinates as shown in Fig. 1. The Lagrangian L and Rayleigh’s dissipation
function R can be expressed as

L ¼T � V ¼ 1
2
ðm’z2 þ Ixx

’y2x þ Iyy
’y2yÞ

�
1

2

k1ðz þ l2 sin yy � w2 sin yx � y1Þ
2 þ k2ðz � l1 sin yy � w2 sin yx � y2Þ

2

þk3ðz � l1 sin yy þ w1 sin yx � y3Þ
2 þ k4ðz þ l2 sin yy þ w1 sin yx � y4Þ

2

 !
; ð26Þ

R ¼Rc þ Rv

¼
1

2

c1ð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ
2 þ c2ð’z � l1 cos yy

’yy � w2 cos yx
’yx � ’y2Þ

2

þc3ð’z � l1 cos yy
’yy þ w1 cos yx

’yx � ’y3Þ
2 þ c4ð’z þ l2 cos yy

’yy þ w1 cos yx
’yx � ’y4Þ

2

 !

þ 1
2vð’z þ l2 cos yy

’yy � w2 cos yx
’yx � ’y1Þ

2; ð27Þ

Fig. 1. Dynamic model of three-degree-of-freedom cabin suspension system.
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where the semi-active mount is assumed to be placed at point 1 as shown in Fig. 1. The equations
of motion are obtained as

m.z þ c1ð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ

þ c2ð’z � l1 cos yy
’yy � w2 cos yx

’yx � ’y2Þ

þ c3ð’z � l1 cos yy
’yy þ w1 cos yx

’yx � ’y3Þ

þ c4ð’z þ l2 cos yy
’yy þ w1 cos yx

’yx � ’y4Þ

þ k1ðz þ l2 sin yy � w2 sin yx � y1Þ

þ k2ðz � l1 sin yy � w2 sin yx � y2Þ

þ k3ðz � l1 sin yy þ w1 sin yx � y3Þ

þ k4ðz þ l2 sin yy þ w1 sin yx � y4Þ

þ vð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ ¼ 0; ð28aÞ

Iyy
.yy þ c1l2 cos yyð’z þ l2 cos yy

’yy � w2 cos yx
’yx � ’y1Þ

� c2l1 cos yyð’z � l1 cos yy
’yy � w2 cos yx

’yx � ’y2Þ

� c3l1 cos yyð’z � l1 cos yy
’yy þ w1 cos yx

’yx � ’y3Þ

þ c4l2 cos yyð’z þ l2 cos yy
’yy þ w1 cos yx

’yx � ’y4Þ

þ k1l2 cos yyðz þ l2 sin yy � w2 sin yx � y1Þ

� k2l1 cos yyðz � l1 sin yy � w2 sin yx � y2Þ

� k3l1 cos yyðz � l1 sin yy þ w1 sinyx � y3Þ

þ k4l2 cos yyðz þ l2 sin yy þ w1 sin yx � y4Þ

þ vl2 cos yyð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ ¼ 0; ð28bÞ

Ixx
.yx � c1w2 cos yxð’z þ l2 cos yy

’yy � w2 cos yx
’yx � ’y1Þ

� c2w2 cos yxð’z � l1 cos yy
’yy � w2 cos yx

’yx � ’y2Þ

þ c3w1 cos yxð’z � l1 cos yy
’yy þ w1 cos yx

’yx � ’y3Þ

þ c4w1 cos yxð’z þ l2 cos yy
’yy þ w1 cos yx

’yx � ’y4Þ

� k1w2 cos yxðz þ l2 sin yy � w2 sin yx � y1Þ

� k2w2 cos yxðz � l1 sin yy � w2 sin yx � y2Þ

þ k3w1 cos yxðz � l1 sin yy þ w1 sin yx � y3Þ

þ k4w1 cos yxðz þ l2 sin yy þ w1 sin yx � y4Þ

� vw2 cos yxð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ ¼ 0; ð28cÞ

where z; yy and yx are the linear displacement and rotation angles of the cabin mass center along
the z-; y- and x-axis; ’yj and yj; j ¼ 1; 2; 3; 4; are the linear velocities and displacements at point j
along the z-axis, acting as external distubances to the cabin. The system parameters and damping
coefficient of the semi-active mount are listed in Table 1. The dissipation rate of the system energy
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’Hq becomes

’Hq ¼ ’Hc þ ’Hv

¼ �c1ð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ ð’z þ l2 cos yy
’yy � w2 cos yx

’yxÞ

� c2ð’z � l1 cos yy
’yy � w2 cos yx

’yx � ’y2Þ ð’z � l1 cos yy
’yy � w2 cos yx

’yxÞ

� c3ð’z � l1 cos yy
’yy þ w1 cos yx

’yx � ’y3Þ ð’z � l1 cos yy
’yy þ w1 cos yx

’yxÞ

� c4ð’z þ l2 cos yy
’yy þ w1 cos yx

’yx � ’y4Þ ð’z þ l2 cos yy
’yy þ w1 cos yx

’yxÞ

� vð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þ ð’z þ l2 cos yy
’yy � w2 cos yx

’yxÞ: ð29Þ

Note here that the passive mounts with dampings of ci; i ¼ 1; 2; 3; 4; do not always extract
energy from the system, because ’Hc becomes indefinite in the presence of external disturbances
’yj; j ¼ 1; 2; 3; 4: Assuming the small motion, ’Hcq can be approximated as a quadratic form of

’Hcq ¼ �’qTC’q; ð30Þ

where

C ¼

c1 þ c2 þ c3 þ c4 l2ðc1 þ c4Þ � l1ðc2 þ c3Þ w1ðc3 þ c4Þ � w2ðc1 þ c2Þ

l2ðc1 þ c4Þ � l1ðc2 þ c3Þ l22ðc1 þ c4Þ þ l21ðc2 þ c3Þ w2ðl1c2 � l2c1Þ � w1ðl1c3 � l2c4Þ

w1ðc3 þ c4Þ � w2ðc1 þ c2Þ w2ðl1c2 � l2c1Þ � w1ðl1c3 � l2c4Þ w2
2ðc1 þ c2Þ þ w2

1ðc3 þ c4Þ

2
64

3
75

and ’qT ¼ fz ’yy
’yxg: The three eigenvalues and the corresponding normalized eigenvectors of the

matrix C are obtained as l1=120.3, u1={0.14 –0.99 0}T; l2=107.2 u2={–0.14 –0.99 0)T; and
l3=27.7, u3={0 0 1), respectively. Note that the roll motion is decoupled from the other two
eigenvectors and least damped, when the four supporting passive mounts are identical. The
proposed control law gives the variable damping of the semi-active mount as

if ð’z þ l2 cos yy
’yy � w2 cos yx

’yx � ’y1Þðr1 ’z þ r2l2 cos yy
’yy � r3w2 cos yx

’yxÞX0; v ¼ vmax

else; v ¼ vmin

ð31Þ

Table 1

System parameters

Symbol Content Value

m Mass 602 kg

Ixx Moment of inertia w.r.t. the x-axis 244.6 kgm2

Iyy Moment of inertia w.r.t. the y-axis 258.9 kgm2

l1 Length from mass center to mount 2 or 3 along the x-axis 961mm

l2 Length from mass center to mount 1 or 4 along the x-axis 931mm

w1 Length from mass center to mount 3 or 4 along the y-axis 480mm

w2 Length from mass center to mount 1 or 2 along the y-axis 480mm

ci Damping coefficient of ith mount 30N s/m

ki Stiffness coefficient of ith mount 20 kN/m

vmax Maximum damping coefficient of semi-active mount 300N s/m

vmin Minimum damping coefficient of semi-active mount 0N s/m

Table 1
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By the control action, ’Hdv can be approximated as a quadratic form given by

’Hdv ¼ �vðr1 ’z þ r2l2 cos yy
’yy � r3w2 cos yx

’yxÞð’z þ l2 cos yy
’yy � w2 cos yx

’yxÞ

D� a’qTD’q; ð32Þ

where

a ¼
vjj’z þ l2 ’yy � w2

’yx � ’y1jj

jjr1 ’z þ r2l2 ’yy � r3w2
’yxjj

;

D ¼

r1
r1 þ r2

2
l2 �

r1 þ r3
2

w2

r1 þ r2
2

l2 r2l
2
2 �

r2 þ r3
2

l2w2

�
r1 þ r3

2
w2 �

r2 þ r3
2

l2w2 r3w
2
2

2
666664

3
777775:

The shaded area in Fig. 2(a) shows the feasible region of the eigenvector, u+, associated with the
above matrix D, that is defined for the system with a single semi-active device mounted at point 1
and satisfies constraint (25). Note that the north hemisphere of unit radius corresponds to the
allowable region of u+ for the weighting vector subject to no constraint.
For the sky-hook damper control, where qTs ¼ frs1 rs2 rs3g ¼ f0:69 0:69 0:69g; we obtain

ls+=1.45 and us+={–0.69 –0.64 0.33)T (marked ‘S’ in Fig. 2). Note that us+ can be expressed as
a linear combination of the three eigenvectors, u1, u2 and u3, of the matrix C, i.e.,

usþ ¼ ð0:59Þu1 þ ð0:73Þu2 þ ð0:33Þu3: ð33Þ

This action may not be desirable because the least damped roll motion is least attenuated.
Similarly as before, the measure of alignment cs of a weighting vector qT ¼ fr1 r2 r3g to qTs ¼
f0:69 0:69 0:69g; which is associated with the sky-hook damper control, can be defined as

0pcs ¼ cðq; qsÞp1: ð34Þ

The value of cs indicates the degree of resemblance in performance of the proposed on–off
damping control system designed with the weighting vector q, compared to the sky-hook damper
control system. The performance of the on–off damping control system designed with cs close to 1
will not significantly differ from the sky-hook damper control system. Fig. 2(b) shows the contour
map of cs when the target vector #u is specified within the feasible region. It will be demonstrated
later that, if q is chosen such that the corresponding value of cs is close to 1, there are not much
benefits in performance of the proposed on–off damping control against the sky-hook damper
control. In other words, when the target vector is specified such that the corresponding value of cs

is far less than 1 (for example, cs ¼ 0:58 for point PA), the proposed on–off damping control
scheme becomes far more beneficial in performance than the sky-hook damper control.
Now, let us choose the target vector as (marked ‘TA’ in Fig. 2)

#uA � u3 ¼ f 0 0 1 gT ð35Þ

so that the semi-active mount can extract energy mostly from the least damped roll motion. Then,
optimization (24) gives: qTA ¼ f r1 r2 r3 g ¼ f 0 0 2:08 g; uA lA+=0.96 and uA+={–0.42 –
0.39 0.82), uA (marked ‘PA’ in Fig. 2). Note that uA+ is not perfectly aligned to uA � u3; giving
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the measure of alignment of 0.67. The inevitable discrepancy is due to the inadequate location of
the semi-active device and the inequality constraints imposed on the weighting factors, Eq. (25).
Again, uA+ can be expressed as

uAþ ¼ ð0:36Þu1 þ ð0:45Þu2 þ ð0:82Þu3Eu3: ð36Þ

Note that the least-damped roll mode is most attenuated. When the system is subject to
disturbances, the response vector can be decomposed as

q ¼ u1u1 þ u2u2 þ u3u3; ð37Þ

where ui=q
T �ui is the component of q along ui.

Fig. 2. Feasible region of eigenvector, u+: (a) feasible region; (b) contour map of cs:
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Fig. 3. Responses of the suspension system to the impulse disturbances at points 1 and 2. (a) Bounce-dominant motion,

u1ðtÞ; (b) pitch-dominant motion, u2ðtÞ; and (c) roll motion, u3ðtÞ:yyy, original system; –—–, passive control system;

——, sky-hook control system; ——, proposed on–off control system (r1 ¼ r2 ¼ 0; r3 ¼ 2:08).
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In the simulations, we compared the performances of the following four cases:

1. original system,
2. passive damping control system which merely adds a passive mount of vmax at point 1,
3. sky-hook damper control system which is equivalent to r1 ¼ r2 ¼ r3 ¼ 0:69; (marked ‘S’ in

Fig. 2); and
4. proposed on–off damping control system with weighting factors of r1 ¼ 0; r2 ¼ 0 and r3 ¼

2:08 (marked ‘PA’ in Fig. 2).

Fig. 4. Frequency response functions. (a) Bounce-dominant motion and (b) roll motion to the impulse disturbances at

points 1 and 2: yyy, original system; –—–, passive control system; ——, sky-hook control system

(r1 ¼ r2 ¼ r3 ¼ 0:69); ——, proposed on–off control system.
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The systems are equally subject to the two kinds of inputs, impulse disturbances at points 1 and
2, and 1 and 4, respectively, given by

y1 ¼ y2 ¼ ð0:1ÞdðtÞ; roll and bounce dominant input; ð38aÞ

and

y1 ¼ y4 ¼ ð0:1Þd ðtÞ; pitch and bounce dominant input; ð38bÞ

where d (t) is the Dirac delta function. We first obtain the results for the above four cases under
the roll and bounce dominant input (38a). Fig. 3 shows the impulse responses associated with the
three components ui; i ¼ 1; 2; 3; of q. Note that the roll motion, u3, is much larger than the
bounce and pitch dominant motions, u1 and u2, respectively, because of the nature of the input
and the damping characteristics of the original system. Responses of the passive and the sky-hook
damper control systems are not distinguable because, except at t ¼ 0; there are no external
disturbances. The proposed on–off control system gives smaller (larger) values of u3 (u1 and u2)
than the passive and the sky-hook damper control systems. Fig. 4 shows the Fourier transforms of
the impulse responses of u1 and u3 normalized by the intensity of the impulse input. The results
shown in the frequency domain also confirm that the proposed on–off control system shows better
attenuation for the roll motion than the passive and the sky-hook damper control systems. Fig. 5
compares the corresponding control forces of the sky-hook damper control and the proposed on–
off control, indicating that the magnitudes of the two control forces are similar. Note that the
variable damping coefficient of the semi-active device mounted at point 1 always becomes vmax;
the maximum damping coefficient. Because, except for at t ¼ 0; there are no external
disturbances, it virtually acts as a passive mount.

Fig. 5. Control forces to the impulse disturbances at points 1 and 2: ——, sky-hook control system

(r1 ¼ r2 ¼ r3 ¼ 0:69); ——, proposed on–off control system.
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Fig. 6. Responses of the suspension system to the impulse disturbances at points 1 and 4. (a) Bounce-dominant motion,

u1ðtÞ; (b) pitch-dominant motion, u2ðtÞ; and (c) roll motion, u3ðtÞ: yyy, original system; —– –, passive control

system; —— sky-hook control system (r1 ¼ r2 ¼ r3 ¼ 0:69); ——, proposed on–off control system (r1 ¼ 0:66;
r2 ¼ 0:81; r3 ¼ 0).
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Under the pitch and bounce dominant input case (38b), contrary to the previous case, the roll
motion, u3, is not excited because of the input disturbance characteristics for the original system.
Now, in order to demonstrate the effect of the target vector specification, we assume #uB �
f 0:69 0:72 0 gT (marked ‘TB’ in Fig. 2) considering the pitch and bounce dominant nature of
the input disturbances. The optimization (24) gives: qB={0.66 0.81 0}T, lB+=1.40 and uB+=
{–0.68 –0.71 0.17}T (marked ‘PB’ in Fig. 2) giving the measure of alignment of 0.98. Fig. 6 shows
the impulse responses associated with the three components ui, i ¼ 1; 2; 3; of q. Responses of the
passive, the sky-hook damper control and the proposed on–off control systems are not
distinguable because the proposed control behaves much like the sky-hook damper control as
shown in Fig. 7. Note that, in this case, cs ¼ 0:81; which is still close to 1, confirming the previous
discussions. In this example, because the four identical passive mounts are used in the original
system, it is proportionally damped. The eigenvectors of the passive damping matrix C are
identical to the modes of the system. The roll mode is decoupled and is not excited under the latter
input case (38b) as seen in Fig. 6(c). But, as a result of the addition of the passive or the semi-
active mount at point 1, the system becomes non-proportionally damped and the three modes of
the system are coupled with one another. Then, the roll motion is excited under the latter input
case (38b) as seen in Fig. 6(c).
Note that the bounce and pitch dominant motions, u1; and u2 can be well damped by the

passive and the sky-hook damper control systems. Thus, for the target vector composed of u1 and
u2; it is sufficient to use the passive and the sky-hook damper control systems. However, for the
target vector composed mostly of u3; use of the proposed on–off control is highly recommended.
Now, in order to simulate the excavator cabin suspension system with one semi-active and three

passive mounts, which are fixed on the rigid base (vehicle), it is assumed that the base is exposed to

Fig. 7. Control forces to the impulse disturbances at points 1 and 4: ——, sky-hook control system

(r1 ¼ r2 ¼ r3 ¼ 0:69); ——, proposed on–off control system.
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random disturbances. Then, the external disturbances to the cabin suspension system, yj; j ¼
1; 2; 3; 4; can be represented as

y1 ¼ *z þ l2 sin *yy � w2 sin *yx;

y2 ¼ *z � l1 sin *yy � w2 sin *yx;

y3 ¼ *z � l1 sin *yy þ w1 sin *yx;

y4 ¼ *z þ l2 sin *yy þ w1 sin *yx;

ð39Þ

Fig. 8. Random disturbances to the base: (a) bounce, ——, proposed on-off control system (b) pitch and roll

disturbances; ——, pitch and ——, roll.
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Fig. 9. Responses of the suspension system to the random disturbances at the base. (a) Bounce-dominant motion, u1ðtÞ;
(b) pitch-dominant motion, u2ðtÞ; and (c) roll motion, u3ðtÞ:yyy, original system; –—–, passive control system; ——,

sky-hook control system (r1 ¼ r2 ¼ r3 ¼ 0:69); ——, proposed on–off control system.
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where *z; *yy and *yx are the random bounce, pitch and roll motions experienced by the base, as
shown in Fig. 8. The random motions of the base have been generated from three independent
band-limited white noises with bandwidth of about 500Hz. Fig. 9 shows the components, ui;
i ¼ 1; 2; 3; of the response, q, of the suspension system, when the target vector #uA is given as in
Eq. (35). Note that, due to the nature of the selected target vector #uA; the proposed on–off control
system gives much smaller (a little larger) values of u3 (u1 and u2) than the passive and the sky-
hook damper control systems, similar to the obsevations made with the case of the roll and
bounce dominant impulse inputs.

7. Conclusion

Using Lagrange’s equations and Lyapunov’s direct method, an efficient semi-active on–off
damping control law for vibration attenuation of a multi-degree-of-freedom vibratory system has
been developed. It minimizes the total vibratory energy of the structure, including the work done
by external disturbances, whereas the dissipative energy of the semi-active control device is
transformed into the weighted quadratic form and is maximized for the specified vibrational
response of the system by a proper assignment of the weighting factors. The vibrational response
vector of interest, namely the target mode, is determined at will, considering the vibrational
chracteristics of the system and the user’s subjective requirement on the performance. Features of
the proposed scheme are: it is robust to the system parameters as well as the dynamics of semi-
active control devices; it needs theoretically a single semi-active control device; and it needs only
the velocity feedback when the system is linearized. A numerical example is treated to
demonstrate the application of the proposed control algorithm to a three-degree-of-freedom cabin
suspension system with a semi-active mount.
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Appendix A. Derivation of eigensolution of matrix D

Let us define a real symmetric matrix A, which is a general form of the matrix D, as

A ¼

a2
1r1 a1a2

r1 þ r2
2

? a1an

r1 þ rn

2

a1a2
r1 þ r2

2
a22r2 ? a2an

r2 þ rn

2

^ ^ & ^

a1an

r1 þ rn

2
a2an

r2 þ rn

2
? a2

nrn

2
666666664

3
777777775
¼ 1

2
ðP þ PTÞ; ðA:1Þ
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where

P ¼

a21r1 a1a2r1 ? a1anr1
a1a2r2 a22r2 ? a2anr2

^ ^ & ^

a1anrn a2anrn ? a2
nrn

0
BBB@

1
CCCA ¼ v1v

T
2 and v1 ¼

a1r1
a2r2
^

anrn

8>>><
>>>:

9>>>=
>>>;
; v2 ¼

a1

a2

^

an

8>>><
>>>:

9>>>=
>>>;
:

Since rank (p)p1 and thus rank (A)p2, there exist a non-zero eigenvalue of P and one or two
non-zero eigenvalues of A. Note here that it holds

Pv1 ¼
Xn

i¼1

a2i ri

 !
v1 ðA:2Þ

and

PTv2 ¼
Xn

i¼1

a2
i ri

 !
v2: ðA:3Þ

For v=mv1+v2 with an arbitrary constant m, we obtain

Av ¼
1

2

Xn

i¼1

a2i ri

 !
v þ m

Pn
i¼1 a2

i

m
v1 þ v2

� � !
: ðA:4Þ

where
Pn

i¼1ðairiÞ
2 ¼ 1: For the special case when

m ¼
Pn

i¼1 a2
i

m
or m ¼ 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
a2

i

q
; ðA:5Þ

Eq. (A.4) can be rewritten as

Av ¼
1

2

Xn

i¼1

a2
i ri7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
a2i

q !
v: ðA:6Þ

So, the non-zero eigenvalues of A and the corresponding normalized eigenvectors become

1

2

Xn

i¼1

a2i ri7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
a2

i

q !
ðA:7Þ

and

v ¼
a1 17r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 a2i

q$ %
a2 17r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 a2

i

q$ %
? an 17rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 a2i

q$ %n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 aj 17rj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 a2

i

q$ %r
T

; ðA:8Þ

where
Pn

i¼1ðairiÞ
2 ¼ 1:
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