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1. Introduction

Vibration of structures due to various moving loads is an important problem in engineering,
therefore, plenty of literature concerning this topic can be found. For example, Lin and Trethewey
[1,2] have performed the dynamic analyses of beams and the high-speed precision drilling machine
due to moving loads. Hino et al. [3–5] and Chang and Liu [6] have investigated the forced
vibration responses of non-linear beams subjected to moving loads using the Galerkin method
and finite element method. Wu and Dai [7] and Lee [8] have studied the dynamic behaviour of
multi-span beams undergoing moving forces. Thambiratnam and Zhuge [9] have investigated the
dynamic responses of elastically supported beams due to moving loads. Wu et al. [10] have
presented a technique, based on the finite element method, for calculating the dynamic responses
of structures due to two-dimensional moving forces. Wu et al. [11] have performed the forced
vibration analyses of a flat plat subjected to various moving loads by means of the finite element
method and the Newmark direct integration method. Manoach [12] has studied the dynamic
behaviour of elastoplastic thick circular plates subjected to different types of pulses by using the
Mindlin plate theory. Fr"yba [13], Gbadeyan and Oni [14] and Lin [15] have investigated the
dynamic behaviour of beams and plates undergoing moving forces and moving masses.
Takabatake [16] has presented a simplified analytical method for calculating the dynamic
responses of a rectangular plate with stepped thickness and subjected to moving loads. By
considering the bridge as a structure composed of rectangular plates, Marchesiello et al. [17] and
Zhu and Law [18] have studied the dynamic behaviour of bridges under moving vehicle loads.
Rossi [19] has studied the forced vibration responses of a rectangular plate subjected to a
stationary distributed harmonic loading. Shadnam et al. [20] have formulated the forced vibration
problem of a rectangular plate due to a single force (or mass) moving along an arbitrary trajectory
theoretically; however, only the case of a rectangular plate subjected to a single force (or mass)

*Corresponding author. Tel.: +886-7-3617141; fax: +886-6-2808458.

E-mail address: jjangwu@mail.nkimt.edu.tw (J.-J. Wu).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 2 2 - 4 6 0 X ( 0 2 ) 0 1 0 0 9 - X



moving along a straight path was studied by means of the analytical and numerical approaches.
From the review of the existing literature, one sees that no information concerning the forced
vibration analysis of plates subjected to multiple forces moving along a circular path can be
obtained. For this reason, the title problem is studied in this paper.

Fig. 1(a) illustrates a rotating mechanism used in the places where rotation of object about an
axis is required. Relevant examples include the modern revolving restaurant built at the top of a
building so that the customers can view the beautiful scene from various directions during the
meals, the revolving carriers in the entertainment centres, the revolving glass disk in the
microwave oven, etc.

For the revolving glass disk of a microwave oven, the sketch for the construction of the rotating
mechanism is like that shown in Fig. 1(a) and the corresponding mathematical model may be
represented by Fig. 1(b). Thus, for the dynamic analysis of the rectangular bottom plate, one may
model the whole system as a rectangular flat plate subjected to multiple forces moving along a
circular path.

Fig. 1. (a) Sketch for the construction of the rotating mechanism and (b) the corresponding mathematical model for the

dynamic analysis of the rectangular bottom plate.
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When the forced vibration analyses of structures due to moving loads are performed by means
of the finite element method [21], one requires to replace the external force with the equivalent
nodal forces (and moments) at any instant of time t: Therefore, the formulations for calculating
the instantaneous positions of the moving forces and the expressions for transforming the external
loads to the equivalent nodal forces (and moments) on the structure are presented. The key point
of this paper is to investigate the influence of the following factors on the dynamic behaviour of
the rectangular plate: the supporting conditions of the plate, rotating speed of the moving loads,
radius of the circular path, total number of the moving loads, etc.

2. Instantaneous positions of the moving loads

Fig. 2 shows a rectangular plate subjected to multiple forces, %F%z;iðtÞ (i ¼ 12k), moving, with
constant rotating speed o; along a circular path (i.e., the dashed circle with centre at G½ %xG; %yG� and
radius r). If the position vectors for the moving forces are equally spaced with angle a and the
angle between the position vector for the first moving force, %F%z;1ðtÞ; and the %x-axis, at time t ¼ 0; is
denoted by y0; then the %x and %y co-ordinates for the instantaneous positions of the ith moving
force, at any time t; are respectively given by

%C
ðsÞ
%x;iðtÞ ¼ %xG þ r cos½y0 þ ot þ ði � 1Þa�; ð1Þ

%C
ðsÞ
%y;iðtÞ ¼ %yG þ r sin½y0 þ ot þ ði � 1Þa�; ð2Þ

a ¼ 2p=k; ð3Þ

where k represents the total number of the moving forces.
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Fig. 2. A rectangular plate subjected to multiple forces, %F%z;iðtÞ (i ¼ 12k), moving along a circle with radius r and centre

at point Gð %xG ; %yGÞ with constant rotating speed o:
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For the special case of one force moving along the circular path, Eqs. (1) and (2) reduce to

%C
ðsÞ
%x;1ðtÞ ¼ %xG þ r cosðy0 þ otÞ; ð4Þ

%C
ðsÞ
%y;1ðtÞ ¼ %yG þ r sinðy0 þ otÞ: ð5Þ

3. Overall nodal force vector for a rectangular plate subjected to an arbitrary concentrated force

In order to solve the title problem by means of the finite element method (FEM), the continuum
rectangular plate (see Fig. 3(a)) is replaced by a discrete one composed of m � n identical
rectangular plate elements with (m þ 1)� (n þ 1) nodes. If the length and width of the rectangular
plate are denoted by cx and cy; respectively, then those of each rectangular plate element are given
by a ¼ cx=m and b ¼ cy=n; respectively. In Fig. 3(a), the digits in the circles and parentheses,
respectively, represent the numberings for the nodes and the plate elements. If, at an instant of
time t; a concentrated force PðtÞ; located at the position ½ %CðsÞ

%x ðtÞ; %CðsÞ
%y ðtÞ�; applies on the sth element

of the rectangular plate as shown in Fig. 3(a), then the equivalent nodal forces (and moments) for
the sth rectangular plate element are shown in Fig. 3(b). In Fig. 3(a), %C

ðsÞ
%x ðtÞ and %C

ðsÞ
%y ðtÞ are the co-

ordinates of force PðtÞ with respect to the global %x %y co-ordinate system, while, in Fig. 3(b), CðsÞ
x ðtÞ

and CðsÞ
y ðtÞ are the co-ordinates of force PðtÞ with respect to the local xy co-ordinate system for the

sth rectangular plate element. For convenience, the right superscript s, for the symbols CxðtÞ;
CyðtÞ; %C %xðtÞ and %C %yðtÞ; is used to denote the position of the concentrated force PðtÞ applying on the
sth rectangular plate element. For the relationship between the local co-ordinates [CxðtÞ; CyðtÞ]
and global co-ordinates [ %C %xðtÞ; %C %yðtÞ], one may refer to Eqs. (15a) and (15b).

The equation of motion for a vibrating system is given by [22]

½M�f .qðtÞg þ ½C�f ’qðtÞg þ ½K �fqðtÞg ¼ fF ðtÞg; ð6Þ

where ½M�; ½C� and ½K � are, respectively, the overall mass, damping and stiffness matrices, f .qðtÞg;
f ’qðtÞg and fqðtÞg are, respectively, the nodal acceleration, velocity and displacement vectors for
the whole plate, and fF ðtÞg is the external force vector.

As shown in Fig. 3(a), if the rectangular plate is subjected to a concentrated force PðtÞ; the
external forces on all the nodes of the plate are equal to zero except the four nodes of the sth
rectangular plate element on which the concentrated force PðtÞ applies. Thus, the external force
vector fF ðtÞg in Eq. (6) takes the form

fFðtÞg ¼

½0 y f
ðsÞ
1 ðtÞ f

ðsÞ
2 ðtÞ f

ðsÞ
3 ðtÞ f

ðsÞ
4 ðtÞ f

ðsÞ
5 ðtÞ f

ðsÞ
6 ðtÞ

f
ðsÞ
7 ðtÞ f

ðsÞ
8 ðtÞ f

ðsÞ
9 ðtÞ f

ðsÞ
10 ðtÞ f

ðsÞ
11 ðtÞ f

ðsÞ
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f
ðsÞ
13 ðtÞ f

ðsÞ
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ðsÞ
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ðsÞ
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ðsÞ
17 ðtÞ f

ðsÞ
18 ðtÞ

f
ðsÞ
19 ðtÞ f

ðsÞ
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ðsÞ
21 ðtÞ f

ðsÞ
22 ðtÞ f

ðsÞ
23 ðtÞ f

ðsÞ
24 ðtÞ y 0�T

ð7Þ

where

ff ðsÞðtÞg24�1 ¼ ½ f ðsÞ
1 ðtÞ f

ðsÞ
2 ðtÞ f

ðsÞ
3 ðtÞ ? f

ðsÞ
24 ðtÞ �

T ¼ PðtÞfNðx; yÞg; ð8Þ
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fNðx; yÞg ¼ ½N1ðx; yÞ N2ðx; yÞ � � � N24ðx; yÞ �T: ð9Þ

In Eqs. (7)–(9), f
ðsÞ

i ðtÞ (i ¼ 1224) represent the nodal forces (or moments) equivalent to the
external concentrated force PðtÞ located at x ¼ CðsÞ

x ðtÞ and y ¼ CðsÞ
y ðtÞ; while Niðx; yÞ (i ¼ 1224)
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Fig. 3. (a) A rectangular plate composed of m�n plate elements and ðm þ 1Þ � ðn þ 1Þ nodes; (b) the equivalent nodal

forces and moments corresponding to the external force PðtÞ applied on the sth plate element.
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denote the shape functions of the plate element given by [11]

N3ðx; yÞ ¼ N3ðB; ZÞ ¼ ð1þ 2BÞð1� BÞ2ð1þ 2ZÞð1� ZÞ2;

N4ðx; yÞ ¼ N4ðB; ZÞ ¼ ð1þ 2BÞð1� BÞ2Zð1� ZÞ2b;

N5ðx; yÞ ¼ N5ðB; ZÞ ¼ �ð1� BÞ2Bð1þ 2ZÞð1� ZÞ2a;

N9ðx; yÞ ¼ N9ðB; ZÞ ¼ ð1þ 2BÞð1� BÞ2ð3� 2ZÞZ2;

N10ðx; yÞ ¼ N10ðB; ZÞ ¼ �ð1þ 2BÞð1� BÞ2ð1� ZÞZ2b;

N11ðx; yÞ ¼ N11ðB; ZÞ ¼ �Bð1� BÞ2ð3� 2ZÞZ2a;

N15ðx; yÞ ¼ N15ðB; ZÞ ¼ ð3� 2BÞB2ð3� 2ZÞZ2;

N16ðx; yÞ ¼ N16ðB; ZÞ ¼ �ð3� 2BÞB2ð1� ZÞZ2b;

N17ðx; yÞ ¼ N17ðB; ZÞ ¼ ð1� BÞB2ð3� 2ZÞZ2a;

N21ðx; yÞ ¼ N21ðB; ZÞ ¼ ð3� 2BÞB2ð1þ 2ZÞð1� ZÞ2;

N22ðx; yÞ ¼ N22ðB; ZÞ ¼ ð3� 2BÞB2Zð1� ZÞ2b;

N23ðx; yÞ ¼ N23ðB; ZÞ ¼ ð1� BÞB2ð1þ 2ZÞð1� ZÞ2a;

Niðx; yÞ ¼ NiðB; ZÞ ¼ 0; i ¼ 1; 2; 6; 7; 8; 12; 13; 14; 18; 19; 20; 24; ð10Þ

B ¼ x=a ¼ CðsÞ
x ðtÞ=a; ð11aÞ

Z ¼ y=b ¼ CðsÞ
y ðtÞ=b: ð11bÞ

It is noted that the parameters B and Z; in Eq. (10), are functions of time t if the co-ordinates for
the application point of the external concentrated force PðtÞ; CðsÞ

x ðtÞ and CðsÞ
y ðtÞ; change from time

to time.
Theoretically, if the mesh for the finite element model of the plate is very fine and the

concentrated force moves from node to node in each time interval, then it is not necessary to
calculate the equivalent nodal force using the foregoing shape functions because, in such a case,
the magnitude of the equivalent nodal force is equal to that of the concentrated force. However,
for an engineer, the general approach given by Eqs. (7)–(11) will be better than a special approach,
because a general approach is suitable for most of the general cases and a special approach is
usually only suitable for a few particular problems. Furthermore, the total degree of freedom for
the whole system increases dramatically when very fine meshes are used, particularly for the plate
elements (comparing with the beam elements).

4. Overall nodal force vector for a rectangular plate subjected to multiple forces moving along a

circle

If the forces %F%z;iðtÞ (i ¼ 12k) moving along a circular path (with radius r) on the rectangular
plate with constant rotating speed o; as shown in Fig. 2, then the relationship between the time
interval Dt; total time steps q; and the time duration for calculating the forced vibration responses,
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tmax; is given by

tmax ¼ q Dt: ð12Þ

At any time t ¼ r Dt (r ¼ 02q), the global co-ordinates for the instantaneous position of the ith
moving force %F%z;iðtÞ on the rectangular plate are given by Eqs. (1)–(3). Therefore, the numbering
for the sth plate element on which the ith moving force %F%z;iðtÞ applies (at time t) is determined by

s ¼ ½Integer part of %C
ðsÞ
%y;iðtÞ=b� � m þ ½Integer part of %C

ðsÞ
%x;iðtÞ=a� þ 1: ð13Þ

The numberings for the four nodes of the sth rectangular plate element, s ¼ 1 to m � n; are given
by (see Fig. 3(b)):

s1 ¼ s þ ðInteger part of %C
ðsÞ
%y;iðtÞ=bÞ;

s2 ¼ s1 þ ðm þ 1Þ;

s3 ¼ s1 þ ðm þ 1Þ þ 1;

s4 ¼ s1 þ 1 ð14Þ

Based on the foregoing information concerning the numbering of the sth plate element and the
numberings for the four nodes of the sth plate element, one may determine the nodal forces (and
moments) on the sth plate element (s ¼ 1 to m � n) at any time t ¼ rDt (r ¼ 02q) by using the
shape functions given by Eqs. (10) and (11).

It is noted that the local co-ordinates, [C
ðsÞ
x;iðtÞ; C

ðsÞ
y;i ðtÞ] given by Eqs. (11a) and (11b), instead of

the global co-ordinates, [ %C
ðsÞ
%x;iðtÞ; %C

ðsÞ
%y;iðtÞ] given by Eqs. (1)–(3), are used to calculate the equivalent

nodal forces (and moments). The relationship between the local co-ordinates ½CðsÞ
x;iðtÞ;C

ðsÞ
y;i ðtÞ� and

the global co-ordinates ½ %CðsÞ
%x;iðtÞ; %C

ðsÞ
%y;iðtÞ� for the instantaneous application point of the ith moving

force %F%z;iðtÞ is given by

C
ðsÞ
x;iðtÞ ¼ %C

ðsÞ
%x;iðtÞ � ðInteger part of %C

ðsÞ
%x;iðtÞ=aÞ � a; ð15aÞ

C
ðsÞ
y;i ðtÞ ¼ %C

ðsÞ
%y;iðtÞ � ðInteger part of %C

ðsÞ
%y;iðtÞ=bÞ � b: ð15bÞ

Using the foregoing formulations one may obtain the instantaneous nodal force vector of the
rectangular plate subjected to the ith moving force and assembly of all the instantaneous nodal
force vectors associated with all the moving forces %F%z;iðtÞ (i ¼ 12k) moving along the circular path
will determine the overall instantaneous external nodal force vector fFðtÞg required by Eq. (6).
From the last descriptions, it is evident that the formulation for calculating the overall nodal force
vector of the plate due to a single force moving along the circle is only a special case of that due to
the multiple ones.

5. Dynamic analysis of the rectangular plate

Now, the dynamic responses of a rectangular plate undergoing multiple forces moving along a
circular path may be performed. First of all, the continuous rectangular plate is replaced by a
discrete system so that a finite element model of the rectangular plate may be established. Then,
the natural frequencies and mode shapes of the plate are calculated by using the Lanczos
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algorithm [23], meanwhile, the instantaneous overall nodal force vector of the entire rectangular
plate due to the forces %F%z;iðtÞ (i ¼ 12k) moving along a circle are determined using the
formulations of the last section. Finally, one may use the mode superposition method and the
Duhamel integration [22] to determine the dynamic responses of the plate. For the details, please
refer to Ref. [7].

6. Numerical results and discussions

Fig. 2 shows the uniform undamped rectangular plate studied. The dimensions of the plate are:
length cx ¼ 2:0m, width cy ¼ 1:0m and thickness h ¼ 0:01m. The entire plate is modelled with
200 rectangular plate elements and 231 nodes, the length and width of each rectangular plate
element are: a ¼ b ¼ 0:1m. The plate is made of steel with mass density r ¼ 7820 kg/m3 (or mass
per unit area mp ¼ 78:2 kg/m2), modulus of elasticity E ¼ 206:8 GN/m2 and the Poisson ratio
n ¼ 0:29: For convenience, the last rectangular plate with left side AB and right side CD hinged is
called H-plate and with left side AB and right side CD clamped is called C-plate, hereafter. It is
evident that, for the H-plate, all the translational degrees of freedom (d.o.f) for the boundary
nodes (i.e., the nodes on side AB, and those on side CD) are constrained except that the d.o.f of
rotations about the %y-axis are free, while, for the C-plate, all the d.o.f. associated with the above-
mentioned boundary nodes are constrained.

If the mechanism shown in Fig. 1(a) may be replaced by the mathematical model shown in
Fig. 1(b) and all the wheels (or balls) are equally spaced (by angle a) along the guide ring (with
radius r), then the forces on the rectangular plate due to the weight of the disk together with the
weight of the object on the disk will be uniformly distributed and given by

%F%z;i ¼ Fg=k; i ¼ 1; 2; 3;y; k; ð16Þ

where

Fg ¼
Xk

i¼1

%F%z;i ð17Þ

represents the weight of the disk and the weight of the object on the disk.
It is assumed, in this paper, that the damping ratio is 0.0 for each mode and the mode number

used for calculating the forced vibration responses is 10. In addition, the centre of the circular
path is coincident with the centre of the rectangular plate, G; with global co-ordinates ( %xG; %yG), as
one may see from Fig. 2. Furthermore, the forces ( %Fi;%z; i ¼ 12k) move only in the first 10 s and
then keep stationary thereafter.

Unless specially stated, the time interval Dt ¼ 0:001 s and the total time steps q ¼ tmax=Dt are
used in the integration procedure, where tmax represents the time duration for calculating the
forced vibration responses.

6.1. Free vibration analysis of the rectangular plate

In this paper, the forced vibration responses of the rectangular plates due to the moving loads
are determined with the mode superposition method and the Duhamel integration [22], thus the
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natural frequencies and the corresponding mode shapes of the rectangular plates at each specified
supporting conditions must be calculated first. Since the total mode used for the superposition in
this paper is 10, only the lowest 10 natural frequencies for the hinged–hinged plate (i.e., H-plate)
and those for the clamped–clamped plate (i.e., C-plate) are listed in Table 1, where the digits listed
in the 2nd and 4th columns are the natural frequencies obtained using the Lanczos algorithm [23]
and those listed in 3rd and 5th columns are the natural frequencies obtained using the Jacobi
method [24]. From the table, it is seen that the natural frequencies obtained from the Lanczos
algorithm are very close to the corresponding ones obtained from the Jacobi method. Thus, it is
believed that the last results are viable and will be used to the forced vibration analysis in this
paper.

For convenience of the subsequent descriptions, the corresponding lowest two mode shapes for
the H-plate and those for the C-plate are also shown in Figs. 4 and 5, respectively. It is noted that
the first mode shapes for the H-plate and the C-plate are the amplitudes due to free flexural
vibrations of the rectangular plates in the vertical (%z) directions as one may see from Figs. 4(a) and
5(a); however, the second mode shapes for the H-plate and the C-plate are those due to free
torsional (or twisting) vibrations of the plates about the line nodes MN as shown in Figs. 4(b) and
5(b).

6.2. Responses of the rectangular plate due to a single force moving along a circle

In this subsection, the H-plate subjected to a sinusoidal force %F%z;1ðtÞ ¼ F%z;1 � sinOt ¼ 10�
sinOt N moving along a circular path with radius r ¼ 0:3m, (cf., Fig. 2) is studied. Since the co-
ordinates for the centre (G) of the circular path are %xG ¼ 1:0m and %yG ¼ 0:5m, while the initial
angle between the position vector for the moving force %F%z;1ðtÞ and the %x-axis is y0 ¼ 0 at time
t ¼ 0; the global co-ordinates for the initial position of the sinusoidal force %F%z;1ðtÞ are given by

½ %CðsÞ
%x;1ð0Þ; %C

ðsÞ
%y;1ð0Þ� ¼ ½ %xG þ r cosðy0 þ otÞ; %yG þ r sinðy0 þ otÞ� ¼ ½1:3; 0:5�: ð18Þ

Table 1

The lowest 10 natural frequencies of H-plate and C-plate

Mode number Natural frequencies, oi (Hz)

H-plate C-plate

Lanczos Jacobi Lanczos Jacobi

1st 5.8876 5.8905 13.6396 13.6465

2nd 16.8193 16.8278 21.9251 21.9362

3rd 23.8545 23.8665 37.7177 37.7368

4th 39.3539 39.3738 50.2198 50.2425

5th 54.1362 54.1636 65.1489 65.1819

6th 62.9348 62.9667 74.3587 74.3964

7th 71.1742 71.2103 88.3792 88.4239

8th 86.9126 86.9566 93.7498 93.7973

9th 96.8821 96.9312 123.6543 123.7161

10th 113.9956 114.0537 133.6762 133.7439
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In other words, from the point with %x ¼ 1:3m and %y ¼ 0:5m, the sinusoidal force %F%z;1ðtÞ ¼
10� sinOt N moves along the circular path counter-clockwise, with a constant rotating speed o
rad/s, for 10 s and then stays at the instantaneous position with the instantaneous magnitude
remaining unchanged, i.e., for tX10 s, one has

½ %CðsÞ
%x;1ðtÞ; %C

ðsÞ
%y;1ðtÞ� ¼ ½ %CðsÞ

%x;1ð10Þ; %C
ðsÞ
%y;1ð10Þ�

¼ ½ %xG þ r cosðy0 þ 10oÞ; %yG þ r sinðy0 þ 10oÞ�; ð19Þ

%F%z;1ðtÞ ¼ %F%z;1ð10Þ ¼ 10 sin 10ON ¼Constant: ð20Þ

The time histories for the vertical (%z) displacements of centre G of the H-plate are shown in
Fig. 6(a) when o ¼ O ¼ 5:8876Hz ¼36:9741 rad/s and in Fig. 6(b) when o ¼ O ¼
16:8193Hz ¼ 105:625 rad/s. A comparison between Fig. 6(a) and (b) reveals that the rotating
speed o and the forcing frequency O have a close relationship with the dynamic response of the
rectangular plate, particularly when they are close to certain lowest natural frequencies of
the plate.

For Fig. 6(a), since both the rotating speed o and the forcing frequency O are equal to the first
natural frequency of the H-plate (o1 ¼ 5:8876Hz), the response amplitude increases with the
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Fig. 4. Mode shapes for the hinged–hinged plate (H-plate): (a) first mode and (b) second mode.
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increase of time t in the first 10 s due to undamped forced vibrations and then keeps unchanged
after 10 s (i.e., t > 10 s) due to undamped free vibrations. Either forced or free vibration responses
for the centre G of the rectangular plate are approximately symmetric with respect to the static
equilibrium position of the centre G represented by the dashed line shown in Fig. 6(a). These are
reasonable results, because the centre G of the H-plate is located at the crest of the first mode
shape as shown in Fig. 4(a) and the resonant responses (due to O ¼ o ¼ o1) are much greater
than the differential shift of the static equilibrium positions of the centre G of the H-plate due to
different applying positions of the single moving load %F%z;1ðtÞ:

For Fig. 6(b), although both the rotating speed o and the forcing frequency O are equal to the
second natural frequency of the H-plate (o2 ¼ 16:8193Hz), the response amplitude does not
increase with the increase of time t for the first 10 s. This is because the centre G of the rectangular
plate is located on the line node of the second (torsional) mode shape (see Fig. 4(b)) so that the
maximum central vertical (%z) displacement of point G is very small and any small responses of the
plate will reach this maximum value. After 10 s (i.e., t > 10 s), the point G freely oscillates with
respect to the static equilibrium position represented by the horizontal dashed line of Fig. 6(b). In
Fig. 6(b), the deviation (or shift) between the horizontal solid line (with respect to it the forced
vibration responses oscillate) and the horizontal dashed line is due to the differences of the vertical
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(%z) static deflections of centre G of the H-plate arising from different acting positions of the single
moving load %F%z;1ðtÞ: It is noted that the vertical (%z) central displacement corresponding to the
horizontal dashed line represents the static equilibrium position of centre G of the H-plate due to
applying on the plate the moving load %F%z;1ðtÞ located at the instantaneous position
½ %CðsÞ

%x;1ð10Þ; %C
ðsÞ
%y;1ð10Þ� ¼ ½1:234; 0:687�a½1:3; 0:5� given by Eq. (19) and with the instantaneous

magnitude %F%z;1ð10Þ ¼ 6:248 N given by Eq. (20).
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Fig. 6. Time histories for the vertical (%z) displacements of the centre G of H-plate subjected to a single concentrated

sinusoidal force, %F%z;1ðtÞ ¼ 10� sinOtN, moving along a circular path (of radius r ¼ 0:3m) with a constant rotating

speed o: (a) o ¼ O ¼ o1 ¼ 36:9741 rad/s; (b) o ¼ O ¼ o2 ¼ 105:625 rad/s.
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6.3. Influence of supporting conditions of the rectangular plate

All the conditions in this subsection are exactly the same as those in the last subsection except
that the H-plate is replaced by the C-plate and both the rotating speed o and the forcing
frequency O relating to the moving force %F%z;1ðtÞ are equal to the first and second natural
frequencies of the C-plate, o1 and o2:

Fig. 7(a) shows the time history for the vertical (%z) central displacement of the C-plate when
o ¼ O ¼ o1 ¼ 13:6396Hz ¼ 85:657 rad/s and Fig. 7(b) shows that when o ¼ O ¼ o2 ¼
21:9251Hz ¼ 137:689 rad/s. Because the lowest two mode shapes of the C-plate are similar to
the corresponding ones of the H-plate as one may see from Figs. 4 and 5, the time histories of the
C-plate shown in Fig. 7 are also similar to the corresponding ones of the H-plate shown in Fig. 6.

From the numerical results of the last and the present subsections, one may conclude that the
influence of the rotating speed (o) and forcing frequency (O) of the moving force F%z;1ðtÞ on the
dynamic responses of the rectangular plate is as significant as the supporting conditions of
the plate. Hence, if a rotating mechanism like the one shown in Fig. 1 is designed, in addition to
the supporting conditions of the plate, one must also pay attention to the rotating speed (o) and
the forcing frequency (O) of the moving force to avoid the occurrence of resonance.

6.4. Static deflections of the H-plate due to multiple moving loads

From the last subsections one sees that the magnitudes of the forced vibration responses of the
rectangular plate due to the moving loads have a close relationship with the static equilibrium
position of the plate induced by the loads statically stayed on the plate. Thus, the vertical (%z) static
deflections for the centre G of the H-plate due to the moving loads with rotating speed o ¼ 0 and
various initial angles y0 (for %F%z;1) are studied in this subsection. If the number of moving loads is
k ¼ 3 and the magnitude of each load is equal to 4N (i.e., %F%z;i ¼ Fg=3 ¼ 4N, i ¼ 123), then the
deflection curves for the three cases with radii of the circular paths r ¼0.2, 0.3 and 0.4m are,
respectively, shown in Fig. 8. Where the ordinate denotes the vertical central static deflections of
the H-plate and the abscissa the values of the initial angles y0 for the first moving load %F%z;1: It is
noted that different value of y0 implies different relative position between the moving loads and
the rectangular plate and will induce different static deflections of the centre G of the plate. From
the figure one sees that the smaller the radius of the circular path,r; the larger the vertical (%z) static
deflections of the centre G of the H-plate. It is evident that this result agrees with the actual
situation. For convenience, the boundaries for the variations of each deflection curve are indicated
by a dashed line (- - -) and a solid line (—) and assigned to Di and Si; respectively, and the domain
between each pair of dashed line and solid line is called a static deflection region, where Di denotes
the dashed line and Si the solid line, while i ¼ 1 is for the radius of circular path r ¼ 0:2m, i ¼ 2 is
for r ¼ 0:3m and i ¼ 3 is for r ¼ 0:4m.

6.5. Influence of the radius of the circular path

When the three forces mentioned in the last subsection move, with angular velocity
o ¼ 12:56 rad/s, along the circular paths with radii r ¼ 0:2; 0:3 and 0.4m, respectively, the time
histories for the vertical (%z) displacements of centre G of H-plate are shown in Fig. 9. Where the
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responses for the case of r ¼ 0:2m are represented by the thin solid curve (——), those for the case
of r ¼ 0:3 m by the thin solid curve with rectangles (—B—), and those for the case of r ¼ 0:4m
by the thin solid curve with stars (—$—), besides, each pair of horizontal dashed line and solid
line (Di and Si; i ¼ 1; 2; 3) denotes the upper and lower boundary lines for each associated static
deflection region shown in Fig. 8. From Fig. 9 one sees that the vertical (%z) central displacements of
the plate due to forced vibrations (during 0ptp10 s) induced by the multiple loads moving along

2.0 6.0 10.0 14.0 18.00.0 4.0 8.0 12.0 16.0 20.0

Time (sec)

-7.50E-3

-2.50E-3

2.50E-3

7.50E-3

-1.00E-2

-5.00E-3

0.00E+0

5.00E-3

1.00E-2

V
e

rt
ic

a
lc

e
n

tr
a

ld
is

p
la

ce
m

e
n

t
o

f
th

e
P

la
te

(m
)

2.0 6.0 10.0 14.0 18.00.0 4.0 8.0 12.0 16.0 20.0

Time (sec)

-3.00E -5

-1.00E -5

1.00E -5

3.00E -5

5.00E -5

-4.00E -5

-2.00E -5

0.00E +0

2.00E -5

4.00E -5

6.00E -5

V
e

rt
ic

a
lc

e
n

tr
a

ld
is

pl
a

ce
m

e
nt

of
th

e
P

la
te

(m
)

(a)

(b)

Fig. 7. Time histories for the vertical (%z) displacements of the centre G of C-plate subjected to a single concentrated

sinusoidal force, %F%z;1ðtÞ ¼ 10� sinOtN, moving along a circular path (of radius r ¼ 0:3m) with a constant rotating

speed o: (a) o ¼ O ¼ o1 ¼ 85:657 rad/s; (b) o ¼ O ¼ o2 ¼ 137:689 rad/s.
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a specified circular path, with radius r ¼ 0:2; 0.3 or 0.4m, oscillate with respect to the static
deflection region with a small downward shift, while those due to free vibrations induced by the
three loads statically stayed on the plate (after tX10 s) oscillate with respect to the associated
horizontal solid line S1; S2 or S3: Since the three identical moving loads, %F%z;i ði ¼ 1; 2; 3Þ; are
equally spaced (with constant spacing angle a ¼ 3601=3 ¼ 1201) and their rotating speed is
o ¼ 12:56 rad/s¼2Hz, the three loads return to their original positions at the instant of time
t ¼ 10 s. For this reason, the free vibration responses after 10 s (i.e., t > 10 s) oscillate with respect
to the associated horizontal solid line (S1; S2 or S3).

6.6. Influence of number of moving forces

For the H-plate subjected to multiple identical loads, %F%z;i ¼ Fg=k (i ¼ 12k), moving along a
circular path of radius r ¼ 0:3m, if both the summation of the magnitudes, Fg; and the rotating
speed, o; for all the moving loads are constant and respectively given by Fg ¼

Pk
i¼1

%F%z;i ¼ 12N
and o ¼ 12:56 rad/s¼2Hz, then the influence of number of moving loads, k; on the vertical (%z)
central displacements of the H-plate is shown in Fig. 10. Where the dashed line (- - -) and the solid
line (—), respectively, represent the vertical (%z) central displacements of the H-plate due to six and
seven moving forces, while the curve with circles (—K—) and the curve with triangles (—m—),
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respectively, represent those due to eight and nine moving forces. From the figure it is found that
even if the summation for the magnitudes of all the moving loads is constant and the distribution
for all the moving loads along the circular path is uniform, the vibration amplitudes of the centre
G of H-plate vary with the total number k of the moving loads.

7. Conclusions

1. By means of the formulations for calculating the instantaneous overall nodal forces (and
moments) of a rectangular plate subjected to multiple forces moving along a circular path,
presented in this paper, one may solve the title problem with the finite element method. The
presented formulations are also available for the case of a single moving force.

2. For a rectangular plate subjected to a single force moving along a circular path, the rotating
speed and the forcing frequency are two key factors affecting the dynamic responses of the
rectangular plate. Numerical example shows that the responses of the plate become
predominant if both the rotating speed and the forcing frequency are very close to certain
lowest natural frequencies of the rectangular plate, particularly to the fundamental one.

3. For a rectangular plate subjected to multiple loads moving along a circular path, there exist an
upper limit and lower limit for the vertical (%z) central static deflections of the plate when the
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Fig. 9. Time histories for the vertical (%z) displacements of the centre G of H-plate subjected to three identical constant
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moving loads stay arbitrarily. If the domain between the upper and lower boundary lines is
called the static deflection region, then the vertical (%z) central displacements of the plate due to
forced vibrations induced by the multiple loads moving along a circular path will oscillate with
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respect to the static deflection region with a small downward shift, while those induced by free
vibrations of the loads stay arbitrarily will oscillate with respect to the vertical central static
deflection due to the loads located at the positions where they stay and with the force
magnitudes at that instant of time. This conclusion is also available for a single moving load.

4. For a rectangular plate undergoing multiple identical loads moving along a circular path with
radius r; if both the summation of magnitudes, Fg; and the number of the moving loads, k;
remain unchanged, then the vertical central static deflection of the plate decreases with the
increase of radius of the circular path.

5. If a rectangular plate is subjected to the multiple identical loads moving along a circular path
with radius r; the vertical (%z) central displacements of the plate vary with the number of moving
loads even if the summation for the magnitude of all the moving loads (Fg) is constant and the
distribution for all the moving loads along the circular path is uniform.
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