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Abstract

The damping forces in a multiple-degree-of-freedom engineering dynamic system may not be accurately
described by the familiar ‘viscous damping model’. The purpose of this paper is to develop indices to
quantify the extent of any departures from this model, in other words the amount of ‘non-viscosity’ of
damping in discrete linear systems. Four indices are proposed. Two of these indices are based on the non-
viscous damping matrix of the system. A third index is based on the residue matrices of the system transfer
functions and the fourth is based on the (measured) complex modes of the system. The performance of the
proposed indices is examined by considering numerical examples.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The true nature of the damping forces in a dynamic system is often not known with any great
accuracy. The most common approach in vibration modelling is to assume a model in which it is
supposed that the instantaneous generalized velocities are the only relevant state variables that
determine damping. This approach was first introduced by Rayleigh [1] via his famous ‘dissipation
function’, a quadratic expression for the energy dissipation rate with a symmetric matrix of
coefficients, the ‘damping matrix’. The equations of motion describing the free vibration of such a
linear system with N degrees of freedom can be expressed as

M.qðtÞ þ C’qðtÞ þ KqðtÞ ¼ 0: ð1Þ

HereM; C and K are the N � N mass, damping and stiffness matrices respectively, and qðtÞ is the
vector of the generalized co-ordinates (A list of nomenclature is given). The dynamics of such
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systems have been extensively studied, and are quite well understood. This damping model, which
we will call ‘viscous damping’, is generally the only damping model allowed in commercial finite
element (FE) codes [2], and it is also the only damping model usually taken into account in
experimental modal analysis (EMA) [3]. In fact, in most EMA and FE methods a further
idealization of viscous damping is used, known as ‘proportional damping’ or ‘classical damping’.
This simplification, also pointed out by Rayleigh, allows the damping matrix to be diagonalized
simultaneously with the mass and stiffness matrices, preserving the simplicity of real normal
modes as in the undamped case.

It is well recognized that proportional damping is very rarely a physically realistic model
because practical experience in modal testing shows that most real-life structures possess complex
modes instead of real normal modes. Complex modes can arise from viscous damping, provided it
is non-proportional. However, the physical justification for viscous damping is hardly more
convincing than that for proportional damping. Any causal model which makes the energy
dissipation functional non-negative is a possible candidate for a damping model. Such damping
models, in which the damping force depends on anything other than the instantaneous generalized
velocities, will be called in this paper ‘non-viscous’ damping models. Recently in a series of papers
Adhikari and Woodhouse [4–7] have considered the problem of identification of viscous and non-
viscous damping from vibration measurements. In these studies, attention was focused on the
following questions:

(1) From experimentally determined complex modes can one identify the underlying damping
mechanism? Is it viscous or non-viscous? Can the correct model parameters be found
experimentally?

(2) Is it possible to establish experimentally the spatial distribution of damping?
(3) Is it possible that more than one damping model with corresponding ‘correct’ sets of

parameters may represent the system response equally well, so that the identified model
becomes non-unique?

(4) Does the selection of damping model matter from an engineering point of view? Which
aspects of behaviour are wrongly predicted by an incorrect damping model?

These questions highlight the distinction between viscous and non-viscous damping models,
simply because most vibration analysis textbooks and computer packages only allow viscous
damping, and the aim here is to address the question of whether this restriction matters in
practice.

2. Linear models of non-viscous damping

Damping models in which the dissipative forces depend on any quantity other than the
instantaneous generalized velocities, then will be called non-viscous damping models. Clearly a
wide range of choice is possible. The discussion in this paper is confined to linear systems only,
and the most general way to model damping within the linear range is through the class of
damping models which depend on the past history of motion via convolution integrals over
suitable kernel functions or Green functions. The equations of motion of a discrete system with
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such a damping model can be expressed as

M.qðtÞ þ
Z t

0

Gðt � tÞ’qðtÞdtþ KqðtÞ ¼ 0: ð2Þ

Here GðtÞARN�N is a symmetric matrix of the damping kernel functions, GjkðtÞ: The kernel
functions, or others closely related to them, are described under many different names in the
literature of different subjects: for example, retardation functions, heredity functions, after-effect
functions and relaxation functions. Golla and Hughes [8], and McTavish and Hughes [9] have
used damping models of form (2) in the context of viscoelastic structures. The damping kernel
functions are commonly defined in the frequency/Laplace domain. Taking the Laplace transform
of Eq. (2) and assuming zero initial conditions one obtains

DðsÞq ¼ 0; ð3Þ

where

DðsÞ ¼ s2Mþ sGðsÞ þ K; ð4Þ

is the dynamic stiffness matrix and GðsÞ is the Laplace transform of GðtÞ: The elements of GðsÞ
could in principle have any mathematical form as long as they represent a causal dissipative
function.

By choosing specific forms of GðsÞ; a wide variety of particular linear damping models can be
obtained as special cases of this general non-viscous model. Some examples are as follows:

(1) Viscous damping model: by choosing GðsÞ ¼ C; 8s; Eq. (2) reduces to the case of viscous
damping as in Eq. (1).

(2) Exponential damping model: this model was introduced by Biot [10] and can be obtained by
choosing

GðsÞ ¼
Xn

j¼1

mj

s þ mj

Cj: ð5Þ

Here mj are known as relaxation parameters and Cj are associated damping coefficient
matrices. It is often argued that this is the physically most realistic non-viscous damping
model [11]. When mj-N; 8j this model reduces to the case of viscous damping.

(3) Fractional derivative damping model: Bagley and Torvik [12], Torvik and Bagley [13], Gaul
et al. [14] and Maia et al. [15] have considered damping modelling in terms of fractional
derivatives of the displacements. By choosing

sGðsÞ ¼
X

j

snjgj; ð6Þ

where gj are complex constant matrices and nj are fractional powers, Eq. (2) gives this
fractional derivative model. The familiar viscous damping appears as a special case when
nj ¼ 1: The review papers by Slater et al. [16], Rossikhin and Shitikova [17] and Gaul [18] give
further discussions on this topic.

It is clear that a wide variety of linear non-viscous damping models can be represented by the
convolution integral approach. For this reason in this paper systems of the form (2) are
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considered as a basis to examine the distinction between viscous and non-viscous damping
models.

The specific purpose of the present study is to quantify the amount of ‘non-viscosity’ of
damping present in a system. The amount of non-viscosity of damping, in other words the extent
of departure from the usual viscous model, is important because, as already explained, most
vibration analysis and simulation methods assume viscous damping, and one may want to know
how accurate such a method can be expected to be. In Section 3, a brief analytical background on
non-viscously damped systems is given. Non-viscosity indices are discussed in Section 4. In
Section 4.1 two indices of non-viscosity, based on the first moment and the Laplace transform of
the non-viscous damping matrix GðtÞ; are proposed. An index of non-viscosity based on the
residues of the transfer function matrix is developed in Section 4.2. Section 4.3 develops an index
based on only the measured complex modes. The relative advantages and disadvantages of the
four proposed indices and the situations when each of them is likely to be applicable are discussed
in Section 4.4. In Section 5, application of the proposed indices is illustrated through numerical
examples. The behaviour of the proposed indices in the context of errors that arise by making a
viscous damping assumption for a non-viscously damped system is discussed in Section 6 and
some conclusions are drawn in Section 7.

3. Analytical background

Woodhouse [19] and Adhikari [20,21] have shown that conventional modal analysis can be
extended to non-viscously damped systems of form (2). The eigenvalue problem associated with
this equation can be defined by taking the Laplace transform

l2
kMzk þ lkGðlkÞzk þ Kzk ¼ 0; ð7Þ

where GðsÞ is the Laplace transform of GðtÞ: The eigenvalue problem of form (7) has been
discussed by Adhikari [20,21]. The eigenvalues, lk; associated with Eq. (7) are roots of the
characteristic equation

det DðsÞ½ 	 ¼ 0: ð8Þ

Because GðtÞ is real, GnðsÞ ¼ GðsnÞ8s: Upon using this and taking the complex conjugate of (8) it is
clear that

det s*
2

Mþ snGðsnÞ þ K
h i

¼ 0: ð9Þ

This implies that if s satisfies Eq. (8) then so does sn: Thus, the eigenvalues of non-viscously
damped systems either appear in complex conjugate pairs or become purely real. From Eq. (7) it is
easy to observe that, when lk appear in complex conjugate pairs zk also appear in complex
conjugate pairs, and when lk is real zk can also be taken to be real. Suppose the order of the
characteristic Eq. (8) is m: In general m is more than 2N; that is m ¼ 2N þ p; pX0: Thus,
although the system has N degrees of freedom (d.o.f.), the number of eigenvalues is more than 2N:
This is a major difference between non-viscously damped systems and viscously damped systems
where the number of eigenvalues is exactly 2N; including any multiplicities.
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It may be noted that the phenomenon of ‘proportional damping’, much discussed for viscously
damped systems, can also appear in non-viscously damped systems. Adhikari [22] has shown that
system (2) can be diagonalized by undamped modes if and only if any one of the following
conditions is satisfied:

ðaÞKM�1GðtÞ ¼GðtÞM�1K;

ðbÞMK�1GðtÞ ¼GðtÞK�1M;

ðcÞMG�1ðtÞK ¼KG�1ðtÞM: ð10Þ

In this paper the damping is assumed to be non-proportional, that is, the system matrices in
general do not satisfy any of the above relationships.

4. Non-viscosity indices

4.1. Indices based on the non-viscous damping matrix

In this section two indices of non-viscosity will be developed. It is assumed that the non-viscous
damping matrix GðtÞ is available beforehand. Thus, the indices to be developed here are best
suited for analytical applications.

4.1.1. Index based on the first moment of the non-viscous damping matrix
It was mentioned that when

GðtÞ ¼ CdðtÞ; ð11Þ

the non-viscously damped system (2) reduces to the viscously damped system (1). The first two
moments of GðtÞ given by Eq. (11) are

M0 ¼
Z

N

0

GðtÞ dt ¼ C; ð12Þ

and M1 ¼
Z

N

0

tGðtÞ dt ¼ O; ð13Þ

where O is a N � N null matrix. It is clear that the first moment M1 will not be a null matrix if
GðtÞ in Eq. (11) is not expressed in terms of the delta function. Thus M1 can be used to quantify
the amount of non-viscosity of the damping. This idea was first introduced by Adhikari and
Woodhouse [4] for the special case when

GðtÞ ¼ CgðtÞ; ð14Þ

where gðtÞ is some (scalar) non-viscous damping function. The degree of non-viscosity was
quantified by means of a characteristic time constant defined via the first moment of gðtÞ: Here this
idea is extended to a more general case when GðtÞ is not necessarily restricted in the form of
Eq. (14).
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Define a matrix

H1 ¼ M�1
0 M1: ð15Þ

Clearly, for viscously damped systems H1 will be a null matrix. Thus, the value of H1 can be used
to quantify the amount of non-viscosity of damping, by considering a suitable norm of H1: A
good choice seems to be the so-called l2 matrix norm, denoted by jj . jj: Further note that H1 has
the dimension of time. To express the index in a non-dimensional form, it can be normalized by
the minimum time period of the undamped system, denoted by Tmin: Thus the first index of non-
viscosity, g1; is defined as

g1 ¼
jjH1jj
Tmin

¼
jjM�1

0 M1jj
Tmin

: ð16Þ

4.1.2. Index based on the Laplace transform of the non-viscous damping matrix
The Laplace transform of GðtÞ; denoted by GðsÞ; is defined as

GðsÞ ¼
Z

N

0

e�stGðtÞ dt ð17Þ

for any sAC: Expanding e�st; Eq. (17) gives

GðsÞ ¼
Z

N

0

1� st þ
s2t2

2!
�

s3t3

3!
þ?

� �
GðtÞ dt ¼ M0 � sM1 þ

s2M2

2!
�

s3M3

3!
þ?; ð18Þ

where

Mr ¼
Z

N

0

trGðtÞ dt; ð19Þ

is the rth moment of the non-viscous damping matrix GðtÞ: Now, premultiplying Eq. (18) by M�1
0

and subtracting the result from an N � N identity matrix gives

I�M�1
0 GðsÞ ¼ sM�1

0 M1 �M�1
0

s2M2

2!
�

s3M3

3!
þ?

� �
: ð20Þ

For s ¼ 1; the above expression reduces to

I�M�1
0 Gð1Þ ¼ M�1

0 M1 �M�1
0 M2=2!þM�1

0 M3=3!�?: ð21Þ

The first term on the right-hand is the same as H1 given by Eq. (15). The higher order terms
appearing on the right-hand of Eq. (21) include the effect of the higher order moments of GðtÞ:
From Eq. (11), it is easy to observe that for viscous damping all the higher order moments of GðtÞ
would be null matrices. Thus, the expression given in Eq. (21) can be used to quantify the amount
of non-viscosity of damping. Upon taking the l2 matrix norm of Eq. (21) and from Eq. (18) noting
that

Gð0Þ ¼ M0; ð22Þ

the second index of non-viscosity of damping is defined as

g2 ¼
jjI�Gð0Þ�1Gð1Þjj

Tmin

: ð23Þ
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To use this equation it is required to evaluate GðsÞ at s ¼ 0: Recently, Adhikari [23] has proposed
a method from which Gð0Þ can be evaluated from experimentally measured transfer functions.
However, currently there is no method to experimentally obtain Gð1Þ: Thus, the index of non-
viscosity given by Eq. (23) is best suited for analytical work only. An index which is more suitable
for experimental analysis is proposed in the next section.

4.2. Index based on transfer function residues

So far, no assumption regarding the functional form of GðsÞ has been made. The next proposed
index depends for its strict application on a particular assumption about the mathematical
behaviour, namely that GjkðsÞ is analytic except at isolated poles, and also that the elements of
GðsÞ remain finite as s-N: This assumption in turn implies that the elements of GðsÞ are at most
of order 1=s in s or constant, as in the case of viscous damping. Table 1 shows some non-viscous
damping functions which have been used in the literature. Observe that the first five damping
functions shown in the table satisfy the condition just described. All these models are basically
variants of the general exponential model (relaxation function) proposed by Biot [10]. In the
literature it has been argued, by for example Cremer and Heckl [11], that among the possible
damping functions, the relaxation (exponential) function is the only one likely to be physically
justified. However, from a mathematical point view this will not necessarily be true. For example,
the damping function 8 in Table 1 (Gaussian model) has its only singularity when s-N; but it

Table 1

A representative selection of non-viscous damping functions in the Laplace domain

Model Damping function Author and

Number year of publication

1 GðsÞ ¼
Pn

k¼1

aks

s þ bk

Biot [10]—1955

2
GðsÞ ¼ as

R
N

0

gðrÞ
s þ r

dr
Buhariwala [24]—1982

gðrÞ ¼
1

b� a
; apgpb

0; otherwise

8<
:

3
GðsÞ ¼

E1sa � E0bsb

1þ bsb
Bagley and Torvik [12]—1983

0oao1; 0obo1

4
sGðsÞ ¼ GN 1þ

P
k ak

s2 þ 2xkoks

s2 þ 2xkoks þ o2
k

� �
Golla and Hughes [8]—1985 and McTavish and Hughes

[9]—1993

5
GðsÞ ¼ 1þ

Pn
k¼1

Dks

s þ bk

Lesieutre and Mingori [25]—1990

6
GðsÞ ¼ c

1� e�st0

st0

Adhikari [26]—1998

7
GðsÞ ¼

c

st0

1þ 2ðst0=pÞ
2 � e�st0

1þ 2ðst0=pÞ
2

Adhikari [26]—1998

8
GðsÞ ¼ ces2=4m 1� erf

s

2
ffiffiffi
m

p
 !" #

Adhikari and Woodhouse [4]—2001
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satisfies the necessary causality and energetic conditions to be a valid damping model. The
fractional-derivative damping models mentioned earlier also violate the assumption to be made
here, for a different reason. The associated functions GjkðsÞ are multi-valued, and have a branch
point at the origin of the complex plane and would require a more sophisticated analysis. Such
damping models will not be covered by the following discussion.

In a modal testing procedure a set of transfer functions is measured, typically by exciting a
structure at some chosen grid of points and observing response at a fixed point. From the
measured transfer functions, the poles and the residues can be extracted. Under the restriction on
GðsÞ given in the previous paragraph, in Ref. [21] it was shown that the transfer function matrix of
non-viscously damped systems (2) can be expressed as

HðsÞ ¼
Xm

k¼1

Rk

s � lk

; ð24Þ

where Rk is the residue matrix corresponding to the kth pole lk and s ¼ io; where o denotes
frequency. The poles lk can be related to the natural frequencies, ok and the damping factors,
zk; as

lk; l
n

kE� zkok7iok: ð25Þ

The residue matrix Rk is related to the corresponding mode shape by

Rk ¼
zkz

T
k

yk

; ð26Þ

where yk; the normalization constant, is given by

yk ¼ zTk
@DðsÞ

s

����
s¼lk

zk: ð27Þ

Eqs. (24)–(27) also hold for viscously damped systems except that m ¼ 2N because the order of
the characteristic polynomial is 2N for viscously damped systems.

Upon noting that HðsÞ ¼ D�1ðsÞ; it can be proved that (see Appendix A for details)Xm

k¼1

Rk ¼ O: ð28Þ

If the damping is not too high one would expect that among the m eigenvalues, 2N will appear in
complex conjugate pairs corresponding to perturbed versions of the eigenvalues of the undamped
system. The remaining eigenvalues will be associated with the internal behaviour of the damping
model and might be expected to be purely real or else far from the imaginary axis. For
convenience, arrange the eigenvalues in the sequence

l1; l2;y; lN ; l
n

1; l
n

2 ;y; lnN ; l2Nþ1;y; lm: ð29Þ

Corresponding to the N complex conjugate pairs of eigenvalues, the N eigenvectors together with
their complex conjugates are called elastic modes [20,21]. These modes are related to the N modes
of vibration of the structural system. The modes corresponding to the ‘additional’ p ¼ 2N � m
eigenvalues are called non-viscous modes. These modes are induced by the non-viscous effect of the
damping mechanism.
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Now, separate the sum on the left-hand of Eq. (30) to obtain

X2N

k¼1

Rk þ
Xm

k¼2Nþ1

Rk ¼ O: ð30Þ

Recalling the arrangement of the eigenvalues in Eq. (29), one has

RNþk ¼Rn

k for 1pkpN;

R2Nþk ¼Rnvk
for 1pkpp; ð31Þ

where ð�Þnv denotes the non-viscous terms of ð�Þ: In view of Eqs. (31), (30) can be rewritten as

2
XN

k¼1

R Rkð Þ ¼ �
Xp

k¼1

Rnvk
: ð32Þ

The left-hand of the above equation corresponds to only the elastic modes, while the right-hand
corresponds to only the non-viscous modes. Usually, the damping of a structure is sufficiently
light so that all elastic modes are sub-critically damped, i.e., all of them are oscillatory in nature.
In this case, the transfer functions of a system have ‘peaks’ corresponding to all the elastic modes
(although these peaks may overlap if natural frequencies are closely spaced). The natural
frequencies and the damping factors can be obtained by examining each peak separately, for
example, by using the circle fitting method [3]. Estimation of ok and zk is likely to be good if the
peaks are well separated. Once the poles are known, the residues can be obtained
straightforwardly; see Refs. [27,28] for example.

As was mentioned earlier, for passive systems encountered in practice the non-viscous modes
are likely to be over-critically damped. Thus, in contrast to the elastic modes, they do not produce
any peaks in the transfer functions. As a consequence, the poles and the residues corresponding to
non-viscous modes cannot be obtained by the usual techniques of experimental modal analysis.
However, due to Eq. (32), the sum of the residues corresponding to the non-viscous modes can be
obtained because the left-hand side of this equation can be measured experimentally. Thus, from
Eq. (32) it is clear that the left-hand side, 2

PN
k¼1 R Rkð Þ; can be used as a measure of non-viscosity

of damping. For viscously damped systems, the quantity 2
PN

k¼1 R Rkð Þ will exactly be a null
matrix. In view of this discussion, the third index of non-viscosity is defined as

g3 ¼ 2
XN

k¼1

R Rkð Þ

�����
�����: ð33Þ

The above quantity provides a useful measure of non-viscosity of damping on the assumption that
the residues corresponding to all the modes are known. Because modal truncation is inevitable in
experimental work, the index given in Eq. (33) may not in practice quantify the amount of non-
viscosity exactly. An index is proposed next which does not suffer from this drawback.

4.3. Index based on complex modes

Classical normal modes exist only if the damping is proportional, that is, if any one of the
conditions given in Eq. (10) is satisfied. Real-life structures in general do not satisfy any of these
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conditions and experimental modal analysis normally gives complex modes. In this section, an
index to quantify non-viscosity of damping is proposed, which utilizes measured complex modes.

To derive a single index of non-viscosity, it has been assumed that (a) the damping is small so
that first-order perturbation theory is applicable, (b) the non-viscous damping matrix can be
expressed as in Eq. (14), and (c) the mass matrix of the system is known. Suppose GðoÞ denotes
the Fourier transform of the (scalar) damping function gðtÞ shown in Eq. (14). Separating the real
and imaginary parts of GðoÞ write

GðoÞ ¼ GRðoÞ þ iGI ðoÞ: ð34Þ

Under such assumptions, Adhikari and Woodhouse [5] have shown that the ratio of the imaginary
and real parts of GðoÞ; evaluated at the undamped natural frequency oj; can be expressed as

GI ðojÞ
GRðojÞ

¼ �
vTj Muj

vTj Mvj

for j ¼ 1; 2;y;N; ð35Þ

where uj and vj are, respectively, the real and imaginary parts of complex mode zj: Note that only
the elastic modes have to be used in Eq. (35). For viscously damped systems gðtÞ ¼ dðtÞ (see
Eq. (11)), and taking the Fourier transform of gðtÞ one obtains

GðoÞ ¼ 1: ð36Þ

This implies that for viscously damped systems GI ðoÞ ¼ 0: For this reason, the ratio given by
Eq. (35) is zero for viscously damped systems and differs from zero for non-viscously damped
systems. This fact may be utilized to quantify the amount of non-viscosity of damping. To obtain
a numerical index one may simply take the average of the ratio given by Eq. (35) over all j: The
fourth index of non-viscosity is then defined as

g4 ¼
1

N

XN

j¼1

�
vTj Muj

vTj Mvj

�����
�����: ð37Þ

The above quantity might be expected to provide an accurate measure of non-viscosity of
damping if the damping is non-proportional and the non-viscous damping matrix has the special
form given by Eq. (14), for example, if the physical damping in the system satisfies an exponential
model with only one relaxation time.

4.4. Discussion

Due to their inherent differences in origin and nature, it is not possible to normalize the four
proposed indices so that their absolute values are directly comparable to each other. The choice of
a particular index depends upon what information is available. If the non-viscous damping matrix
is available, either in the time domain or in the frequency domain, one can readily use the first or
the second index. Since one cannot hope to know the non-viscous damping matrix of a structure
in advance, these two indices are therefore useful for analytical studies only. However, note that
the mass and the stiffness matrices are not required to obtain these indices. When the non-viscous
damping matrix is not known, the third and the fourth indices may be used to quantify the non-
viscosity of damping. However, both the indices have their own limitations. The third index relies
on having all the modes, which is not possible for most experimental analysis. Truncation of the
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set of modes will degrade the usefulness of this index. The fourth index, although it does not suffer
from this drawback, is strictly valid only for systems with non-proportional damping of the
particular form given by Eq. (14). In the subsequent sections, the behaviour of all four indices and
the consequences of the limitations just described are explored by numerical examples.

5. Numerical examples

5.1. Example 1: A four-d.o.f. system

A four-d.o.f. system with non-viscous damping is considered to illustrate the use of the
four non-viscosity indices suggested above. The mass and stiffness matrices of the system are
taken to be

M ¼ diag½1; 2; 2; 1	 and K ¼

5 �3 0 0

�3 7 �4 0

0 �4 7 �3

0 0 �3 5

2
6664

3
7775: ð38Þ

The matrix of damping functions is assumed to be of the form

GðtÞ ¼ diag dðtÞ þ m1e
�m1t;

dðtÞ þ m2e
�m2t

5
;
dðtÞ þ m2e

�m2t

5
;
dðtÞ þ m3e

�m3t

10

� �
: ð39Þ

This implies that the damping mechanism is a linear combination of viscous and exponential
damping models. It may be verified that none of the conditions for proportionality of damping
given in Eq. (10) is satisfied. The eigenvalues and the eigenvectors of the system were obtained by
following the procedure in Refs. [20,21]. The system has four elastic modes (appearing in complex
conjugate pairs) and four non-viscous modes.

To calculate the first index of non-viscosity, g1; it is required to obtain the first two moments of
GðtÞ: Using the expression for GðtÞ in Eq. (39) one obtains

M0 ¼
Z

N

0

GðtÞ dt ¼ 2� diag 1;
1

5
;
1

5
;
1

10

� �
; ð40Þ

and

M1 ¼
Z

N

0

tGðtÞ dt ¼ diag
1

m1

;
1

5m2

;
1

5m2

;
1

10m3

� �
: ð41Þ

From M0 and M1; the matrix H1 in Eq. (15) is obtained as

H1 ¼ 1=2� diag
1

m1

;
1

m2

;
1

m2

;
1

m3

� �
ð42Þ

By using this, g1 can be easily calculated from Eq. (16). Fig. 1 shows the values of g1 for values of
m1 ranging from 0:5 to 15; while using fixed values m2 ¼ 7:5 and m3 ¼ 5:0: Observe that g1 is high
for small values of m1: This fact is intuitively appealing because for small values of m1 the damping

S. Adhikari, J. Woodhouse / Journal of Sound and Vibration 260 (2003) 499–518 509



function has a long ‘tail’ and departs further from the viscous damping case, where the equivalent
function would be a delta function having no tail.

Taking the Laplace transform of GðtÞ one obtains

GðsÞ ¼ diag 1þ
m1

s þ m1

;
1

5
þ

m1

5ðs þ m1Þ
;
1

5
þ

m1

5ðs þ m1Þ
;
1

10
þ

m1

10ðs þ m1Þ

� �
: ð43Þ

From GðsÞ one can easily obtain Gð0Þ and Gð1Þ; and consequently calculate the second index of
non-viscosity, g2; given by Eq. (23). The residue matrices are obtained from Eq. (26) by using the
four elastic modes of the system. The values of g3 are again plotted in the same figure. Note that in
the region where m1 is less than 3 or so, this index behaves in the opposite manner to g1 and g2:
However, for m1 greater than 3 or so, the behaviour of g3 is recognizably similar to those of g1 and
g2: Although g3 shows a discrepancy from the two previous indices, we emphasize that unlike
them, g3 can be calculated without knowing the non-viscous damping matrix. For this reason, g3
might be expected to have more applicability in practice.

Finally, consider the fourth index of non-viscosity, g4; given by Eq. (37). Only the real and
imaginary parts of the measured complex modes (that is, only the elastic modes) are required to
obtain this index. As before, the values of g4 are shown in Fig. 1. It is clear that the trend of g4 is
similar to those of g1 and g2: From this particular example it may be concluded that the first,
second and the fourth indices behave in a similar way, while the third index shows some
discrepancy for lower values of m1:

5.2. Example 2: A 30-d.o.f. system

To see if the results of the previous example are typical, it is necessary to look at a wide range of
systems with different damping mechanisms. In this section, a larger system consisting of a linear
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Fig. 1. Indices of non-viscosity for different values of m1; m2 ¼ 7:5 and m3 ¼ 5:0 for the four-d.o.f. system defined in

Eqs. (38) and (39).

S. Adhikari, J. Woodhouse / Journal of Sound and Vibration 260 (2003) 499–518510



array of 30 spring–mass oscillators and non-viscous dampers has been considered. The assumed
model of damping, expressed by a linear combination of two exponential models, is a step further
than the previous example.

The mass and stiffness of all units are assumed to be the same, so that the mass and the stiffness
matrices are given by

M ¼ mu; ð44Þ

and

K ¼ ku%I; ð45Þ

where the tri-diagonal matrix is

%I ¼

2 �1

�1 2 �1

& & &

�1 2 �1

& & �1

�1 2

2
6666666664

3
7777777775
: ð46Þ

The non-viscous damping matrix is assumed to be of the form

GðtÞ ¼ m1e
�m1 tC1 þ m2e

�m2 tC2; ð47Þ

where

C1 ¼ c1I ð48Þ

and

C2 ¼ c2%Ip;l ; ð49Þ

where %Ip;l is a tri-diagonal matrix similar to that in Eq. (46) except that it is non-zero only between
the pth and lth entries along the diagonal and the super-diagonal. The first damping term in
Eq. (47) corresponds to a set of non-viscous dampers connecting each mass to the ground. The
second damping term in Eq. (47) corresponds to dampers connected between adjacent masses, but
only between the pth and the lth masses.

For the numerical simulation it is assumed that mu ¼ 1 kg, ku ¼ 4:0� 105 N/m, c1 ¼ 25Nm/s,
c2 ¼ 200Nm/s, m2 ¼ m1=4; p ¼ 8 and l ¼ 17: The indices of non-viscosity are shown in Fig. 2 for
values of m1 varying between 250 and 1500 s�1: For higher values of the relaxation parameter m1

damping is close to viscous. Since in this problem m2 is expressed in terms of m1 it would be
expected that all indices should show comparatively low values for higher m1: Indices 1 and 2 are
very close to each other and their values gradually decrease with increasing m1 as expected. The
value of index 4, although oscillatory, also shows a decreasing trend with increasing m1: Index 3,
however, shows an opposite trend, with the index value increasing with increasing m1: Here, this
index clearly gives a wrong indication of the actual damping behaviour.

Recall that index 3 is obtained by using a ‘modal sum’ from Eq. (33). The effect of modal
truncation can also be investigated by using this example. Fig. 3 shows the index values obtained
by retaining 5, 10, 20 and 30 (all) modes. Note that modal truncation does not affect the index
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values significantly, and they still indicate the damping behaviour wrongly as all of them increase
with increasing m1:

From Eq. (37) observe that index 4 is obtained by averaging the ratio over all modes. The effect
of using a reduced number of modes for this index in shown in Fig. 4. All the index values,
obtained by retaining different number of modes in the calculation, decrease with increasing m1:
This indicates that, even with as few as 10 or 5 modes, index 4 can be used with some success.
However, using more modes improves the result because for any value of m1 the index obtained by
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Fig. 3. Non-viscosity index 3 obtained by retaining different number of modes in Eq. (33), for the same system as

Fig. 2.
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Fig. 2. Indices of non-viscosity for different values of m1 for a 30-d.o.f. system defined in the text.
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using a higher number of modes has a lower value, and use of the full set of modes produces the
most satisfactory result.

From this example, and also the previous one, it may be concluded that indices 1, 2 and 4 can
give a good indication of non-viscosity of damping. The performance of index 3 has not been very
convincing and in some cases it shows the opposite of the expected damping behaviour. Therefore,
it is suggested that for practical purposes indices 1, 2 and 4 should be used and index 3 should be
avoided.

6. Error analysis

The numerical values of the non-viscosity indices proposed here are unbounded except that
giX0; 8i: The lack of an upper bound may be regarded as a possible drawback because from a
single value of gi it is not in general possible to comprehend the degree of non-viscosity of
damping. One useful way to interpret the non-viscosity indices is to analyze the errors that arise if
one makes the assumption of viscous damping for a non-viscously damped system. There are
various possible choices of a quantity to measure the error: for example, the difference between
the time response or the frequency response at some d.o.f. of a structure. Here, we consider the l2
norm of the transfer function matrix. If a system is perfectly viscously damped, Eq. (12) would
give the viscous damping matrix. By using this viscous damping matrix, the transfer function
matrix of the equivalent viscously damped system can be obtained from Eq. (24) with m ¼ 2N; so
that

HðvÞðsÞ ¼
X2N

k¼1

R
ðvÞ
k

s � lðvÞk

ð50Þ
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Fig. 4. Non-viscosity index 4 obtained by using different number of modes in Eq. (37), for the same system as Fig. 2.
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where ð�ÞðvÞ symbolizes ‘for viscous damping’. The frequency-dependent error is now given by

eðioÞ ¼
HðioÞ �HðvÞðioÞ
�� ��

HðioÞj j
: ð51Þ

The aim here is to understand the behaviour of this quantity in the light of the non-viscosity
indices proposed here.

For numerical illustration, we consider the four-d.o.f. system of Section 5.1. The equivalent
viscous damping matrix for the example considered may be obtained from Eq. (40). In Fig. 5, the
quantity eðioÞ is plotted for values of m1 ranging from 0:5 to 15 as considered before. The error
decreases as m1 increases. In view of the non-viscosity indices shown in Fig. 1, it appears that the
error due to making the viscous damping assumption is greater when the values of the non-
viscosity indices are greater and vice versa. This shows that the indices of non-viscosity proposed
here do indeed give a good qualitative indication of the error which would be incurred by making
a viscous damping assumption. For this example, it appears that a viscous damping model should
not be used for a non-viscously damped system if the non-viscosity index (any one of them) has a
value 0:4 or higher.

Another interesting fact to emerge from Fig. 5 is the frequency dependence of the error. Note
that the error has peaks around the system natural frequencies. This implies that a viscous
damping assumption for a non-viscously damped system is likely to produce more error if the
driving frequency is near to a system’s natural frequency. This is as one might have guessed: it is
well known that the effect of damping is most significant near the natural frequencies. Since the
indices developed here are not frequency dependent, they cannot indicate directly the presence or
level of this variation of the error, and this could be regarded as a shortcoming of all these indices
for quantitative purposes. Further work is needed to determine how important this might be.
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7. Conclusions

Quantification of the amount of non-viscosity of damping in linear multiple-degree-of-freedom
dynamic systems has been considered. Four indices, based on (1) moments of the non-viscous
damping matrix, (2) the Laplace transform of the non-viscous damping matrix, (3) transfer
function residues and (4) complex modes, have been proposed. The first and the second indices are
suitable for analytical studies, while the other two are aimed at using experimental data. The
relative merits and demerits of these indices have been discussed. Indices 1, 2 and 4 were shown to
behave in a similar way, but index 3 was found to have counter-intuitive behaviour and thus to be
less useful.

The indices of non-viscosity proposed here are useful to understand the justification of the
viscous damping assumption commonly used in practice. If the values of the non-viscosity indices
are high then the viscous damping assumption may not be suitable. Through a numerical study, it
was shown that the error in the frequency response function incurred due to the viscous damping
assumption indeed increases for higher levels of non-viscosity. It was observed that the error also
depends on the forcing frequency—if the forcing frequency is near to a system’s natural
frequency, the error is higher. Further research is worth pursuing in this direction. It has been
assumed that all the information required to obtain these indices is known exactly. Further work
is also needed to understand their sensitivity and robustness to errors in measured data.

Appendix A. Summation of the residues of the transfer function matrix

For non-viscously damped systems the transfer function matrix can be expressed by Eq. (24)
From the definition of the transfer function matrix,

HðsÞ ¼ D�1ðsÞ; ðA:1Þ

where the dynamic stiffness matrix DðsÞ is given by Eq. (4). Rewrite the expression of the dynamic
stiffness matrix as

DðsÞ ¼ s2M IN þ
M�1

s
GðsÞ þ

K

s

� �� �
: ðA:2Þ

Taking the inverse of this equation and expanding the right-hand side one obtains

HðsÞ ¼
M�1

s2
þ

1

s3
�M�1GðsÞM�1
� �

þ
1

s4
M�1 GðsÞM�1GðsÞ � K

� �
M�1

� �
þ?: ðA:3Þ

Now, express a general term of the expression of the transfer function matrix given by
Eq. (24) as

Rk

s � lk

¼ s 1 �
lk

s

� �� ��1

Rk

¼
1

s
Rk þ

1

s2
lkRk½ 	 þ

1

s3
l2

kRk

� �
þ

1

s4
l3

kRk

� �
þ?: ðA:4Þ
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By using the above expression, the transfer function matrix in Eq. (24) can be expressed as

HðsÞ ¼
1

s

Xm

k¼1

Rk

" #
þ

1

s2

Xm

k¼1

lkRk

" #
þ

1

s3

Xm

k¼1

l2
kRk

" #
þ

1

s4

Xm

k¼1

l3
kRk

" #
þ?: ðA:5Þ

Comparing Eqs. (A.3) and (A.5) makes it clear that their right sides are equal. Multiplying these
equations by s and taking the limit as s-N (and recalling that lims-NjjGðsÞjj is assumed to be
bounded) one obtains Xm

k¼1

Rk ¼ O: ðA:6Þ

This implies that the sum of all the residues of the transfer function matrix of non-viscously
damped systems is a null matrix. This result also holds for a viscously damped system provided
m ¼ 2N is used.

Appendix B. Nomenclature

C viscous damping matrix
DðsÞ dynamic stiffness matrix
GðtÞ non-viscous damping matrix in the time domain
GðsÞ Laplace transform of GðtÞ
gðtÞ non-viscous damping function
GðoÞ Fourier transform of the (scalar) damping function gðtÞ
GRðoÞ real part of GðoÞ
GI ðoÞ imaginary part of GðoÞ
HðioÞ transfer function matrix
I identity matrix
i unit imaginary number, i ¼

ffiffiffiffiffiffiffi
�1

p
K stiffness matrix
M mass matrix
Mr rth moment of GðtÞ
m order of the characteristic polynomial
N degrees-of-freedom of the system
O null matrix
p number of non-viscous modes
qðtÞ vector of generalized co-ordinates
Rk residue matrix corresponding to kth mode
s Laplace domain parameter
t time
Tmin minimum time period for the system
uk real part of zk

vk imaginary part of zk

zk kth mode of the system
lk kth complex natural frequency of the system
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ok kth undamped natural frequency
zk kth modal damping factor
yk normalization constant associated with the kth mode
eðioÞ error in the norm of transfer function matrix
mj constants associated with exponential damping function (j ¼ 1; 2; 3)
gj index of non-viscosity (j ¼ 1; 2; 3; 4)
dðtÞ Dirac delta function
diag diagonal matrix
detð�Þ determinant of ð�Þ
C space of complex numbers
R space of real numbers
Rð�Þ real part of ð�Þ
ð�ÞT matrix transpose of ð�Þ
ð�Þ�1 matrix inverse of ð�Þ
’ð�Þ derivative of ð�Þ with respect to t

ð�Þn complex conjugate of ð�Þ
ð�ÞðvÞ ð�Þ for viscously damped systems
ð�Þnv non-viscous part of ð�Þ
jj�jj l2 matrix norm
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