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Abstract

Conical shells and components are widely used as nozzles, injectors, rocket fairings, turbine blades, etc.
Dynamic and vibration characteristics of conical shells have been investigated over the years. In this paper,
micro-electromechanics and distributed sensing phenomena of a generic double-curvature shell and a
conical shell are discussed, and governing sensing signal-displacement equations are derived. Spatially
distributed modal voltages and micro-signal generations of conical shells laminated with distributed
piezoelectric sensor layers are investigated based on the Donnel–Mushtari–Valsov theory. Distributed
modal voltages and their various signal components of two conical shells reveal that the dominating signal
component among the four contributing micro-signal components is the circumferential membrane
component. This dominance is even more significant for lower shell modes and/or deep shells. In general,
high strain regions result in high signal magnitudes. Accordingly, the spatially distributed signal patterns—
the modal voltages—clearly represent the modal dynamic and micro-strain characteristics of conical shells.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Jet nozzles, injectors, blades, rocket fairings, etc. in turbomachinery, aerospace structures,
micro-electromechanical systems, etc. are often made of conical shell structures and components.
Dynamics and vibrations of conical shell structures have been investigated over the years [1–10].
However, distributed sensing and control of conical shells have not been thoroughly investigated
[11]. This study is to investigate the dynamic sensing characteristics, micro-signal generations, and
distributed modal voltages of truncated conical shell sections.
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Recent development in smart structures and structronic systems has explored many new
measurement and control techniques using smart materials [12,13]. Among the popular smart
materials (e.g., piezoelectrics, electro- and magneto-strictive materials, shape memory materials,
photostrictive materials, pyroelectric materials, electro- and magneto-rheological fluid, etc.),
piezoelectric materials provide bi-directional sensing and control capability and thus it becomes
one of the best candidates in both distributed sensing and control applications. Unlike
conventional discrete sensors, thin piezoelectric layers can be spatially spread and distributed over
the surfaces of shells and plates. Accordingly, these distributed piezoelectric layers can serve as
distributed neurons and actuators in sensing and control of shells and plates [14,15].

Spatially distributed sensing signal generations of a distributed piezoelectric sensor layer
laminated on a generic double-curvature elastic shell are discussed first. The generic sensing signal
equation is derived based on the direct piezoelectric effect, the Gauss theory, the open-circuit
assumption, the Maxwell equation, and also the generic double-curvature thin shell theory. Detailed
micro-electromechanical characteristics resulting from various meridional and circumferential
membrane/bending strain components are evaluated and applied to conical shells. Final closed-
form sensing signal of distributed conical shell sensors is then defined based on given boundary
conditions and mode shape functions in the Donnel–Mushtari–Valsov theory. Spatially distributed
modal voltages, micro-signal components and modal sensing signals in both longitudinal and
circumferential directions of two conical shells are thoroughly evaluated in case studies.

2. Generic shell sensing equation

It is assumed that a distributed piezoelectric sensor layer is laminated on a double-curvature
generic elastic shell. The distributed sensing layer generates electrical signals, resulting from shell
micro-strain variations, and the signal amplitude fs is a function of piezoelectric (displacement)
constant hij and induced strains SS

ij in the sensor layer [15],

fs ¼
hs

Se

Z
a1

Z
a2

h31Ss
11 þ h32Ss

22 þ h36Ss
12

� �
A1A2 da1 da2; ð1Þ

where the superscript ‘s’ denotes the distributed sensor layer, hs is the sensor thickness, Se is the
surface area of the sensor layer, a1 and a2 are the two principle directions in the generic shell
continuum, A1 and A2 are the Lam!e parameters, h31; h32 and h36 are the piezoelectric
(displacement) constants. Note that the generic sensing signal equation is derived based on the
direct piezoelectric effect, the Gauss theory, the open-circuit assumption, the Maxwell equation,
and also the generic double-curvature thin shell theory [16]. The effects of transverse shear and
normal strains (i.e., S13; S23 and S33) are neglected. This is due to the deformation variation is
small in the a3 direction, provided the shell structures is thin. Moreover, the strain terms in the
sensing equation consist of the membrane strain and the bending strain components:

Ss
11 ¼ so

11 þ rs
1k11; Ss

22 ¼ so
22 þ rs

2k22; Ss
12 ¼ so

12 þ rs
12k12; ð224Þ

where rs
1; rs

2; and rs
12 denote the sensor location away from the neutral surface of the shell and

rs
1=rs

2=rs
12 for shell and sensor layer with uniform thickness. The kij terms combined with rs

1; rs
2;

and rs
12 denote the bending strains; so

ij denotes the membrane strains. (Note that the strains are
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denoted so
11 � so

1; so
22 � so

2; so
12 � so

6; k11 � k1; k22 � k2 and k12 � k6 for simplicity.) Detailed
membrane and bending strains (so

i and ki) in the sensor layer bonded on a non-linear shell with the
von-Karmon geometric non-linearity are expressed as functions of displacements—ui’s, the Lam!e
parameters (A1 and A2 ), and two radii of curvature (R1 and R2) [17].

so
1 ¼

1

A1

@u1

@a1
þ

u2

A1A2

@A1

@a2
þ

u3

R1
þ

1

2

@u3=@a1
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� �2

; ð5Þ
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; ð6Þ

so
6 ¼
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Note that the quadratic terms (non-linear terms) inside the brackets of membrane strains are
contributed by the large deflection, which are neglected in linear shells. Substituting the linear
strain–displacement relations, Eqs. (5)–(10), into the generic signal equation, Eq. (1), yields the
signal-displacement equation of a generic distributed shell sensor [14]:

fs ¼
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� �Z
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This signal equation is generic that can be simplified to account for many standard geometries,
e.g., spherical shells, conical shells, paraboloidal shells, plates, etc., by using two Lam!e parameters
and two radii of curvature of the geometry [16].

3. Distributed sensing of linear conical shell

Application of the generic shell signal equation to specific geometries requires two Lam!e
parameters and two radii of curvature defined for the geometries. The Lam!e parameters, radii of
curvature, and principle directions of conical shells are, respectively, defined by A1 ¼ 1;
A2=x sin b�; R1 ¼ Rx ¼ N; R2 ¼ Rc ¼ x tan b�; a1 ¼ x; and a2 ¼ c: Fig. 1 illustrates a conical
shell and its parameters. Assume there is a distributed piezoelectric sensor layer laminated on the
conical shell and the sensor layer is insensitive to the in-plane twisting Ss

12: The signal–strain
relation of the distributed conical shell sensor layer becomes

fs ¼
hs

Se

� �Z
x

Z
c

h31Ss
xx þ h32Ss

cc


 �
x sin b� dx dc; ð12Þ

*2

3u

ψu  

 *β

*β

u3
 

ux
ux

*sin βx

x

β

Rψ = x tan β*

φ

Fig. 1. Conical shell of revolution.
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where the strain terms are Ss
xx ¼ so

xx þ rs
xkxx and Ss

cc ¼ so
cc þ rs

ckcc: The membrane strain–
displacement relations of the linear conical shell are

so
xx ¼

@ux

@x
and so

cc ¼
1

x sin b�
@uc

@c
þ

ux

x
�

u3

x tan b�
: ð13; 14Þ

According to the Donnel–Mushtari–Vlasov theory, the in-plane displacements ux and uc are
usually neglected in the bending strains. Thus, the bending strains of the conical shell with the
Donnel–Mushtari–Vlasov assumptions are

kxx ¼ �
@2u3

@x2
and kcc ¼ �

1

x2 sin2 b�
@2u3

@c2
�

1

x

@u3

@x
: ð15; 16Þ

Substituting all strain–displacement relations into the sensing signal equation gives the signal–
displacement expression of the generic distributed conical shell sensor,

fs ¼
hs

Se

� �Z
x

Z
c

h31
@ux

@x

�
� rs

x

@2u3

@x2

	
þ h32

1

x sin b�

�
@uc

@c
þ
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x
�

u3

x tan b�

þ rs
c �

1

x2 sin2 b�

�
@2u3

@c2
�

1

x

@u3

@x

�	
x sin b� dx dc: ð17Þ

Note that this signal–displacement equation is only valid for linear conical shell sensors, since it
does not involve any large deformation effect. Detailed modal contributions to the signal outputs
of the distributed conical shell sensor are discussed next.

4. Modal voltages of conical shells

Distributed sensing characteristics are mode dependent. Distributed modal voltages and micro-
signal generations of linear conical shells are discussed in this section. Consider a truncated
conical shell section with free–free boundary conditions at the top and bottom perimeters and it is
laminated with distributed piezoelectric sensor layers, Fig. 2. Thus, there is no shear force and
moment at the free boundaries, i.e., at x ¼ x1 and x2:

Nxx ¼ N�
xx ¼ 0; Nxc ¼ N�

xc ¼ 0; ð18; 19Þ

1

x

@

@x
xMxxð Þ � Mcc � 2

@Mxc

@c
csc b�

� �
¼

1

x
xQ�

xx � csc b�
@M�

xc

@c

" #
¼ 0; ð20Þ

Mxx ¼ M�
xx ¼ 0: ð21Þ

The assumed modal displacement solutions for the free–free truncated conical shell of
revolution are [3]

ux ¼ UxmðxÞcos mc sinot; uc ¼ UcmðxÞsin mc sinot; u3 ¼ U3mðxÞcos mc sinot; ð22224Þ

where m is the wave number and m ¼ 2yN, o is the natural frequency, UxmðxÞ; UcmðxÞ and
U3mðxÞ are arbitrary displacement functions of x; satisfying the displacement boundary
conditions. (Note that it is a rigid-body mode when m ¼ 1:) UxmðxÞcos mc is the longitudinal
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Fig. 2. Truncated conical shell section with free–free boundary conditions.
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mode shape function, UcmðxÞsin mc is the circumferential mode shape function, and
U3mðxÞcos mc is the transverse mode shape function within the Donnel–Mushtari–Vlasov theory.
In free vibration analysis, the displacement function is chosen as ðx=x2Þ

p defined in a polynomial
form where ‘‘p’’ is the power of the polynomial function and x2 is the (longitudinal) length from
the apex to the bottom perimeter (Fig. 2). The polynomial form of displacement functions is
chosen as to represent the flexibility of the shell structure in the longitudinal direction, since the
structure is completely free. Higher-degree polynomial functions of UxmðxÞ; UcmðxÞ and U3mðxÞ
usually improve the analysis accuracy, especially for natural frequencies of higher circumferential
modes. The generic micro-signal equation requires the spatial mode shape functions, not the

Table 1

Definitions of the two conical shell models

Model 1 Model 2

Conical shell half-angle b* (deg.) 14.24 30.24

Major radius, R (in) 6.07 7.95

Minor radius, r (in) 2.72 3.49

Length, L (in) 3.2 7.65

Thickness (in) 0.01 0.01

Fig. 4. Signal components and modal voltage of (1,2) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,2]: the (1,2)th modal

voltage.
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temporal part in the original displacement functions. Eliminating the temporal part and
substituting three spatial mode shape functions into the sensing signal equation yields the mth
modal signal expression ðfsÞm;

fs ¼ ðfsÞm ¼
hs

Se

� �Z
x

Z
c

h31
@UxmðxÞcos mc

@x

��
þ rs

x �
@2U3mðxÞcos mc

@x2

� ��

þ h32
mUcmðxÞcos mc

x sin b�

�
þ

UxmðxÞcos mc
x

�
U3mðxÞcos mc

x tan b�

þ rs
c

m2U3mðxÞcos mc

x2sin2 b�
�

1

x

@U3mðxÞcos mc
@x

� ��	
x sin b� dx dc: ð25Þ

Recall that UxmðxÞ; UcmðxÞ and U3mðxÞ are defined as ðx=x2Þ
p: Choosing the modal function as

ðx=x2Þ
p with p ¼ 1 for the first-mode group (1,m), substituting it into Eq. (25), and taking

derivatives with respect to x; one can derive the modal sensing signal ðfsÞm for the first mode
group of linear conical shells,

fs ¼ ðfsÞm ¼
hs

Se

� �Z
x

Z
c

h31
cos mc

x2

� ��
þ h32

m cos mc

x2 sin b�

�
þ

cos mc
x2

�
cos mc

x2 tan b�

þ rs
c

m2 cos mc

xx2 sin2 b�
�

1

x

cos mc
x2

� ��	
x sin b� dx dc: ð26Þ

Fig. 5. Signal components and modal voltage of (1,3) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,3]: the (1,3)th modal

voltage.
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Again, note that the above (1,m)th modal signal equations of the first mode group, respectively,
defined for the linear truncated conical shells were derived when p ¼ 1 in the displacement
function ðx=x2Þ

p: When evaluating the (2,m)th modal signals (i.e., the second mode group) of the
linear truncated conical shells, one needs to follow the same procedures using the displacement
function ðx=x2Þ

p with p ¼ 2 in the derivations, and so for the higher mode groups of linear conical
shells,

fs ¼ ðfsÞm ¼
hs

Se

� �Z
x

Z
c

h31
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þ 2

x cos mc
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2

� 2rs
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� �� ��
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2

� �
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þ
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x2
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�
1

x

cos mc
x2

þ 2
cos mc

x2
2

� � !#)
x sin b� dx dc: ð27Þ

Furthermore, note that the above signal equations represent the overall modal signal generation
of the distributed sensor and then ‘‘averaged’’ over the effective sensor area Se: Local microscopic
signal magnitudes can be inferred only when the sensor area becomes infinitesimally small and the
global average effect is neglected. Local micro-signal generations ðfsÞ�m of the first two mode

Fig. 6. Signal components and modal voltage of (1,4) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,4]: the (1,4)th modal

voltage.
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groups of conical shells are, respectively, represented as

fs ¼ ðfsÞ�m ¼ hs h31
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; ð28Þ
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Accordingly, detailed spatial distribution of local micro-signals (i.e., the distributed modal

voltages) can be established and spatially distributed modal sensing characteristics can be studied.

Fig. 7. Signal components and modal voltage of (1,5) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,5]: the (1,5)th modal

voltage.
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5. Evaluation of modal voltages and signal components

Distributed sensing signals and modal voltages of the conical shells of revolution were
defined above. Modal signals and micro-signal components of two models of truncated conical
shell section are studied, Fig. 3. Both models have the same thickness, however, the apex
angle and length of the second model are larger than the first model, i.e., 30.24o versus
14.24o and 7.65 in versus 3.2 in. Accordingly, natural frequencies of the second model are
lower than those of the first model [3]. This frequency variation would also influence the
signal generation of various modal voltages. Dimensions and geometrical parameters of

Fig. 8. Signal components and modal voltage of (2,2) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; kcc: the circumferential bending

signal; and (d) [2,2]: the (2,2)th modal voltage.
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the two conical shells are summarized in Table 1. Four modal voltage distributions and
micro-signal generations of two mode groups (i.e., the first and the second groups with m=2, 3,
4, 5) of two conical shells are presented first, followed by observations and discussions in this
section.

Recall that the in-plane displacements ux and uc are neglected in the bending strains but not in
the membrane strains, based on the Donnel–Mushtari–Vlasov theory, so the mode shape
functions were defined based on the theory. Detailed micro-signal contributions from the
membrane and bending strain components are evaluated, so the significant signal component(s)
can be identified and appropriate design guidelines can be inferred. Also, note that the m ¼ 1
mode of conical shell with free boundary conditions is the rigid body motion. The shell rigid body

Fig. 9. Signal components and modal voltage of (2,3) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; (d) kcc: the circumferential bending

signal; and (e) [2,3]: the (2,3)th modal voltage.
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mode (m ¼ 1) contributes no signal generation. Thus, micro-signals and modal voltages of natural
modes with mZ2 are investigated in case studies.

5.1. Model 1, the first mode group (1, m ¼ 225)

Distributed modal voltages and signal components of the first mode group (1, m¼ 225) of
Model-1 are presented in Figs. 4–7. The top-left signal distribution denotes the signal component
resulting from the longitudinal membrane strain, the top-right signal denotes the signal
component resulting from the circumferential membrane strain, the bottom-left signal denotes
the signal component resulting from the circumferential bending strain, and the bottom-right
denotes the overall signal distribution—the (k,m)th modal voltage, including all contributing

Fig. 10. Signal components and modal voltage of (2,4) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; (d) kcc: the circumferential bending

signal; and (e) [2,4]: the (2,4)th modal voltage.
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micro-signal components. Note that the longitudinal bending strain signal vanishes due to the
selected displacement function with p ¼ 1:

5.2. Model 1, the second mode group (2, m ¼ 225)

Distributed modal voltages and micro-signal components of the second mode group (2,
m ¼ 225) of Model 1 are presented in Figs. 8–11. The top-left signal distribution denotes the
signal component resulting from the longitudinal membrane strain, the top-right signal denotes
the signal component resulting from the circumferential membrane strain, the middle-left signal

Fig. 11. Signal components and modal voltage of (2,5) mode, Model 1. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; (d) kcc: the circumferential bending

signal; and (e) [2,5]: the (2,5)th modal voltage.
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denotes the signal component resulting from the longitudinal bending strain, the middle-right
signal denotes the signal component resulting from the circumferential bending strain, and the
bottom-left denotes the overall signal distribution—the (k,m)th modal voltage, including all
contributing signal components. Note that the longitudinal bending strain exists in this case, with
the displacement function p ¼ 2:

Fig. 13. Signal components and modal voltage of (1,3) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,3]: the (1,3)th modal

voltage.

Fig. 12. Signal components and modal voltage of (1,2) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,2]: the (1,2)th modal

voltage.
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5.3. Model 2, the first mode group (1, m ¼ 225)

Distributed modal voltages and micro-signal components of the first mode group (1, m ¼ 225)
of Model 2 are presented in Figs. 12–15. Arrangements of the signal components are the
same as those of the first mode group of Model 1. The final signal distribution—the (k,m)th

Fig. 14. Signal components and modal voltage of (1,4) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,4]: the (1,4)th modal

voltage.

Fig. 15. Signal components and modal voltage of (1,5) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kcc: the circumferential bending signal; and (d) [1,5]: the (1,5)th modal

voltage.
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modal voltage, including all contributing signal components, is the bottom-right plot.
Again, the longitudinal bending strain vanishes due to the selected displacement function
with p ¼ 1:

5.4. Model 2, the second mode group (2, m ¼ 225)

Distributed modal voltages and micro-signal components of the second mode group (2,
m¼ 225) of Model 2 are presented in Figs. 16–19. Arrangements of component plots are similar
to the second mode group of Model 1. The bottom-left signal distribution denotes the (k,m)th

modal voltage, including all contributing signal components. Note that the longitudinal bending
strain exists due to the selected displacement function with p ¼ 2:

Observing these modal voltages and comparing their micro-signal components of two conical
shell models suggests that the dominating signal component among the four signal compo-
nents (i.e., the longitudinal membrane component, the circumferential membrane component,
the longitudinal bending component, and the circumferential bending component) is the
circumferential membrane component. This circumferential component dominates the signal
generation for lower shell modes and/or deep shells (i.e., Model 2). Usually, high strain regions
result in high signal magnitudes. Accordingly, the spatially distributed signal patterns—the modal

Fig. 16. Signal components and modal voltage of (2,2) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; (d) kcc: the circumferential bending

signal; and (e) [2,2]: the (2,2)th modal voltage.
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voltages—clearly reveal the distinct modal dynamic and micro-strain characteristics of conical
shells.

6. Conclusions

Conical shell structures and components are often used as nozzles, injectors, blades, rocket
fairings, etc., in turbomachinery, aerospace structures, micro-electromechanical systems, etc. This
study is to investigate the dynamic sensing characteristics, micro-signal generations, and
distributed modal voltages of truncated conical shell sections.

Spatially distributed sensing signals of a distributed piezoelectric sensor layer laminated
on a generic double-curvature elastic shell were discussed first. The generic sensing signal equation
was derived based on the direct piezoelectric effect, the Gauss theory, the open-circuit assumption,
the Maxwell equation, and also the generic double-curvature thin shell theory. Microscopic
signal components contributed from various meridional and circumferential membrane/bending
strain components were evaluated and the final signal–displacement equation was defined
and applied to conical shells using two Lam!e parameters and two radii of curvature defined
for the conical shell geometry. With the Donnel–Mushtari–Valsov theory, the final closed-
form sensing signal expression was defined based on given boundary conditions and mode

Fig. 17. Signal components and modal voltage of (2,3) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; (d) kcc: the circumferential bending

signal; and (e) [2,3]: the (2,3)th modal voltage.
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shape functions. The assumed mode shape functions have a polynomial expression ðx=x2Þ
p for

the longitudinal waves and trigonometric (sine or cosine) expression for the circumferential
waves.

Distributed signal components and modal voltages of two truncated conical shells with the
same thickness and different shell apex angles and sizes were evaluated. Two mode groups and
four modal signals of the two conical shell models were calculated and plotted. Distributed modal
voltages and their various signal components of the two conical shell models reveal that the
dominating signal component among the four contributing micro-signal components (i.e., the
longitudinal membrane component, the circumferential membrane component, the longitudinal
bending component, and the circumferential bending component) is the circumferential
membrane component. This circumferential component is even more dominating for lower shell
modes and/or deep shells. In general, high strain regions result in high signal magnitudes.
Accordingly, the spatially distributed signal patterns—the modal voltages—clearly represent the
modal dynamic and strain characteristics of conical shells. Spatially distributed micro-signals also
reveal critical regions showing significant or minimal signal magnitudes. Appropriate selection of
regional signal components can further enhance the distributed control effectiveness of conical
shells.

Fig. 18. Signal components and modal voltage of (2,4) mode, Model 2. (a) so
xx: the longitudinal membrane signal; (b)

so
cc: the circumferential membrane signal; (c) kxx: the longitudinal bending signal; (d) kcc: the circumferential bending

signal; and (e) [2,4]: the (2,4)th modal voltage.
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