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Abstract

In this paper, the free vibrations of rectangular Mindlin plates with variable thickness in one or two
directions are investigated. The thickness variation of the plate is continuous and can be represented by a
power function of the rectangular co-ordinates. A wide range of tapered rectangular plates can be described
by giving various index values to the power function. Two sets of new admissible functions are developed,
respectively, to approximate the flexural displacement and the angle of rotation due to bending of the plate.
The eigenfrequency equation is obtained by using the Rayleigh–Ritz method. The complete solutions of
displacement and angle of rotation due to bending for a tapered Timoshenko beam (a strip taken from the
tapered Mindlin plate in some direction) under a Taylor series of static load have been derived, which are
used as the admissible functions of the rectangular Mindlin plates with taper thickness in one or two
directions. Unlike conventional admissible functions which are independent of the thickness variation of
the plate, the static Timoshenko beam functions presented in this paper are closely connected with the
thickness variation of the plate so that higher accuracy and more rapid convergence can be expected. Some
numerical results are furnished for both truncated Mindlin plates and sharp-ended Mindlin plates. On the
basis of convergence study and comparison with available results in literature, it is shown that the first few
eigenfrequencies can be obtained with quite satisfactory accuracy by using only a small number of terms of
the static Timoshenko beam functions.
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1. Introduction

Vibration analysis of rectangular plates is necessary for designers to understand the dynamic
behavior of many common structures. It is well known that the classical plate theory [1] has been
successfully applied to the analysis of thin plates by assuming straight lines originally normal to
the median-surface of plate remaining straight and normal after deformation. This classical plate
theory, however, over-predicts the eigenfrequencies of higher modes for thin plates and even all
the eigenfrequencies for thick plates where the effects of transverse shear deformation and rotary
inertia become significant. Consequently, for enhancing the accuracy of analysis different kinds of
refined plate theories were developed, in which the Mindlin plate theory [2,3] (relaxing the
normality assumption and considering the effect of rotary inertia) has been widely employed in
the analysis of moderately thick plates.
The analysis for vibration of rectangular thick plates with uniform thickness [4–9] and

rectangular thin plates with variable thickness [10–12] has been extensively investigated by many
investigators using various kinds of analytical and numerical methods. However, the analysis for
vibration of rectangular thick plates with non-uniform thickness has received rather less attention
and only very limited references can be found. Mikami and Yoshimura [13] are the first to study
the vibration of rectangular Mindlin plates with non-uniform thickness, to the best of the authors’
knowledge. They used the collocation method to analyze the free vibration of rectangular Mindlin
plates with linearly varying thickness. The same problem was studied by Aksu and Al-Kaabi [14]
using the variational principles in conjunction with the finite difference technique and by
Mizusawa [15] using the spline strip method. In addition, Al-Kaabi and Aksu [16,17] extended
their method to investigate the free vibration of rectangular Mindlin plates with bilinearly varying
thickness and parabolically varying thickness, respectively. In all these studies, only plates with
two opposite edges simply supported and varying thickness along one direction are examined.
Moreover, Matsuda and Sakiyama [18] used a discrete method in conjunction with the integral
equation technique to analyze the free vibration of skew Mindlin plates with variable thickness in
one direction. A literature survey on the vibration analysis of thick plates can also be found [19].
In the present paper, two sets of admissible functions, describing the displacement and angle of

rotation due to bending of the tapered Mindlin plate are developed from the complete solutions of
the tapered Timoshenko beam under a Taylor series of static loads [20]. This tapered beam is
considered to be a unit width strip taken from the tapered rectangular plate in the longitudinal
direction or the vertical direction. Only the static Timoshenko beam functions in one direction
needed to be derived because the tapered plates considered in this paper are with a similar pattern
of thickness variation in both directions. As a result, the effects of both the shear correction factor
and the thickness variation of the plate on the admissible functions have been considered so that
more rapid convergence and higher accuracy can be achieved by using the static Timoshenko
beam functions instead of using the conventional admissible functions.

2. The eigenfrequency equation of tapered plates

A tapered rectangular Mindlin plate with continuously varying thickness in both directions, as
shown in Fig. 1(a), lies in the x2y plane and is bounded by edges x ¼ aA;A and y ¼ bB;B where
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a ð0pao1Þ and b ð0pbo1Þ are referred to as truncation factors of the plate in the x
and y directions, respectively. The side lengths of the plate are a and b in the x and y

directions, respectively, where a ¼ ð1� aÞA and b ¼ ð1� bÞB: If the plate is with a sharp
edge in the x direction then a ¼ 0 and if the plate is with a sharp end in the y direction then
b ¼ 0: Assuming that the thickness hðx; yÞ can be written in a form of the power function as
follows:

hðx; yÞ ¼ h0ðx=AÞrðy=BÞs; ð1Þ

where h0 is the thickness of the plate at x ¼ A; y ¼ B; r and s are referred to as taper factors of the
plate in the x and y directions, respectively. A wide range of tapered rectangular plates can be
described by giving various values to r and s: Some common tapered rectangular plates are shown
in Table 1.
The energy functional P for a rectangular Mindlin plate can be written in terms of the

maximum strain energy Umax and the maximum kinetic energy Tmax [7] as follows:

P ¼ Umax � Tmax: ð2Þ
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Fig. 1. Rectangular plate with variable thickness in two directions and a unit width strip taken from the plate in the x

direction: (a) tapered rectangular plate, (b1) tapered beam for r > 0; (b2) tapered beam for ro0 and (b3) uniform beam

(r ¼ 0).
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Introducing the non-dimensional co-ordinate x ¼ x=A and Z ¼ y=B; Umax and Tmax are given,
respectively, by
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in which, W ðx; ZÞ is the dynamic displacement function of the plate, Cxðx; ZÞ and CZðx; ZÞ are,
respectively, the dynamic rotation-angle functions due to bending in the x and Z directions, o is
the radian eigenfrequency of the plate, D0 ¼ Eh30=½12ð1� n2Þ� is the flexural rigidity of the plate at
the point x ¼ 1; Z ¼ 1; G ¼ E=½2ð1þ nÞ� is the elastic modulus of shear, k is the shear correction
factor, n is the Poisson ratio, E is Young’s modulus and r is the density of the plate per unit
volume.
Assuming that W ðx; ZÞ;Cxðx; ZÞ andCZðx; ZÞ are all separable functions in variations and can be

written in the form of

W ðx; ZÞ ¼
XN
i¼i0

XN
j¼j0

cijXiðxÞYjðZÞ; Cxðx; ZÞ ¼
XN
i¼i0

XN
j¼j0

dijFiðxÞYjðZÞ=A;

CZðx; ZÞ ¼
XN
i¼i0

XN
j¼j0

eijXiðxÞCjðZÞ=B; ð4Þ

where cij; dij and eij are the unknown constants, XiðxÞ; FiðxÞ and YjðZÞ; CjðZÞ are the appropriate
admissible functions, respectively, in the x and Z directions. i0 and j0 are the beginning order of the
admissible functions in the x and Z directions, respectively. For plates truncated in both
directions, i0 ¼ j0 ¼ 0; however, for plates with sharp ends, i0 and/or j0 should be decided by the
taper factors, which will be discussed later.

Table 1

Some common tapered rectangular plates

Type of the tapered rectangular plates Taper factors

A uniform plate r ¼ 0; s ¼ 0

A linearly tapered plate in the x direction r ¼ 1; s ¼ 0

A linearly tapered plate in both directions r ¼ 1; s ¼ 1

A parabolically tapered plate in the x direction r ¼ 2; s ¼ 0

A parabolically tapered plate in both direction r ¼ 2; : s ¼ 2

A hyperbolically tapered plate in the x direction r ¼ �1; s ¼ 0

A hyperbolically tapered plate in both directions r ¼ �1; s ¼ �1

Table 1

Some common tapered rectangular plates
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Truncating the series variations i and j in Eq. (4) up to i0 þ I and j0 þ J; respectively, then
applying the Rayleigh–Ritz method

qP
qcij

¼ 0;
qP
qdij

¼ 0;
qP
qeij

¼ 0;

i ¼ i0; i0 þ 1; i0 þ 2;y; i0 þ I ; j ¼ j0; j0 þ 1; j0 þ 2;y; j0 þ J

ð5Þ

one has the eigenfrequency equation as follows:

½K� �
O2

ð1� aÞ4
½M�

� � fcg

fdg

feg

8><
>:

9>=
>; ¼ f0g ð6Þ

in which, O2 ¼ o2rh0a
4=D0 is the non-dimensional eigenfrequency, l ¼ a=b is the aspect ratio of

the plate. ½K � is the stiffness matrix of the plate, ½M� is the mass matrix of the plate, fcg; fdg and
feg are the column matrices of the unknown constants, which are, respectively, given as follows:

fcg ¼ ½ci0j0 ; ci0j0þ1;y; ci0j0þJ ; ci0þ1j0 ; ci0þ1j0þ1;y; ci0þ1j0þJ ;y; ci0þIj0 ; ci0þIj0þ1;y; ci0þIj0þJ �T;

fdg ¼ ½di0j0 ; di0j0þ1;y; di0j0þJ ; di0þ1j0 ; di0þ1j0þ1;y; di0þ1j0þJ ;y; di0þIj0 ; di0þIj0þ1;y; di0þIj0þJ �T;

feg ¼ ½ei0j0 ; ei0j0þ1;y; ei0j0þJ ; ei0þ1j0 ; ei0þ1j0þ1;y; ei0þ1j0þJ ;y; ei0þIj0 ; ei0þIj0þ1;y; ei0þIj0þJ �T ð7Þ

and

½K � ¼

½Kcc� ½Kcd � ½Kce�

½Kdd � ½Kde�

symmetric ½Kee�

2
64

3
75; ½M� ¼

½Mcc� ½Mcd � ½Mce�

½Mdd � ½Mde�

symmetric ½Mee�

2
64

3
75; ð8Þ

where

Kccimjn ¼ ðE1;1
im F0;0

jn þ G2E0;0
im F1;1

jn Þ=R; Kcdimjn ¼ T1;0
im F0;0

jn =R;

Kceimjn ¼ G2E0;0
im U1;0

jn =R; Kddimjn ¼ %G1;1
im

%F0;0
jn þ ð1� nÞG2 %G0;0

im
%F1;1
jn =2þ G0;0

im F0;0
jn =R;

Kdeimjn ¼ l2½n %O1;0
im

%U0;1
jn þ ð1� nÞ %O0;1

im
%U1;0

jn =2�;

Keeimjn ¼ G4 %E0;0
im

%H1;1
jn þ ð1� nÞG2 %E1;1

im
%H0;0

jn =2þ G2E0;0
im H0;0

jn =R;

Mccimjn ¼ E0;0
im F0;0

jn ; Mddimjn ¼ g2 %G0;0
im

%F0;0
jn =ð12G2Þ;

Meeimjn ¼ g2 %E0;0
im

%H0;0
jn =12; Mcdimjn ¼ Mceimjn ¼ Mdeimjn ¼ Meeimjn ¼ 0 ð9Þ
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in which,
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p; q ¼ 0; 1; i;m ¼ 1; 2; 3;y; I ; j; n ¼ 1; 2; 3;y; J;

G2 ¼ l2ð1� bÞ2=ð1� aÞ2; l ¼ a=b; g ¼ h0=b; R ¼
D0

kGh0b2l
2
: ð10Þ

Here R is referred to as the shear correction coefficient of Mindlin plates.
Integrals in Eq. (10) can be numerically evaluated by the piecewise Gaussian quadrature.

Resolving Eq. (6) by the standard eigenvalue program, the dimensionless eigenfrequencies O and
the coefficients fcg; {d} and feg can be easily obtained. Substituting the results into Eq. (4) gives
the corresponding mode shapes.

3. Two sets of static Timoshenko beam functions (STBF)

A unit width strip taken from the tapered rectangular plate in one or the other direction, as
shown in Fig. 1(b1)-(b3), is used to derive the admissible functions of the plate. Without loss of
generality, only the strip in the x direction is considered because the tapered plates investigated
here are with similar thickness variation in both directions. The differential characteristic equation
of the tapered Timoshenko beam under a transverse non-dimensional static load QðxÞ can be
given as follows:

d
d

dx
xr dX ðxÞ

dx
� FðxÞ

	 �� �
¼ QðxÞ;

d

dx
x3rdcðxÞ

dx

	 �
þ dxr dX ðxÞ

dx
� FðxÞ

	 �
¼ 0; ð11Þ

where X ðxÞ is the flexural displacement and FðxÞ is the angle of rotation due to bending of the
beam, d ¼ ð1þ nÞð1� aÞ2h20=ð6ka2Þ: The bending moment MðxÞ and the transverse shear force
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V ðxÞ of the beam are, respectively, given as

MðxÞ ¼ �
Eh30
12a2

ð1� aÞ2x3rdFðxÞ
dx

; V ðxÞ ¼
kGh0

a
ð1� aÞxr dX ðxÞ

dx
� FðxÞ

	 �
: ð12Þ

At each end of the beam, two boundary equations can be established. Taking the end x ¼ a as an
example, one has

Y ðaÞ ¼ 0; cðaÞ ¼ 0 for the clamped end;

Y ðaÞ ¼ 0; MðaÞ ¼ 0 for the simply supported end;

MðaÞ ¼ 0; VðaÞ ¼ 0 for the free end: ð13Þ

Similarly, the boundary equations at the end x ¼ 1 can also be given.
For an arbitrary load QðxÞ; it can be expanded into a Taylor series as follows:

QðxÞ ¼
XN
i¼0

Qiðx� xcÞ
i ¼

XN
i¼0

Qi

Xi

k¼0

ð�1Þi�kDi
kx

i�k
c xk; ð14Þ

where xc is the expanding point of the Taylor series and Di
k ¼ i!=k!=ði � kÞ!

The general solutions of the displacement and the angle of rotation due to bending can be
obtained in the form of

X ðxÞ ¼
XN
i¼0

QiXiðxÞ; FðxÞ ¼
XN
i¼0

QiFiðxÞ; ð15Þ

where

XiðxÞ ¼
Xi

k¼0

ð�1Þi�kDi
kx

i�k
c ½F1kðxÞ � dF2kðxÞ�

þ ½F01ðxÞ � dF02ðxÞ�Ci
0 þ F1ðxÞCi

1 þ xCi
2 þ Ci

3;

FiðxÞ ¼
Xi

k¼0

ð�1Þi�kDi
kx

i�k
c f kðxÞ þ f0ðxÞCi

0 þ f1ðxÞCi
1 þ Ci

2 ð16Þ

in which,

F1kðxÞ ¼
1

ðk þ 1Þðk þ 2Þ

x½lnðxÞ � 1�; k ¼ 3r � 3;

lnðxÞ; k ¼ 3r � 4;

xkþ4�r=½ðk þ 3� 3rÞðk þ 4� 3rÞ�; ka3r � 3; ka3r � 4

8><
>:
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F2kðxÞ ¼
1

k þ 1

lnðxÞ; k ¼ r � 2;

xkþ2�r=ðk þ 2� rÞ; kar � 2;

(

F01ðxÞ ¼

x½lnðxÞ � 1�; 3r ¼ 2;

lnðxÞ; 3r ¼ 3;

x3�3r=½ð2� 3rÞð3� 3rÞ�; 3ra2; 3ra3;

8><
>:

F02ðxÞ ¼
lnðxÞ; r ¼ 1;

x1�r=ð1� rÞ; ra1;

(

F1ðxÞ ¼

x½lnðxÞ � 1�; 3r ¼ 1;

lnðxÞ; 3r ¼ 2;

x2�3r=½ð1� 3rÞð2� 3rÞ�; 3ra1; 3ra2;

8><
>:

f kðxÞ ¼
1

ðk þ 1Þðk þ 2Þ

lnðxÞ; k ¼ 3r � 3;

xkþ3�3r=ðk þ 3� 3rÞ; ka3r � 3;

(

f0ðxÞ ¼
lnðxÞ; 3r ¼ 2;

x2�3r=ð2� 3rÞ; 3ra2;

(

f1ðxÞ ¼
lnðxÞ; 3r ¼ 1;

x1�3r=ð1� 3rÞ; 3ra1:

(
ð17Þ

3.1. Truncated beam

For the truncated beams without rigid body movements, the unknown coefficients Ci
k

(k ¼ 1; 2; 3; 4) in Eq. (16) can be uniquely decided by the four boundary equations of the
beam for every i term. However, for a beam with rigid body movements, the coefficients in
Eq. (16) cannot be determined directly from the boundary equations. In such a case, the
static Timoshenko beam functions for the simply–simply supported beam can be used as the
basis solutions supplemented by the modes of rigid body movements, which are described as
follows:

BC The first STBF The second STBF The third and higher STBF

F–F X1ðxÞ ¼ 1;
F1ðxÞ ¼ 0

X2ðxÞ ¼ x� ð1� aÞ=2;
F2ðxÞ ¼ 1

The first and higher STBF for the
S–S beam

S–F X1ðxÞ ¼ x� a;
F1ðxÞ ¼ 1

The first STBF for the
S–S beam

The second and higher STBF for
the S–S beam

F–S X1ðxÞ ¼ x� 1;
F1ðxÞ ¼ 1

The first STBF for
the S–S beam

The second and higher STBF for
the S–S beam
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3.2. Sharp-ended beam

For a sharp-ended beam, the sharp end cannot sustain a bending or a shear force, hence one has

Ci
0 ¼ 0; Ci

1 ¼ 0: ð18Þ

Moreover, the displacement and rotational angle of the beam should be finite at the sharp end, so
that there is a limit to the order of the Taylor series load as follows:

i > 3r � 2: ð19Þ

Therefore, the beginning order of the Taylor series should be taken as

i0 ¼ MaxfIntð3r � 1Þ; 0g ð20Þ

and Eq. (12) should be replaced by

QðxÞ ¼
XN
i¼i0

Qiðx� xcÞ
i ¼

XN
i¼i0

Qi

Xi

k¼i0

ð�1Þi�kDi
kx

i�k
c xk: ð21Þ

For a cantilevered sharp-ended beam (F–C beam), the unknown coefficients Ci
2 and Ci

3 in
Eq. (16) can be uniquely decided by the boundary equations of the beam at x ¼ 1 for every i term.
However, for a beam with rigid body movements, the static Timoshenko beam functions for the
cantilevered sharp-ended beam should be used as the basis solutions supplemented by the modes
of rigid body movements, which are described as follows:

BC The first STBF The second STBF The third and higher STBF

F–F X1ðxÞ ¼ 1;
F1ðxÞ ¼ 0

X2ðxÞ ¼ x� 1;
F2ðxÞ ¼ 1

The first and higher STBF for the F–C
beam

F–S X1ðxÞ ¼ x� 1;
F1ðxÞ ¼ 1

The first STBF for
the F–C beam

The second and higher STBF for the F–C
beam

Now, we have obtained two sets of static Timoshenko beam functions as shown in Eq. (15),
which can be used as the admissible functions of the plate in the x direction. Similarly, the
admissible functions of the plate in the y direction can also be easily developed.

4. Convergence and comparison studies

Convergence and comparison studies have been carried out using the static Timoshenko beam
functions derived in the last section as the admissible functions of the tapered rectangular Mindlin
plates. It should be pointed out that when the midpoint of the beam is taken as the expanding
point of the Taylor series, the best convergence is achieved. This phenomenon can be clearly
explained: in the interval ½a; 1�; xc ¼ ð1þ aÞ=2 will result in the least convergence radius needed by
the Taylor series expansion [21]. In all the following computations, xc ¼ ð1þ aÞ=2; shear
correction factor k ¼ p2=12 and the Poisson ratio n ¼ 0:3 are used. Moreover, in order to increase
the number of significant figures, quadruple precision is adopted in the computations. For the
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sake of brevity, four capital letters are used to represent the boundary conditions of plates. The
first two represent the boundary conditions of plates in the x direction and the other two represent
those in the y direction. The first eight eigenfrequencies of simply supported and fully clamped
square Mindlin plates with linearly varying thickness in the x direction and the thickness ratio
h0=b ¼ 0:3 are given in Table 2 with respect to the number of terms of the admissible functions
from 1
 1 to 7
 7 for two different truncation factors a ¼ 0:25 and 0:5: It can be seen that the
convergent rate is quite rapid and in general, 5–7 terms of the static Timoshenko beam functions
in each direction can give sufficiently satisfactory results for the first few eigenfrequencies. The
comparison of the first seven eigenfrequencies for square Mindlin plates simply supported in the y
direction and tapered in the x direction is given in Table 3 for two different thickness ratios
h0=b ¼ 0:2 and 0:4 when the truncation factor b ¼ 0:5: The reference data come from spline strip

Table 2

The convergence study on the first eight eigenfrequencies of square Mindlin plates with linearly varying thickness in one

direction, a=b ¼ 1; r ¼ 1; s ¼ 0 and h0=b ¼ 0:3

I 
 J O1 O2 O3 O4 O5 O6 O7 O

SS2SS; a ¼ 0:25
2
 2 11.060 25.112 58.602 60.658 90.233 96.806 118.55 137.06

3
 3 10.552 23.455 23.832 35.531 41.971 53.373 68.024 70.486

4
 4 10.542 22.778 23.162 34.025 41.655 42.984 51.849 52.130

5
 5 10.542 22.774 23.141 34.006 38.552 40.334 48.901 49.330

6
 6 10.541 22.769 23.129 33.992 38.551 40.091 48.820 49.327

7
 7 10.541 22.769 23.128 33.990 38.470 39.961 48.701 49.254

CC2CC; a ¼ 0:25
2
 2 16.716 31.740 40.595 48.820 114.99 120.17 126.65 128.89

3
 3 16.108 29.874 31.544 41.599 50.015 58.471 77.291 81.815

4
 4 16.053 28.495 28.881 39.044 48.146 49.809 56.258 57.353

5
 5 16.041 28.437 28.873 39.022 43.881 44.885 53.125 53.194

6
 6 16.041 28.400 28.588 38.841 43.855 44.580 52.851 53.188

7
 7 16.040 28.398 28.587 38.838 43.660 44.360 52.681 53.057

SS2SS; a ¼ 0:5
2
 2 12.749 27.842 59.630 63.179 84.975 91.999 104.55 121.61

3
 3 12.564 27.319 27.322 39.301 47.752 57.287 64.552 68.325

4
 4 12.563 26.778 26.972 38.479 47.648 47.733 56.555 56.868

5
 5 12.562 26.777 26.865 38.443 44.843 45.637 54.344 54.510

6
 6 12.562 26.773 26.857 38.431 44.843 45.171 54.236 54.336

7
 7 12.562 26.773 26.857 38.431 44.768 45.080 54.147 54.271

CC2CC; a ¼ 0:5
2
 2 18.853 33.574 39.871 48.779 102.59 107.82 115.89 118.84

3
 3 18.575 32.713 33.503 44.201 52.868 61.179 73.696 79.059

4
 4 18.549 31.978 32.017 42.743 51.745 53.011 60.035 60.690

5
 5 18.536 31.857 32.008 42.703 48.531 49.494 57.377 57.768

6
 6 18.536 31.830 31.930 42.624 48.368 49.053 57.323 57.359

7
 7 18.535 31.828 31.930 42.624 48.235 48.906 57.206 57.254
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method [15], collocation method [13] and variational method in conjunction with the finite
difference technique [14], respectively. It is found that very good agreement has been obtained for
all cases.
The comparison study on the first three eigenfrequencies for simply–simply supported square

Mindlin plates tapered in one or two directions and with a thickness ratio h0=b ¼ 0:4 is given in
Table 4 by using the vibrating Timoshenko beam functions and the static Timoshenko
beam functions, respectively. Three kinds of taper factors (linearly varying thickness in one
direction: r ¼ 1; s ¼ 0; linearly varying thickness in both directions: r ¼ 1; s ¼ 1; parabolically
varying thickness in one direction: r ¼ 2; s ¼ 0) and three different truncation factors (a ¼ b ¼ 0:1;
0:3; 0:5) are considered. It can be seen that for plates with small truncation factors, the results of

Table 3

The comparison of eigenfrequencies of square Mindlin plates simply supported in one direction and with linearly

varying thickness in the other direction, r ¼ 1; s ¼ 0; b ¼ 0:5

h0=b O1=b O2=b O3=b O4=b O5=b O6=b O7=b

SS2SS

0.2 27.118 61.382 61.737 92.011 108.34 109.88 135.09

Mizusawa [15] 27.118 61.382 61.737 92.011 108.33 109.86 135.09

Mikami et al. [13] 27.11 60.56 61.73 92.02 108.3 109.9 135.1

Aksu et al. [14] 26.175 60.674 60.965 88.808 108.29

0.4 23.025 46.590 46.658 64.834 74.896 75.116 88.916

Mizusawa [15] 23.025 46.590 46.658 64.834 74.895 75.108 88.912

Mikami et al. [13] 23.02 46.59 46.65 64.83 74.89

Aksu et al. [14] 21.595 45.061 45.182 61.781 71.716

SS � CC

0.2 36.063 65.232 75.692 100.16 110.52 123.91 139.96

Mizusawa [15] 36.063 65.231 75.690 100.15 110.52 123.87 139.96

Mikami et al. [13] 36.07 65.23 75.68 100.2 110.5

Aksu et al. [14] 36.524 65.490 77.879 99.699 111.32

0.4 27.353 47.830 50.892 66.818 75.368 77.764 89.894

Mizusawa [15] 27.353 47.830 50.892 66.818 75.367 77.754 89.893

Mikami et al. [13] 27.35 47.82 50.90 66.82 75.37

Aksu et al. [14] 27.240 47.290 50.245 64.856 73.029

SS2FF

0.2 13.840 22.562 46.757 46.979 61.386 82.738 87.506

Mizusawa [15] 13.816 22.530 46.709 46.939 61.291 82.696 87.517

Mikami et al. [13] 13.82 22.52 46.71 46.93 61.30

0.4 12.586 19.095 36.586 37.800 45.276 58.736 61.113

Mizusawa [15] 12.569 19.084 36.584 37.769 45.247 58.727 61.106

Mikami et al.[13] 12.57 19.08 36.58 37.77 45.25

SS2SF

0.2 17.660 36.091 56.783 72.260 73.247 104.90 106.86

Mizusawa [15] 17.626 36.066 56.718 72.163 73.224 104.82 106.83

0.4 15.379 28.785 42.721 52.216 52.742 70.756 72.961

Mizusawa [15] 15.360 28.784 42.695 52.209 52.742 70.751 72.944

Table 3
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vibrating Timoshenko beam functions are obviously lower in accuracy and slower in convergence
than those of static Timoshenko beam functions developed in this paper because of the Rayleigh–
Ritz method invariably gives the upper bound values of the exact eigenfrequencies. This is always
true for a rectangular Mindlin plate with any taper factor and truncation factor although the
vibrating Timoshenko beam functions used here are exact solutions for a uniform Mindlin plate
with four simply supported edges.

5. Numerical results

A survey on the literature quickly reveals that the study on vibrations of tapered rectangular
Mindlin plates are very limited and the only results available are for Mindlin plates with two

Table 4

The comparison of first three eigenfrequencies of simply supported square Mindlin plates tapered in one or two

directions and with a thickness ratio h0=b ¼ 0:4 by using the STBF and the vibrating Timoshenko beam functions

(VTBF), respectively

r; s Method I 
 J O1 O2 O3

a ¼ b ¼ 0:1
1,0 STBF 5
 5 8.4812 17.583 18.058

VTBF 5
 5 8.6657 18.083 18.769

8
 8 8.5417 17.771 18.287

1,1 STBF 5
 5 4.6896 8.6528 10.556

VTBF 5
 5 4.9265 9.5896 11.355

8
 8 4.7612 8.8453 10.795

2,0 STBF 5
 5 5.3347 8.1223 9.7717

VTBF 5
 5 6.1730 10.820 13.015

8
 8 5.7325 9.3740 11.194

a ¼ b ¼ 0:3
1,0 STBF 5
 5 10.236 21.175 21.320

VTBF 5
 5 10.266 21.269 21.423

8
 8 10.254 21.246 21.374

1,1 STBF 5
 5 7.0942 14.944 15.925

VTBF 5
 5 7.1237 15.065 16.026

8
 8 7.1055 14.978 15.960

2,0 STBF 5
 5 7.3204 14.525 15.457

VTBF 5
 5 7.4570 14.984 16.093

8
 8 7.3543 14.654 15.576

a ¼ b ¼ 0:5
1,0 STBF 5
 5 11.512 23.300 23.336

VTBF 5
 5 11.537 23.377 23.407

8
 8 11.535 23.374 23.402

1,1 STBF 5
 5 9.3077 19.654 19.990

VTBF 5
 5 9.3254 19.704 20.043

8
 8 9.3223 19.696 20.035

2,0 STBF 5
 5 9.3800 19.498 19.792

VTBF 5
 5 9.4056 19.592 19.898

8
 8 9.3940 19.565 19.840
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opposite edges simply supported and tapered in one direction. In this section, some first-time
reported results are given. In Table 5, the first seven eigenfrequencies of sharp-ended rectangular
Mindlin plates with linearly varying thickness in the x direction are given for various thickness
ratios from 0.05 to 0.4. Two kinds of boundary conditions (cantilevered plates: FC–FF and fully
free plates: FF–FF) and three different aspect ratios (a=b ¼ 0:5; 1; 2) are considered. It can be seen
that the effect of the thickness ratio on eigenfrequencies decreases with the increase of the aspect
ratio of the plates. In Figs. 2 and 3, the first two eigenfrequencies of a square Mindlin plate with
linearly varying thickness in two directions are given. The truncation factors of the plate are the
same in both directions: a ¼ b ¼ 0:5: Six kinds of boundary conditions are considered. From the

Table 5

The first seven eigenfrequencies of sharp-ended rectangular Mindlin Plates with linearly varying thickness in one

direction, r ¼ 1; s ¼ 0

a=b h0=b O1 O2 O3 O4 O5 O6 O7

FC2FF

0.5 0.05 5.2449 5.7259 7.2308 9.5900 12.455 14.905 15.238

0.1 5.1383 5.6041 7.0688 9.3703 12.174 14.262 14.568

0.2 4.7815 5.2092 6.5533 8.6798 11.276 12.368 12.605

0.3 4.3257 4.7183 5.9286 7.8499 10.081 10.537 10.654

0.4 3.8614 4.2244 5.3121 7.0276 8.7187 9.0807 9.2198

1.0 0.05 5.2328 7.2257 12.171 15.029 16.610 18.731 22.835

0.1 5.1986 7.1747 12.065 14.847 16.350 18.599 22.433

0.2 5.0864 7.0053 11.740 14.207 15.546 18.160 21.231

0.3 4.9257 6.7621 11.301 13.324 14.502 17.543 19.742

0.4 4.7298 6.4674 10.778 12.346 13.379 16.802 18.190

2.0 0.05 5.1788 11.477 14.869 21.485 24.035 29.595 36.128

0.1 5.1634 11.420 14.810 21.314 23.968 29.420 35.889

0.2 5.1252 11.255 14.613 20.823 23.759 28.807 35.031

0.3 5.0752 11.049 14.328 20.201 23.479 27.904 33.746

0.4 5.0142 10.803 13.966 19.480 23.130 26.799 32.191

FF2FFa

0.5 0.05 3.6045 4.7768 8.4662 8.4773 12.224 12.708 13.028

0.1 3.5591 4.5347 8.2042 8.2697 11.914 12.407 12.520

0.2 3.3995 4.0009 7.4586 7.6193 10.906 11.090 11.458

0.3 3.1854 3.4547 6.5945 6.8187 9.6017 9.6672 10.311

0.4 2.9455 2.9546 5.7395 6.0025 8.2731 8.4256 9.0000

1.0 0.05 8.1808 11.169 12.777 17.422 17.490 18.829 24.830

0.1 8.0863 11.073 12.692 17.137 17.206 18.664 24.618

0.2 7.8420 10.764 12.379 16.244 16.444 18.193 23.846

0.3 7.5292 10.338 11.920 15.185 15.420 17.563 22.529

0.4 7.1690 9.8338 11.367 14.072 14.319 16.815 20.846

2.0 0.05 12.343 13.180 24.047 25.037 27.225 37.893 41.683

0.1 12.313 13.131 23.977 24.828 27.119 37.758 41.249

0.2 12.211 12.999 23.761 24.303 26.739 37.327 40.113

0.3 12.061 12.825 23.472 23.654 26.171 36.642 38.812

0.4 11.868 12.610 22.905 23.113 25.458 35.570 37.622

aThe zero eigenfrequencies are not included.
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figures, one can find that the effect of thickness ratio on eigenfrequencies increases with the
increase of boundary constraints of the plates. Thus, the thickness ratio of fully clamped plates
has the biggest effect on eigenfrequencies and that of fully free plates has the least effect on
eigenfrequencies (if zero eigenfrequencies are included). Moreover, it is shown that the
eigenfrequencies monotonically decrease with increases in the thickness ratio and the effect of
the thickness ratio on eigenfrequencies increases with increases in the frequency order. In Figs. 4
and 5, the first five eigenfrequencies of a cantilevered square Mindlin plate (FC–FF) with linearly
varying thickness in the x direction are given with respect to two different thickness ratios h0=b ¼
0:1 and 0:2; respectively. It is shown that the effect of the truncation factors on eigenfrequencies
increases with increases in the frequency order. Furthermore, it is seen that the fundamental
eigenfrequency decreases monotonically with the increase of the truncation factors, however the
higher order eigenfrequencies increase with the increase of the truncation factors for the plates
with truncation aX0:2: The different varying trends of the fundamental eigenfrequency and the
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Fig. 2. The fundamental eigenfrequency of a square Mindlin plate with linearly varying thickness and the same

truncation factors in two directions (a ¼ b ¼ 0:5; r ¼ s ¼ 1).
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Fig. 3. The second order of eigenfrequency of a square Mindlin plate with linearly varying thickness and the same

truncation factors in two directions (a ¼ b ¼ 0:5; r ¼ s ¼ 1).
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higher order eigenfrquencies with truncation factors can be explained as follows. As the
truncation factors increase, both the stiffness and the mass of the plate increase. An increase in
stiffness will result in an increase in the eigenfrequency, whereas an increase in mass will result in a
decrease in the eigenfrequency. In most cases, however, the eigenfrequencies (especially for the
higher order ones) increase as the truncation factors increase.

6. Concluding remarks

The free vibrations of rectangular Mindlin plates with variable thickness in one or two
directions are investigated by using the Rayleigh–Ritz method. The variation of the thickness is
described by a power function of the Cartesian co-ordinates. The static Timoshenko beam
functions are developed from a unit width strip taken from the plate in some direction under a
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Fig. 4. The first five eigenfrequencies of a cantilevered square Mindlin plate with linearly varying thickness in one

direction (r ¼ 1; s ¼ 0) for h0=b ¼ 0:1:
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Fig. 5. The first five eigenfrequencies of a cantilevered square Mindlin plate with linearly varying thickness in one

direction (r ¼ 1; s ¼ 0) for h0=b ¼ 0:2:
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Taylor series of static load as the admissible functions of the plate in that direction. Unlike
conventional basis functions such as the vibrating Timoshenko beam functions for uniform
Timoshenko beams, which are independent of the thickness variation of the plate, the static
Timoshenko beam functions presented in this paper are closely connected with the thickness
variation of the plate. Therefore, more rapid convergence and higher accuracy can be expected,
especially for plates with small truncation factors. The comparison and convergence study shows
that the first few eigenfrequencies can be given with sufficiently satisfactory accuracy by using
only a small number of terms of the static Timoshenko beam functions. Finally, some valuable
results are presented.
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