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Abstract

The stability and dynamics of a cantilevered pipe conveying fluid with motion-limiting constraints and a
linear spring support have been investigated. Emphasis is placed on analyzing local qualitative behavior of
the system in the neighborhood of a doubly degenerate point. Using some qualitative reduction methods of
dynamical system theory, the four-dimensional differential equation of motion is reduced to a two-
dimensional one, and then the possible motions of the pipe are predicted through analyzing bifurcations of
the solution to the reduced equation of motion. The unfolding result is found to be in good agreement with
the result obtained using the numerical method. It is also found that there exist the quasi-periodic motions
and route to chaos through breakup of the quasi-periodic torus surface in some parameter region of the
system, which differs from that of periodic-doubling bifurcation route found earlier in this system.
Numerical simulations have been performed using the four-dimensional equation of motion to confirm the
analytical results.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

With the development of the theory on non-linear dynamical systems and chaos in recent years,
much attention has been paid to the study of non-linear dynamics of pipes conveying fluid [1].
Some important phenomena, which have never been observed in the linear analysis of the systems,
have been discovered [2]. Pa.ıdoussis and Moon studied, both experimentally and theoretically, the
dynamics of a cantilevered pipe which is constrained by non-linear motion restraints. In a range of
values of flow velocity beyond the Hopf bifurcation, they found that chaotic motions arise in this
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autonomous system through the period-doubling bifurcations [2,3]. A series of further studies on
this topic was done by Pa.ıdoussis et al. [4,5] from various aspects focusing on their attention to the
characteristics of the chaotic motions. Recently, the authors studied the dynamics of a slightly
modified system with the motion-limiting constraints and a linear spring support, as shown in
Fig. 1 [6]. The effect of the linear spring constant (k1) and flow velocity (u) on the motions of the
pipe was mainly investigated by using the method of numerical simulations. It is found that the
region of dynamic instability in (u–k1) parameter plane may be divided into several sub-regions in
each of which a different dynamical behavior including chaotic motions of the pipe arises (see
Fig. 2).
As we see from Fig. 2, there is an intersection point M on the boundary of static and dynamic

instability regions, and the boundary curves of the sub-regions in (u–k1) plane all originate from

Fig. 1. Schematic of the system treated in this paper.

Fig. 2. Sketch of stability regions (redrawn from Ref. [6]).
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this intersection point. This allows us to think of a possible bifurcation of the solution at the point
and expect some complicated behavior to occur in the neighborhood of that point. In fact, the
zero equilibrium of the pipe is doubly degenerate at the point. The linearized matrix of equation of
motion of the system at point M has a zero and a pair of pure imaginary eigenvalues, which
corresponds to the coupled flutter and divergence bifurcation of the motion. This paper is
concerned primarily with the stability and dynamics of the same restrained cantilevered pipe
conveying fluid as treated in Ref. [6]. However, emphasis is placed on analyzing a codimension-
two bifurcation problem and unfolding the double degeneracy at point M. The main purpose of
this paper is to explain the results obtained in Ref. [6] from a viewpoint of bifurcation of solution.
It should be pointed out that very laborious simulation analysis and much effort are needed
indeed for determining the sub-regions in the ‘‘flutter region’’ and drawing Fig. 2. In order to do
so, the parameter plane was divided into a network with certain steps of u and k1, and numerical
simulations were carried out by solving the equation of motion directly at every net point, and
then, the behavior of the system at each net point was determined through observation of phase
trajectories of the solutions. However, we will show, in this paper, that the same or even more
refined results may also be obtained through analyzing the bifurcation of the solutions in the
neighborhood of the doubly degenerate point.

2. Differential equation of motion and doubly degenerate system

The system considered here is shown in Fig. 1. The reader should refer to Ref. [6] for details for
the mechanical model of the pipe and some assumptions needed for derivation of equation of
motion. The differential equation of motion of the system can be written as [6]

aEI
@5y

@x4@t
þ EI

@4y

@x4
þ ½MU2 � ðM þ mÞðL � xÞg0�

@2y

@x2
þ 2MU

@2y

@x@t

þ ðM þ mÞg0
@y

@x
þ ðM þ mÞ

@2y

@t2
þ ðK1y þ K2y

3Þ dðx � xbÞ ¼ 0; ð1Þ

where EI is the flexural rigidity of the pipe, a the coefficient of Kelvin–Voigt viscoelastic damping
of the pipe material, L the pipe length and m its mass per unit length, M is the mass of the
conveying fluid per unit length and U its flow velocity, K1 is the stiffness of the spring of the elastic
support and K2 is the stiffness of cubic spring which represents the effect of the motion
constraints, xb the location of the constraints, g0 is the acceleration due to gravity, dð�Þ is Dirac
delta function, yðx; tÞ is the lateral deflection of the pipe and assumed to be small compared with
L.
Introducing the following non-dimensional variables and parameters:
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: ð2Þ
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Eq. (1) may be rendered to a dimensionless form, and then can be discretized by Galerkin’s
technique. Let

W ðx; tÞ ¼
X2
i¼1

jiðxÞqiðtÞ;

jiðxÞ ¼ coshðlixÞ � cosðlixÞ � si½sinhðlixÞ � sinðlixÞ�; ð3Þ

si ¼ ðsinh li � sinliÞ=ðcosh li þ cos liÞ ði ¼ 1; 2Þ;

l1 ¼ 1:875; l2 ¼ 4:694;

where ji and li ði ¼ 1; 2Þ are the eigenfunctions and eigenvalues of the cantilevered beam,
respectively. Then, applying Galerkin’s method, one obtains a four-dimensional ordinary
differential equation of motion [6]:

’X ¼ AX þ F ðX Þ; ð4Þ

where

X ¼ ðx1;x2; x3;x4Þ
T; FðX Þ ¼ ð0; 0;F3;F4Þ

T;

x1 ¼ q1; x2 ¼ q2; x3 ¼ ’q1; x4 ¼ ’q2;

A ¼

0 0 1 0

0 0 0 1

a1 a2 a3 a4

b1 b2 b3 b4

2
6664

3
7775: ð5Þ

The detailed expressions for ai, bi (i=1, 2, 3, 4), F3 and F4 in Eqs. (5), and those of
e; bsr; csr; dsr; esr; gsr (s, r=1, 2) contained in these expressions can be found in Ref. [6] and are
not repeated here.
In what follows, let g ¼ 10; xb ¼ 0:82; k2 ¼ 100 [3,6], while u; k1; a;b are allowed to vary, and let

m ¼ ðu; k1; a;bÞ
T: Note that the matrix A in Eq. (4) is dependent on the parameter m, but F(x) is

not. Rewriting A as Am for special emphasis to the dependence on m, then Eq. (4) becomes

’X ¼ AmX þ FðX Þ: ð6Þ

The eigenvalue problem of Am yields a quartic characteristic equation of the form

O4 þ H1O3 þ H2O2 þ H3Oþ H4 ¼ 0; ð7Þ

where

H1 ¼ � ða3 þ b4Þ;

H2 ¼ a3b4 � b3a4 � b2 � a1;

H3 ¼ a1b4 � b1a4 þ b2a3 � a2b3;

H4 ¼ a1b2 � b1a2:

Obviously, the coefficients Hi ði ¼ 1; 2; 3; 4Þ are dependent on the parameter m. We analyze in this
study the local behavior of the system for the parameter m lying in the neighborhood of m=m0
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(corresponds to the intersection point M in Fig. 2) for which Am0 has a zero eigenvalue and a pair
of pure imaginary eigenvalues, and the remaining eigenvalue of Am0 is assumed to be negative. The
above assumptions require that three conditions must be satisfied: that is,

H3 ¼ H1H2; H3 > 0; ð8Þ

H4 ¼ 0: ð9Þ

Solving Eq. (8) for k1 and substituting it into Eq. (9), we may solve Eq. (9) for u, obtaining
u0ða;bÞ: Substituting u0ða; bÞ into Eq. (8) again, we may solve for k1, obtaining k10ða; bÞ; and thus
obtain

m0 ¼ ðu0ða;bÞ; k10ða;bÞ; a; bÞ
T; ð10Þ

which is dependent on the parameters of a and b. Now we have the following degenerative
eigenvalues of Am0 :

O1;2 ¼ 8io0; O3 ¼ 0; O4 ¼ �H1o0: ð11Þ

Here o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3=H1

p
:

In order to investigate the local behavior of the system near m0, we introduce the local
parameters

d ¼ ðd1; d2Þ
T;

where

d1 ¼ u � u0; d2 ¼ k1 � k10: ð12Þ

Thus,

m ¼ m0 þ ðd1; d2; 0; 0Þ
T ð13Þ

and Eq. (6) becomes

’X ¼ AmX þ F ðX Þ 	 DdX þ F ðX Þ: ð14Þ

Note that Eq. (14) becomes a degenerate system in the case of d ¼ 0:

3. Reduction of the system

The matrix Am0 can be put into Jordan normal form by a transformation matrix V that is
composed of the eigenvectors of Am0 : Now we introduce the transformation

X ¼ VY : ð15Þ

Substituting Eq. (15) into Eq. (14), one can obtain

dY=dt ¼ ðJ þ %AdÞY þ f ðY Þ; ð16Þ
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where

J ¼
Jc 0

0 Jd

" #
; Jc ¼

0 �o0 0

o0 0 0

0 0 0

2
64

3
75;

Jd ¼ � aðl41 þ l42Þ � 2
ffiffiffi
b

p
uðb11 þ b22Þ;

%Ad ¼V�1ðDd � D0ÞV 	
%Ac1 %Ac2

%Ad1 %Ad2

" #
;

f ðY Þ ¼V�1F ðVY Þ 	 ð fc; fd Þ
T; Y ¼ ðyc; ydÞ

T

yc ¼ðy1; y2; y3Þ
TAR3 yd ¼ y4AR: ð17Þ

Note that the system considered here has a symmetry:

f ðY Þ ¼ �f ð�Y Þ: ð18Þ

By using the center manifold theory [7], Eq. (16) can be reduced to a three-dimensional system on
the center manifold, that is [8]

dyc=dt ¼ ðJc þ %Ac1Þyc þ fcðyc; 0Þ þOð dj j2 ycj j þ dj j ycj j3þ ycj j5Þ: ð19Þ

Here %Ac1 is a 3� 3 matrix which is dependent on the parameter d. The elements of %Ac1 are given as
follows:

Cmn ¼ um3

X4
i¼1

%aivin þ um4

X4
i¼1

%bivin ðm ¼ 1; 2; 3; n ¼ 1; 2; 3Þ; ð20Þ

where

%a1 ¼ � ð2u0c11d1 þ g11d2Þ; %a2 ¼ �ð2u0c12d1 þ g12d2Þ;

%a3 ¼ � 2
ffiffiffi
b

p
b11d1; %a4 ¼ �2

ffiffiffi
b

p
b12d1;

%b1 ¼ � ð2u0c21d1 þ g21d2Þ; %b2 ¼ �ð2u0c22d1 þ g22d2Þ;

%b3 ¼ � 2
ffiffiffi
b

p
b21d1; %b4 ¼ �2

ffiffiffi
b

p
b22d1: ð21Þ

Here vij and uij are the elements of matrix V and V�1; respectively.
In order to investigate the unfolding of Eq. (19), next, we will further reduce Eq. (19) to a

normal form by using Birkhoff’s normal form theory [8]. Since only the case of dj j51 is
considered here, the matrix Jc þ %Ac1 possesses the eigenvalues of the form given by

u1 ¼ z2ðdÞ; u2 ¼ z1ðdÞ þ io1ðdÞ;

u3 ¼ z1ðdÞ � io1ðdÞ ¼ %u2; z1; z2;o1AR:
ð22Þ

Note that, when d-0 we have z1ðdÞ; z2ðdÞ-0 and o1ðdÞ-o0:
Let v;w; %w and v�; %w�;w� denote the normalized and their adjoint eigenvectors of the matrix

Jc þ %Ac1 corresponding to the eigenvalues of u1; u2; u3; respectively. Introducing a transformation

yc ¼ zv þ sw þ sw; zAR; sAC; ð23Þ

J.D. Jin, G.S. Zou / Journal of Sound and Vibration 260 (2003) 783–805788



Eq. (19) becomes

v
dz

dt
þ w

ds

dt
þ %w

d%s

dt
¼ u1vz þ u2ws þ u3ws þ Nðz; s; %sÞ; ð24aÞ

where

Nðz; s; %sÞ ¼ fcðzv þ sw þ sw; 0Þ: ð24bÞ

Since the non-linear terms in fc are all cubic with respect to yc; the non-linear function N can be
written as

Nðz; s; %sÞ ¼
X

zmsn
%s
pamnp ; amnpAC ; ð25Þ

where m; n; p are non-negative integers, and the summation
P

is always performed for m þ n þ
p ¼ 3: Next we form the inner products of Eq. (24a) with v� and w� to obtain

dz

dt
¼ u1z þ

P
zmsn %spdð1Þ

mnp;

ds

dt
¼ u2s þ

P
zmsn %spdð2Þ

mnp;

ð26Þ

where

d ð1Þ
mnp ¼ oamnp; v� >¼

1

2p

R 2p
0 amnpv�dt;

d ð2Þ
mnp ¼ oamnp;w� >¼

1

2p

R 2p
0 amnpw�dt:

ð27Þ

Now we introduce a non-linear transformation of variables

*z ¼ z þ
X

amnp zmsn
%s
p; *s ¼ s þ

X
bmnp zmsn

%s
p: ð28Þ

Then we can remove, through appropriate choices of amnp and bmnp in Eqs. (28), from Eqs. (26)
some non-linear terms which have no influence on the topological structure of the solutions, and
one can finally obtain the following normal form Eqs. [8]:

d*z

dt
¼ u1 *z þ *z *sj j2d ð1Þ

111 þ *z3d
ð1Þ
300;

d*s

dt
¼ u2 *s þ *s *sj j2dð2Þ

021 þ *z2 *sd
ð2Þ
210:

ð29aÞ

This implies that the solutions of Eqs. (26) have the same topological structure with those of
Eqs. (29a) in the local domain [8]. Therefore, removing all the non-linear terms from Eqs. (26)
except the terms of z sj j2 and z3 in the first equation and the terms of s2s and z2s in the second will
have no influences on the qualitative features of solutions of the system. The normal form
equation (29a) can be exchanged to an alternative form by introducing cylindrical co-ordinate

*s ¼ *reij ð *ra0Þ; ð29bÞ
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That is,

d *r
dt

¼ z1 *rþ SR *r3 þ ZR *z
2 *r;

dj
dt

¼o1 þ SI *r2 þ ZI *z
2;

d*z

dt
¼ z2 *z þ d

ð1Þ
111 *z *r

2 þ d
ð1Þ
300 *z

3; ð30Þ

where

SR ¼ Reðd
ð2Þ
021Þ; SI ¼ Imðd

ð2Þ
021Þ ;

ZR ¼ Reðd
ð2Þ
210Þ; ZI ¼ Imðd

ð2Þ
210Þ:

ð31Þ

The first and third of equations (30) are independent on variable j which represents the phase
component of the solution, so the second one which involves the variable j can be ignored here.
Let

r ¼
ffiffiffiffiffiffiffiffi
SRj j

p
*r ; z0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
d
ð1Þ
300

��� ���
r

*z ; ð32Þ

then the first and third of equations (30) become
dr
dt

¼ rðz1 þ %gr2 þ Zz2Þ;

dz

dt
¼ zðz2 þ yr2 þ %ez2Þ;

ð33aÞ

where

%g ¼ SR= SRj j ¼ 71 Z ¼ ZR= d
ð1Þ
300

��� ���; %e ¼ d
ð1Þ
300= d

ð1Þ
300

��� ��� ¼ 71; y ¼ d
ð1Þ
111= SRj j: ð33bÞ

Here we have rewritten z0 as z for simplicity.

4. Calculation of the coefficients in the normal form equations

In the preceding section, we have derived the normal form equations of the system near the
doubly degenerate equilibrium. To unfold the degeneracy we need to compute all the coefficients
of non-linear terms in the normal form equations (33a), which are in a form of the formal
equations at this stage. To determine the expressions of the coefficients %g; Z; %e and y; we need to
make a number of transformations from the original equations as indicated in the preceding
section. This procedure is quite complicated, and it is hard to give the explicit formulation for the
expressions.
The purpose of this section is to acquaint the reader with the details of the procedure and steps,

that may be unfamiliar to some readers, for calculation of the coefficients from the original
parameters of the system, and allows the reader, who so desires, to apply the technique to the
similar bifurcation problem in any other physical and engineering systems.
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Let us start with Eq. (14). At first we need to make some preparations for carrying out several
transformations later. Solving Eqs. (8) and (9) for u and k1, and then substituting them into
Eq. (5), one may construct the matrix Am0 :Next we need to solve two eigenvalue problems of 4� 4
matrix Am0 and 3� 3 matrix Jc þ %Ac1: Using the eigenvectors of Am0 we can compose the
transformation matrix V that may put Am0 into Jordan normal form. Let

V ¼ V1^V2½ �; V�1 ¼
U11 U12

U21 U22

" #
: ð34Þ

Here V1, V2; U11; U12; U21 and U22 are 4� 3; 4� 1; 3� 2; 3� 2; 1� 2 and 1� 2 partitioned
matrices, respectively. The eigenvalues u1; u2; u3 of the matrix Jc þ %Ac1 are expressed in Eqs. (22).
Let vi;wi; %wi and v�i ; %w

�
i ;w

�
i (i=1, 2, 3) be the elements of the vectors v;w; %w and v�; %w�;w�;

respectively, which denote the normalized and their adjoint eigenvectors of the matrix Jc þ %Ac1

corresponding to the eigenvalues u1; u2; u3; respectively.
In the following, our attention will be focused on the transformations of the non-linear term

FðX Þ in Eq. (14). Let

F ðX Þ ¼ ð%0; %FÞT;

where

%0 ¼ ð0; 0ÞT; %F ¼ ðF3;F4Þ
T: ð35Þ

Then, the non-linear term f ðY Þ in Eqs. (17) can be written as

f ðY Þ ¼ V�1FðVY Þ ¼
U11 U12

U21 U22

" #
%0

%F ð V1^V2½ � yc; ydð ÞTÞ

 !
	

fcðY Þ

fdðY Þ

 !
: ð36Þ

Here fcðY Þ is the non-linear term in equation on the center manifold and may be written as

fcðY Þ ¼ U12 %Fð V1^V2½ � yc; ydð ÞTÞ ¼ U12 %FðV1yc þ V2ydÞ 	 fc yc; ydð Þ: ð37Þ

Since %FðX Þ is the homogeneous cubic polynomial of xi and the center manifold yd ¼ hðycÞ is at
least quadratic in yc; the non-linear term fcðY Þ on the center manifold can be simplified as fcðyc; 0Þ
by setting yd ¼ 0 if we only require to consider non-linear terms up to order 3 in the normal form
equations:

fcðyc; 0Þ ¼ U12 %F ðV1ycÞ ¼ U12

F3ðV1ycÞ

F4ðV1ycÞ

 !
: ð38Þ

This means that to obtain the equation on the center manifold with non-linear terms up to order 3
we need only to make the transformation

X ¼ V1yc ð39Þ

for non-linear terms in Eq. (14), not transformation (15). If we substitute Eq. (23) into Eq. (39) to
combine the two transformations, we may obtain

X ¼ fz þ gs þ gs ð40Þ

or

xi ¼ fiz þ gis þ gis ði ¼ 1;y; 4Þ; ð41Þ
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where

f ¼ð f1; f2; f3; f4Þ
T ¼ V1v; fi ¼

X3
j¼1

vij vj;

g ¼ðg1; g2; g3; g4Þ
T ¼ V1w; gi ¼

X3
j¼1

vij wj;

%g ¼ð %g1; %g2; %g3; %g4Þ
T ¼ V1 %w; %gi ¼

X3
j¼1

vij %wj; ði ¼ 1;y; 4Þ: ð42Þ

Let Ri and Ii be the real and imaginary parts of gi; respectively. That is,

Ri ¼ReðgiÞ; Ii ¼ ImðgiÞ;

gi ¼Ri þ iIi; %gi ¼ Ri � iIi ði ¼ 1;y; 4Þ; ð43aÞ

where

Ri ¼
X3
j¼1

vij wjR; Ii ¼
X3
j¼1

vij wjI ;

i ¼
ffiffiffiffiffiffiffi
�1

p
; wiR ¼ ReðwiÞ; wiI ¼ ImðwiÞ;

wi ¼wiR þ iwiI ði ¼ 1;y; 4Þ: ð43bÞ

Substituting Eq. (40) or (41) into the expressions of F3 and F4 [6] in Eq. (14), we may obtain the
new expressions of F3 and F4 as functions of the new variables z; s and %s:

F3 ¼ g1z
3 þ g2z

2s þ g3z sj j2þg4s sj j2þ?;

F4 ¼ e1z3 þ e2z2s þ e3z sj j2þe4s sj j2þ?; ð44Þ

where

g1 ¼ � k2j1ðxbÞj
3
f ; g2 	 g2R þ ig2I ; g2R ¼ �3k2j1ðxbÞj

2
f jR; g2I ¼ �3k2j1ðxbÞj

2
f jI ;

g3 ¼ � 6k2j1ðxbÞjf ðj
2
R þ j2

I Þ; g4 	 g4R þ ig4I ;

g4R ¼ � 3k2j1ðxbÞðj
2
R þ j2

I ÞjR; g4I ¼ �3k2j1ðxbÞðj
2
R þ j2

I ÞjI ;

jf ¼
X2
i¼1

jiðxbÞfi; jR ¼
X2
i¼1

jiðxbÞRi; jI ¼
X2
i¼1

jiðxbÞIi;

e1 ¼ g1=e; e2 	 e2R þ ie2I ; e2R ¼ g2R=e; e2I ¼ g2I=e;

e3 ¼ g3=e; e4 	 e4R þ ie4I ; e4R ¼ g4R=e; e4I ¼ g4I=e;

e ¼j1ðxbÞ=j2ðxbÞ: ð45Þ

Note that, since in the normal form equations, Eqs. (29a), there are only non-linear terms of z3;
z2s; z sj j2 and s sj j2 we do not need to compute any non-linear term except those containing these
four cubic terms in the expressions of F3 and F4 in Eq. (44). Substituting Eqs. (23) and (44) into
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Eqs. (38) and using Eq. (24b), we obtain

Niðz; s; %sÞ ¼ a
ðiÞ
300z

3 þ a
ðiÞ
210z

2s þ a
ðiÞ
111z sj j2þa

ðiÞ
021s sj j2þ? ði ¼ 1; 2; 3Þ: ð46Þ

Here a
ðiÞ
300; a

ðiÞ
210; a

ðiÞ
11 and a

ðiÞ
021 (i=1, 2, 3) denote the elements of the vectors a300; a210; a111 and a021;

respectively, and

ðN1;N2;N3Þ
T ¼N; a

ðiÞ
300 ¼ ui3g1 þ ui4e1;

a
ðiÞ
210 ¼ ui3g2 þ ui4e2 ¼ ui3g2R þ ui4e2R þ iðui3g2I þ ui4e2I Þ;

a
ðiÞ
111 ¼ ui3g3 þ ui4e3;

a
ðiÞ
021 ¼ ui3g4 þ ui4e4 ¼ ui3g4R þ ui4e4R þ iðui3g4I þ ui4e4I Þ ði ¼ 1; 2; 3Þ: ð47Þ

If we substitute Eqs. (47) into Eqs. (27), we may obtain the coefficients of non-linear terms in the
normal form equations (29a):

d
ð1Þ
111 ¼ a111; v

�� �
¼
X3
i¼1

a
ðiÞ
111v

�
i ¼

X3
i¼1

ðui3g3 þ ui4e3Þv�i ;

d
ð1Þ
300 ¼ a300; v

�� �
¼
X3
i¼1

a
ðiÞ
300v

�
i ¼

X3
i¼1

ðui3g1 þ ui4e1Þv�i ;

d
ð2Þ
021 ¼ a021;w

�� �
¼
X3
i¼1

a
ðiÞ
021w

�
i ¼

X3
i¼1

½ui3g4R þ ui4e4R þ iðui3g4I þ ui4e4I Þ�ðw�
iR þ iw�

iI Þ 	 SR þ iSI ;

SR ¼Reðd
ð2Þ
021Þ ¼

X3
i¼1

½ui3g4R þ ui4e4RÞw�
iR � ðui3g4I þ ui4e4I Þw�

iI �

SI ¼ Imðd
ð2Þ
021Þ ¼

X3
i¼1

½ui3g4R þ ui4e4RÞw�
iI þ ðui3g4I þ ui4e4I Þw�

iR�

d
ð2Þ
210 ¼ a210;w

�� �
¼
X3
i¼1

a
ðiÞ
210w

�
i ¼
X3
i¼1

½ui3g2R þ ui4e2R þ iðui3g2I þ ui4e2I Þ�ðw�
iR þ iw�

iI Þ 	 ZR þ iZI ;

ZR ¼Reðd
ð2Þ
210Þ ¼

X3
i¼1

½ui3g2R þ ui4e2RÞw�
iR � ðui3g2I þ ui4e2I Þw�

iI �;

ZI ¼ Imðd
ð2Þ
210Þ ¼

X3
i¼1

½ui3g2R þ ui4e2RÞw�
iI þ ðui3g2I þ ui4e2I Þw�

iR�; ð48Þ

where

w�
iR ¼ Reðw�

i Þ; w�
iI ¼ Imðw�

i Þ:

Substituting Eqs. (48) into Eqs. (33b), we finally obtain the expressions of the coefficients %g; Z; %e
and y in Eqs. (33a).
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5. Local bifurcations

We now investigate the bifurcations of solution of the system through analyzing the reduced
Eqs. (33a) which should possess all information about local behavior of the original four-
dimensional system except the phase effect [8, 9].
Obviously, the coefficients %g; Z; %e; y in Eqs. (33a) all depend on the parameters a and b:

Numerical analysis shows that for the values of a and b that fulfill the conditions (8) and (9) we
have %g ¼ �1; Zo0; %e ¼ 1 and y > 0: Therefore, Eq. (33a) can be written as

dr
dt

¼ rðz1 � r2 þ Zz2Þ;

dz

dt
¼ zðz2 þ yr2 þ z2Þ;

ð49Þ

where Zo0 and y > 0: The system of Eqs. (49) has been encountered in many physical problems
[10,11] and investigated from various aspect for their different special purpose of problem. Here
we first briefly summarize some basic results for our purpose. To unfold the bifurcations of
Eqs. (49) one first needs to determine the equilibria and their stability. Because of the symmetry
with respect to both axes of r and z in Eqs. (49), in what follows, the equilibria and phase portraits
are only illustrated in the first quadrant. The equilibria are given by

rðz1 � r2 þ Zz2Þ ¼ 0; zðz2 þ yr2 þ z2Þ ¼ 0: ð50Þ

Obviously, there are four equilibria, as follows

ð1Þ ðr; zÞ ¼ ð0; 0Þ;

ð2Þ ðr; zÞ ¼ ð
ffiffiffiffi
z1

p
; 0Þ for z1 > 0;

ð3Þ ðr; zÞ ¼ ð0;
ffiffiffiffiffiffiffiffi
�z2

p
Þ; for z2 > 0;

ð4Þ ðr; zÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz1 � Zz2Þ=ð1þ yZÞ

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
-ðyz1 þ z2Þ=ð1þ yZÞ

p
Þ

for z2oz1=Z and z2o� yz1 if 0oyo� 1=Z;

or; for z2 > z1=Z and z2 > �yz1 if y > �1=Z ð51Þ

The stability of the equilibria and flow behavior near these equilibria can be determined by the
eigenvalues of the Jacobi matrix of the right side in Eqs. (49). The Jacobi matrix has the general
form

J0 ¼
z1 � 3r2 þ Zz2 2Zrz

2yrz z2 þ yr2 þ 3z2

" #
;

and we may evaluate the matrix at every equilibrium, as follows:

J1 ¼
z1 0

0 z2

" #
; J2 ¼

�2z1 0

0 z2 þ yz1

" #
; J3 ¼

z1 � Zz2 0

0 �2z2

" #
;

J4 ¼
�2ðz1 � Zz2Þ=ð1þ yZÞ 2Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðz1 � Zz2Þðyz1 þ z2Þ=ð1þ yZÞ2

q
2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðz1 � Zz2Þðyz1 þ z2Þ=ð1þ yZÞ2

q
�2ðyz1 þ z2Þ=ð1þ yZÞ

2
64

3
75; ð52Þ
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where J1 to J4 represent the Jacobi matrices evaluated at equilibria (1)–(4), respectively. Thus, it is
easy to show from expressions (52) that primary pitchfork bifurcations occur from the trivial
equilibrium (1) on the lines z1 ¼ 0 and z2 ¼ 0; and we obtain non-trivial equilibriums (2) for z1 > 0
and (3) for z2o0: Secondary pitchfork bifurcations can also occur from equilibrium (2) on the line
z2 þ yz1 ¼ 0; and from (3) on the line z1 � Zz2 ¼ 0; and we obtain the equilibrium (4). The
bifurcation set in the z1–z2 plane and the corresponding phase portraits of Eqs. (49) in each region
are given in Fig. 3.
The same unfolding result for Eqs. (49) may be obtained from a different way. We introduce the

following transformations:

t-� t; z1-� z1; z2-� z2; ð53Þ

then Eqs. (49) become

dr
dt

¼ rðz1 þ r2 � Zz2Þ;

dz

dt
¼ zðz2 � yr2 � z2Þ: ð54Þ

The unfoldings for Eqs. (54) have been investigated in Ref. [9]. The relation between the
coefficients in Eqs. (54) and the corresponding Eqs. (7.5.2) studied in Ref. [9] is given as follows:

� Z2b; �y2c; �12d;

� 1� ð�ZÞð�yÞ ¼ �1� Zy2d � bc ¼ v: ð55Þ

Because of Zo0; y > 0; we have

b > 0; co0; v > 0; ð56Þ

Fig. 3. Bifurcation set and phase portraits of Eqs. (49).
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and so Eqs. (54) indeed correspond to the case VIa in Ref. [9]. The unfolding result of Fig. 3 for
Eqs. (49) then can be easily obtained also from Figure (7.5.5) in Ref. [9] if we take into account
transformations (53).
Since z1ðdÞ and z2ðdÞmay be regarded as the linear functions of d ¼ ðd1; d2Þ when d-0; it is easy

to determine numerically the axes of z1 and z2 and the bifurcation set mentioned above in the
d1–d2 parameter plane. Fig. 4 shows the bifurcation set and phase portraits for Eqs. (49), which
are drown in the d1–d2 plane.
There is an interesting problem about the possibility that Hopf bifurcations occur from the

equilibrium (4). Hopf bifurcations will occur in the system of Eqs. (49) or (54) if the trace of the
Jacobi matrix J4 becomes zero, that is

trðJ4Þ ¼
�2z1ð1þ yÞ þ 2z2ðZ� 1Þ

1þ yZ
¼ 0; ð57Þ

which gives

�z1ð1þ yÞ þ z2ðZ� 1Þ ¼ 0; or z2 ¼
1þ y
Z� 1

z1: ð58Þ

However, one can show that the Hopf bifurcation on the line of z2 ¼ ð1þ yÞz1=ðZ� 1Þ is
degenerate [9], and thus the stability computations of the bifurcation cannot be carried out at this
stage to obtain specific criteria for sub- or super-critical bifurcations. Therefore, the higher-order
terms in the center manifold and induced by the non-linear transformation of Eq. (28) should be
added to our normal form Eqs. (49) to determine the topological type of solution of the system
near the line. The unfolding computations for this case are very complicated. We need, firstly, find
a rescaling that transformed the normal form equations into a perturbation of an integrable
Hamiltonian system with the higher order terms added in the normal form part of the
perturbation. Then the Melnikov theory can be used to analyze the dependence of periodic orbits

Fig. 4. Bifurcation set and phase portraits in the d1–d2 plane.
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on the parameters and find the bifurcation curve for heteroclinic loop. Regarding this kind of
analysis and calculations, the reader can consult Ref. [9] for the analysis of a special case, Z ¼ �3
and y ¼ 3; of Eqs. (54). However, it is too hard to carry out the unfolding computations for the
present problem, especially using the original physical parameters, so we only conjecture here for
this system that a stable limit cycle around equilibrium (4) will be born through a supercritical
Hopf bifurcation from equilibrium (4) on the line of z2 ¼ ð1þ yÞz1=ðZ� 1Þ: The completions of
the unfoldings shown in Figs. 3 and 4 are sketched in Fig. 5 on the basis of the conjecture. We will
confirm the conjecture and the results shown in Fig. 4 in the next section through carrying out
numerical simulations by solving Eq. (6) directly.
Finally, in order to provide a physical interpretation of the results shown in Figs. 4 and 5, we

turn to a brief discussion regarding the relationship between the dynamics of the reduced plane
autonomous system, Eqs. (49), and the discretized four-dimensional system, Eq. (6). One should
reconsider the rotational effect, the second of Eqs. (30), neglected at a stage in the analysis to
complete the analysis and explain the results obtained. It is easy to see that the following
correspondences exist:

Planar system Four-dimensional system

(1) ðz; rÞ ¼ ð0; 0Þ -undeformed state of the pipe.
(2) ðz; rÞ ¼ ð%z; 0Þ -buckled state of the pipe.
(3) ðz; rÞ ¼ ð0; %rÞ -periodic motions encircling the zero equilibrium.
(4) ðz; rÞ ¼ ð%z; %rÞ -periodic motions encircling the non-zero equilibriums.
(5) Periodic orbit (limit cycle) -two-dimensional torus, quasi-periodic motions,

where %z and %r represent the values of z and r at the fixed points in Figs. 3 (and 4), respectively. It
is easy to imagine that the limit cycle motion around equilibrium (4) in the reduced planar system
may be regarded as a motion on the surface of two-dimensional torus in the three- or four-
dimensional state space if we take into account the rotational effect neglected. A sketch
illustrating the motion on the surface of two-dimensional torus is shown in Fig. 6. This motion
itself is not periodic but is said to be quasi-periodic or almost-periodic.

Fig. 5. (a) A completion of the unfolding shown in Fig. 3; (b) A completion of the unfolding shown in Fig. 4.
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6. Numerical simulations

Numerical simulations are carried out by solving the four-dimensional equation (6) directly
with the aid of the fourth order Runge–Kutta method to confirm the analytical results shown in
Fig. 4 and the conjecture in the previous section. In the computations, we set a ¼ 0:005 and
b ¼ 0:2 [6]. Thus the values of u and k1 which correspond to the doubly degenerate point M can
be determined as follows:

u0 ¼ 9:828245; k10 ¼ 59:40064:

Figs. 7(a)–(g) show the phase trajectories simulated directly from Eq. (6) in some specific
cases, which correspond to the behavior in regions 1–7 of Fig. 4, respectively. The phase
portraits in Fig. 7 are projections of solutions onto ðx1; x3Þ-plane. It is easy to see that there exist
the relationships between the phase portraits in Fig. 4, Fig. 7 and the sub-regions in Fig. 2 as
shown in Table 1. One can see that each line of the bifurcation set in d1–d2 parameter plane
shown in Fig. 4 takes almost the same direction with the boundary line of the corresponding
stability region in Fig. 2 in the neighborhood of the degenerate point M. Therefore, the unfolding
results shown in Fig. 4 are indeed verified except the conjecture concerning the Hopf bifurcation
from equilibrium (4). In order to show that a stable limit cycle motion occurring from the
Hopf bifurcation dose exist in the reduced system of Eqs. (49), one needs to confirm that a
quasi-periodic motion does occur in the original four-dimensional system of Eq. (6) in the
corresponding parameter range. Here, the phase portraits and Poincar!e maps are used as
the tools for numerical simulations, and the following two triggers are used for Poincar!e
maps:

(1) The state of the pipe at the point of x ¼ 0:82 will be taken down when the velocity of the pipe
at the point of x ¼ 1 be zero, i.e.,

’Wð1; tÞ ¼ j1ð1Þ ’q1ðtÞ þ j2ð1Þ ’q2ðtÞ ¼ 0:

Fig. 6. Sketch illustrating the motion on the surface of two-dimensional torus.
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Fig. 7. Phase portraits simulated directly from Eq. (6). (a) u=9.4, k1=52; (b) u=9.7, k1=55; (c) u=9.83, k1=55.72; (d)

u=9.85, k1=58; (e) u=9.89, k1=59.5; (f) u=9.7, k1=59.5; (g) u=9.4, k1=59.2.
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(2) The state of the pipe at the point of x ¼ 1 will be taken down when the displacement of the
pipe at the point of x ¼ 0:82 be zero, i.e.,

W ð0:82; tÞ ¼ j1ð0:82Þq1ðtÞ þ j2ð0:82Þq2ðtÞ ¼ 0:

A quasi-periodic motion captured in the four-dimensional system of Eq. (6) in the corresponding
parameter range near the degenerate point M is shown in Fig. 8. One can see from the figure that
the Poincar!e maps of the quasi-periodic motion are closed curves: double closed curves for using
trigger 1 and single one for using trigger 2.

7. Conclusions and discussions

In this paper, we have studied some local stability and bifurcation problems of a cantilevered
pipe conveying fluid with the motion limiting constraints and a linear spring support. The local
behavior of the system in the neighborhood of a doubly degenerate point was analyzed by using
some qualitative reduction methods in dynamical system theory, such as center manifold and
Birkhoff’s normal form theory. The analytical results obtained are found to be in good agreement
with that obtained by means of numerical simulations. Furthermore, the analytical unfolding
results show that the quasi-periodic motions may occur in certain parameter range in the system,
which could not be detected in the early work using numerical method [6].
In addition we found that as the parameters of u and k1 vary from the point M to the sub-region

of chaotic motions (region 4) in Fig. 2 along the boundary line between the sub-regions IV and 7
chaotic motions occur as the results of the breakup of the quasi-periodic torus surface [12], as
shown in Fig. 9. It is known to be a different route to chaos from that of ‘‘periodic-doubling
bifurcation’’ which has been detected in this system earlier [3,6]. A further analysis on the

Table 1

Relationships between Figs. 2, 4 and 7

Figure 4 1 2 3 4 5 6 7

Figure 7 a b c d e f g

Figure 2 1 2 7 7 V III II

Fig. 8. A quasi-periodic motion of the system for u=9.82915, k1=57.5. (a) Phase portrait; (b) Poincar!e map for trigger

1; (c) Poincar!e map for trigger 2.
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differences between these two kinds of chaos born from different routes, and about the ways by
which one develops into the other will be published elsewhere.
Note that near the Hopf bifurcation line we may determine the line of heteroclinic orbit by the

Melnikov’s method as shown in Fig. 5. It gives rise to the possibility of heteroclinc tangles among

Fig. 9. Onset of chaos by breakup of the torus surface of quasi-periodic motions. (a)–(c) u=9.8302, k1=55; (d)–(f)

u=9.832, k1=50.1; (g)–(i) u=9.83218, k1=49.8; (j)–(l) u=9.8322, k1=49.62; (m)–(o) u=9.8313, k1=49.6. Where

figures (a), (d), (g), (j), (m) are phase portraits, figures (b), (e), (h), (k), (n) are Poincar!e maps with trigger 1, and figures

(c), (f), (i), (l), (o) are Poincar!e maps with trigger 2.
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the stable and unstable manifolds of saddle loop. If this happens we may expect to find in this case
a thin ‘‘wedge’’ around the Hopf bifurcation line in which chaotic motions occur. However, in the
present system, there is a stable state with the quasi-periodic motion in that region, and so the
chaotic motions would not seem to occur near the degenerate point M. Indeed, numerical
simulations we carried out so far have not detected any chaotic motions in that region. The
chaotic motion we detected which arises at the nearest distance from the degenerate point M

ðu0 ¼ 9:82; k10 ¼ 59:4Þ is located in k1 ¼ 50; and so we do not think that it can be regarded as the
chaos born from the heteroclinic tangles near the degenerate point. It should also be pointed out
that based on the two-dimensional analysis we may provide merely a information about the
possibility of chaotic motions in the system of four-dimensional equation. How the chaotic
motions associate with the heteroclinic bifurcation are created in higher dimensional system and
how the chaotic motions are created by the breakup of the quasi-periodic torus structure as the
system parameter is varied are still imperfectly understood [9,13].

Appendix A. Nomenclature

%0 ð0; 0ÞT

a coefficient of viscoelastic damping
ai element of matrix A

%ai element of matrix Am � Am0

amnp coefficient of non-linear terms

aðiÞmnp
element of amnp

A 4� 4 matrix, coefficients of linear part of equation of motion
Ac1, Ac2, Ad1, Ad2 3� 3, 3� 1, 1� 3 and 1� 1 partitioned submatrices of %Ad
%Ad 4� 4 matrix, Eqs. (17)

Am matrix A

Am0 matrix Am when m ¼ m0
bi element of matrix A
%bi element of matrix Am � Am0

bsr
R 1
0 jsðxÞj

0
rðxÞ dx

csr
R 1
0 jsðxÞj

00
r ðxÞ dx

Cmn element of matrix %Ac1

dsr
R 1
0 xjsðxÞj

00
r ðxÞ dx

dðiÞ
mnp

coefficient of non-linear terms, Eqs. (27)

Dd 4� 4 matrix, equal to Am

D0 matrix Dd when d ¼ 0
e j1ðxbÞ=j2ðxbÞ
esr bsr þ dsr � csr

EI flexural rigidity of pipe
f coefficient of transformation, Eq. (40)
f(Y) non-linear term in equation of motion, ðfc; fdÞ

T
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fc; fd non-linear terms in equation of motion, Eqs. (17)

fi element of f

F ; %F; F3; F4 non-linear terms in equation of motion

g; %g coefficient of transformation, Eq. (40)

g0 acceleration due to gravity

gi; %gi element of g and %g; respectively
gsr jsðxbÞ � jrðxbÞ
hð�Þ center manifold

Hi coefficient of characteristic equation

i sub- or superscript

i
ffiffiffiffiffiffiffi
�1

p
Ii imaginary part of gi

J 4� 4 matrix, Jordan normal form of Am0

J0; J1; J2; J3; J4; 2� 2 Jacobi matrices
SR; SI real and imaginary parts of d

ð2Þ
021

t time
u non-dimensional flow velocity
u0 value of u at degenerate point
uij element of matrix V�1

U flow velocity
U11, U12, U21, U22 3� 2, 3� 2, 1� 2, 1� 2 partitioned submatrices of V�1

v; v� normalized and its adjoint eigenvectors of Jc þ %Ac1 corresponding to
eigenvalue of u1

vi; v�i elements of v and v�; respectively
vij elements of matrix V

V 4� 4 transformation matrix
V1, V2 4� 3 and 4� 1 partitioned submatrices of V

Jc 3� 3 matrix, Eq. (17)
Jd �H1

k1, k2 non-dimensional linear and non-linear spring constants
k10 value of k1 at degenerate point
K1; K2 linear and non-linear spring constants
L length of pipe
m mass per unit length of pipe
M mass of fluid per unit length
N non-linear term in equation on the center manifold
Ni element of N
qi motion with ith natural mode of pipe
Ri real part of gi

s; %s; *s variables defined in Eqs. (23) and (28)

w; %w; %w�; w� normalized and their adjoint eigenvectors of Jc þ %Ac1 corresponding
to eigenvalues of u2 and u3; respectively

J.D. Jin, G.S. Zou / Journal of Sound and Vibration 260 (2003) 783–805 803



wi; w�
i elements of w and w�

wiR; wiI real and imaginary parts of wi

w�
iR; w�

iI real and imaginary parts of w�
i

W non-dimensional deflection of pipe

x co-ordinate of pipe

xb location of constraint

xi element of X

X variables defined in Eq. (5)

y deflection of pipe

yc ðy1; y2; y3Þ
T

yd y4
yi element of Y
Y variables defined in Eq. (15)
z; *z; z0 variables defined in Eqs. (23), (28) and (32)

%z the value of z at equilibrium
ZR; ZI real and imaginary parts of d

ð2Þ
210

a non-dimensional coefficient of viscoelastic damping
amnp coefficient of non-linear transformation, Eq. (28)

b M=ðM þ mÞ
bmnp coefficient of non-linear transformation, Eq. (28)
g ðM þ mÞg0L3=ðEIÞ
%g coefficient of non-linear term in normal form equations, 71
gi coefficient of non-linear term, Eq. (44)
g2R; g2I real and imaginary parts of g2
g4R; g4I real and imaginary parts of g4
d ðd1; d2Þ

T

dð�Þ Dirac delta function
d1 u � u0
d2 k1 � k10
%e coefficient of non-linear term in normal form equations, 71
ei coefficient of non-linear term, Eq. (44)
e2R; e2I real and imaginary parts of e2
e4R; e4I real and imaginary parts of e4
z1 real part of eigenvalue u2
z2 u1
y coefficient of non-linear term in normal form equations
Z coefficient of non-linear term in normal form equations
li ith eigenvalue of cantilevered beam
m ðu; k1; a; bÞ

T

m0 ðu0; k10; a; bÞ
T

ui eigenvalue of Jc þ %Ac1

x non-dimensional co-ordinate of pipe
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xb non-dimensional location of constraint
r; *r variables defined in Eqs. (32) and (29b)

%r the value of r at equilibrium
si coefficient defined in Eq. (3)
t non-dimensional time
j phase angle of solution
jiðxÞ ith eigenfunction of cantilevered beam
jf ; jI ; jR coefficients defined in Eq. (45)

o0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H3=H1

p
o1 imaginary part of u2
O; Oi; eigenvalues of Am0
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