Available online at www.sciencedirect.com

SCIENCE@DIHECT" JOURNAL OF
SOUND AND
ACADEMIC VIBRATION
PRESS Journal of Sound and Vibration 260 (2003) 847-866

www.elsevier.com/locate/jsvi

Analysis of a non-linear structure by considering
two non-linear formulations

R. Majed®*, J.L. Raynaud®

# Institut Préparatoire aux Etudes d’Ingénieurs de Nabeul, IPEIN Campus Universitaire Merazka, 8000 Nabeul, Tunisia
® Laboratoire de Meécanique Appliquée R. Chaleat, UMR CNRS-UFC 66 04, UFRST, Université de Franche-Comté, 24,
Rue de I'Epitaphe, 25030 Besancon Cedex, France

Received 1 May 2001; accepted 22 April 2002

Abstract

In recent years, modal synthesis methods have been extended for solving non-linear dynamic problems
subjected to harmonic excitation. These methods are based on the notion of non-linear or linearized modes
and exploited in the case of structures affected by localized non-linearity. Actually, the experimental tests
executed on non-linear structures are time consuming, particularly when repeated experimental tests are
needed. It is often preferable to consider new non-linear methods with a view to decrease significantly the
number of attempts during prototype tests and improving the accuracy of the dynamic behaviour.

This article describes two fundamental non-linear formulations based on two different strategies. The
first formulation exploits the eigensolutions of the associated linear system and the dynamics characteristics
of each localized non-linearity. The second formulation is based on the exploitation of the linearized
eigensolutions obtained using an iterative process. This article contains a numerical and an experimental
study which examines the non-linear behaviour of the structure affected by localized non-linearities. The
study is intended to validate the numerical algorithm and to evaluate the problems arising from the
introduction of non-linearities. The complex responses are evaluated using the iterative Newton—Raphson
method and for a series of discrete frequencies. The theory has been applied to a bi-dimensional structure
and consists of evaluating the harmonic responses obtained using the proposed formulations by comparing
measured and calculated transfer functions.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The non-linear analysis of certain mechanical structures has been developed over several years,
although the difficulties encountered in numerical computation or in practical acquisition system.
Several methods have been developed for the dynamic analysis of non-linear structures [1-10].
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These structures are often characterized by the presence of some localized non-linearities which are
restricted to a small parts of the structure. An experimental study shows that each non-linearity is
characterized by non-linear parameters of stiffness and damping. Therefore, the analysis of the
global behaviour of this type of structure can be only evaluated by a numerical algorithm.

The main purpose of this paper is to develop two non-linear formulations based on two
different strategies in view of testing mechanical structures affected by localized non-linearities. In
one approach, the non-linear system is formulated by exploiting the eigensolutions of the
associated conservative linear system and the stiffness and the damping characteristics of each
localized non-linearity. In the other approach, the non-linear system is obtained using the
eigensolutions of a linearized eigenvalue problem in which the iterative process conducts,
respectively, to a stationary coefficients of the linearized spectrum and modal matrices.

Many alternative methods of calculations can be envisaged in the resolution of the non-linear
problems (Newton—Raphson method, the incremental harmonic balance (IHB), method, etc).
Many authors have applied the IHB method to various problems in non-linear dynamics. Pierre
et al. [1] proposed a multi-harmonic analysis of a dry friction-damped system using the ITHB
method. Ferri [2] showed the equivalence of the IHB method and the harmonic balance Newton—
Raphson method. Cheung and Iu [3] presented a development of a simple algorithm for the
implementation of the harmonic balance method for solving a non-linear dynamic systems.
Jezequel et al. [4] proposed a non-linear synthesis in the frequency domain by using the Ritz—
Galerkin—Newton—Raphson method and also the IHB method. Friswell and Penny [5] proposed
the iterative Newton—Raphson method for solving the sets of non-linear equations.

Note that the different methods named above can be exploited to compare the solutions
obtained with the two proposed non-linear formulations. In the following study, the stationary
solution of each non-linear system is obtained using the Newton—Raphson method and by
considering the fundamental harmonic of the solutions. This article describes the experimental
technique for accurately evaluating the non-linear parameters of stiffness and damping. In this
study, the calculation of the stationary solution and the iterative algorithms will be presented. The
data acquisition system will also be described.

In order to illustrate the efficiency of the proposed methods, a numerical application to a bi-
dimensional articulated beam system will be presented. The effect of a localized non-linearities
will be characterized by performing an increasing and/or decreasing sine-sweep frequency and by
a comparison between theoretical and experimental results.

Finally, the experimental set-up is trying to model. In fact, the comparison between numerical
and experimental results is intended to choose and validate the proposed non-linear formulations
and the numerical resolution algorithms and to evaluate the difficulties due to the introduction of
localized non-linearities.

2. General formulation of the non-linear problem

The general equation representing the behaviour of a N-degree-of-freedom (d.o.f) non-linear
structure is represented by the differential equation

[MI§(2) + [B]y(1) + [K]y(?) + fu(y(2), (1)) = F(2), (1)
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where
[M], [B], [K]eR™" are, respectively, the mass, damping and stiffness matrices which are real,
symmetric, positive definite and f,;(y(?), y(¢)) represents the non-linear forces of stiffness and

damping in the time domain. The particular solution y(z) resulting from the exterior force F(7), is
written in the harmonic form (approximation of the first harmonic) as

y() =ye", F()=Fe'; s5=jo.
The differential system (1) is written in the frequency domain and given by the linearized form
(—’M] + jo[B] + [KDy(@) + fu(y, ) = F(w), 2)

where y(w), and F(w) are, respectively, the frequency response vector and the force vector.
The non-linear force vector f,;(y, ) is expressed as a function of the linearized stiffness and
damping matrices (approximation of the first harmonic) as

Ju(y, ®) = [AKyu(y, ®)] + jo[AB,(y, w)]. 3)
System (2) is then written in the harmonic form
(—’M] + jo[By(y, )] + [Ku(y, ))y(@) = F(w). (4)

Each coefficient of the matrix [K,;(y, )], [B.(y, ®)] depends on the amplitude of each non-linear
element and the pulsation w.

2.1. Expression of the linearized stiffness matrix

2.1.1. Linearized stiffness matrix
The linearized stiffness matrix [K,;(y, )] can be written in the form

[Kau(y, @)] = [K] + [AK,(y, »)], (5)

where [AK,;] represents the linearized stiffness matrix.
The matrix [AK,;(y,w)] is expressed as a function of both the linearized stiffness coefficients
(k19 k%) and the associated linear stiffness coefficients (kio,k23). The latter depends on the

pulsation w and the amplitudes of the beams (B, B>, B3).

2.1.2. Linearized damping matrix
Similarly, one can now obtain the linearized damping matrix

[Bu(y, )] = [B] + [AB(y, )], (6)
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where the matrix [AB,(y, )] is expressed as a function of the linearized damping coefficients
(b19. 23). The latter depends on the pulsation w as well as the amplitudes of the beams (B, B,, B3).

nl>“nl
The structure of the associated linear system is not damped ([B] = [0]), this is

[Buu(y, ®)] = [ABu(y, »)]. (7

2.2. Proposed non-linear formulations

Two types of formulations of the non-linear problem will be presented, one formulation based
on the exploitation of the eigensolutions of the associated conservative linear system (Y, A) and
the linearized parameters of each localized non—lir}earity, the second formulation based on the
exploitation of the linearized eigensolutions (Y, A) of the associated conservative non-linear
system.

2.2.1. Formulation based on the exploitation of the linear eigensolutions
The first technique proposed to formulate the non-linear problem contains the following steps:

(1) a projection of the solution of the non-linear system on the Ritz basis Y of the associated
conservative system as y(w) = YC(w);
(2) resolution of the non-linear system by the Newton—Raphson methods.

2.2.1.1. Formulation of the associated linear problem. The general equation representing the
behaviour of the associated linear system is given by its harmonic form as

| (—0’M] + joB + K |y;(w) = F(o). (8)
The general force vector F(w) and the displacement vector y,(w) are, respectively, given by
F(w) =[00 0 af(0)]"  y,(w) =[0) 02 03 04]".

Particular case. Since the d.o.f. 0, is imposed in the proposed practical strategy, one can obtain
a reduced linear system (8') of unknowns (0y, 0,, 03) and a constraint Eq. (9):

[—’M + joB + K]y,(0) = F(), &)

§°Lo-04 + 5I*(—k3403 + (kza + kao + k,)0s) = af(w), ©))

[M], [B], [K]eRY"Y" are the reduced mass, stiffness and damping matrices of size (N',N’), N’ =
N — 1 The displacement y,;(w) and the force vectors F(w) are given by

yi(@) =[0; 0, 03]F, F(w) =00 Pkss04]".
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The resolution of the linear system (8') leads to the angular displacement (0, 6,, 63). Eq. (9) leads
to the force applied on the beam By.

Eigensolutions of the linear system

The eigensolutions [A],[Y] are derived from the associated conservative linear system eigenvalue
problem (10) defined by

|~ + K]y =0. (10)
These solutions verify the orthonormality relations

[YI'IMI[Y] = 1], [Y]'[K][Y] = [A]. (11)

2.2.1.2. Formulation of the non-linear system. The structure of the associated linear system is
supposed undamped. From relationship (11) and the premultiplication by YT, the non-linear
system (4) becomes

(—o’[1] + [A] + joYT[AB,(y, ®)]Y + YT[AK,;(y, ®)]Y)C = Y'F. (12)

The expressions of the matrices [AB,;(y, )], [AK,/(y, w)] can be transformed, respectively, to the
linearized generalized damping matrix f8,; and the linearized generalized stiffness matrix K,;:

Bnl = YT[ABn/(y, (,U)]Y, (13)

Ky = Y'[AK,(y, 0)]Y, (14)
The generalized co-ordinate vector is expressed by its real and imaginary parts:
C=0C,+jC. (15)

By separating real and imaginary parts, system (12) of three complex equations of three unknowns
becomes a real system of six real unknowns C, and C;

(—o’[] + [A] + [Ku(y, @)DC; — [0B,(y, w)]C; = Y'F,

[0B,(y, 0)]C; + (—?[1] + [A] + [Kpu(y, 0))C; = 0. (16)
The non-linear system is presented by its matrix form

[Lu(y, )] - x =, (17)

where
(L (x, )] = —?[1] + [A] + [Ku(y, w)] 2 —[wB(y, (i))] (18)

[wB,(y, ®)] —o (1] + [A] + [Ku(y, ®)]
and

x=[C.C]" b=[Y'Fo]". (19)

Note that the non-linear response y is a function of the non-linear solution x.
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2.2.2. Formulation based on the exploitation of the basis Y

The general equation of behaviour of a non-linear structure (1) is considered by formulating
and resolving the linearized conservative eigenvalues system. The eigensolutions obtained are used

to reach the stationary harmonic solutions.

2.2.2.1. Eigensolutions of the associated conservative linearized system. Each iteration to the
eigensolutions (Y;[A,;]) resolves the linearized system.

{—@’[M] + [K + AK,(y, 0)]}§ = 0 (20)

The linearized eigenvectors Y are normalized at each iteration utilizing the mass matrix [M], and
these eigensolutions satisfy the relations of norms

VMY =1, [Au] = ¥ [Rou(y, o)V, @1)
where

[K.u(y, )] = [K + AK,(y, »)].

When Y is not normalized using the mass matrix, the relations of norms then becomes

AT

VMY, = (@], [A,] = ¥, Ky )], (22)

where [f] and [/A\,,] are, respectively, the generalised mass and stiffness matrices. These generalized
matrices [A,;] and [A,], verify the relation

[Ax] = [PT'[AWIP], (23)
where the matrix [P] verifies the relation between the two basis [\A(] = [\A{][P]

2.2.2.2. Formulation of the non-linear system. A projection of the stationary solution on the base
of the eigenvectors of the non-linear system is given by

y(o) = YC(), (24)
where
C(w) = C(w) + jCi(w).

Explicitly one obtains:

Vi) =Y ViCiw). (25)
=1
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Y, the linearized base of the eigenvectors is expressed at each iteration as a function of the
excitation frequency and the amplitude of movement of the non-linear elements, C(w) is the
generalised co-ordinate vector. o

The substitution of Eq. (24) in relationship (4) and the premultiplication by Y leads to the non-
linear system written in accordance with the generalized co-ordinate system, as

(—a?V MY + jo¥ [B+ AB,Y + V' [K + AK [V} C(w) = Y F. (26)

As the structure of the associated linear system is conservative, the non-linear system becomes

(—o’[M] + jo¥ [ABulY + V' [K + AK€ = ¥'F. 7)
The non-linear system (27) can be written in the form
[Lu(X, 0)]X = d(w), (28)
where
R=1C ¢, d)=[Y Fof. (29)

The linearized function [L,;(X, w)] defined by expression (30) is evaluated at each iteration and for
each value of w with respect to the relations of norms:

2 A R
Loy = | I+ a0 2w[ﬁn1(Ay, ol ] 0
olfuy.0]  —[M+ [Au(y. o))
where
Bu(y, )] = ¥ [AB,(y, o)V (31)
[Au(y, )] = V' Koy, o)V (32)

The non-linear response y(w) is function of the solution X. In order to obtain a stationary
solution, two iterative resolution algorithms of resolution will be applied.

3. Characteristics of the non-linear elements
The experimental technique consists of applying the displacement D (relation 33) at one

side of the non-linear support to obtain a sinusoidal force f defined by expression (34).
This force depends on w and is characterized by the amplitude fo and a phase ¢ toward
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Fig. 1. Photograph of a non-linear support.

Imposed sinusoidal displacement : D = d sin (wt)

-

\__|

Measured forced: f = fy sin(wt — ¢)

Fig. 2. Experimental model of a non-linear support.
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D (Figs. 1 and 2).
D = d sin (wt?), (33)

f=fo sin(wt — @). (34)

The stiffness complex method leads respectively, to the expression of the stiffness coefficient k,;,
and that of the damping coefficient b,; of the non-linear support. These are a function of the
amplitude of the force f) and the phase ¢

ku = (fo/d) cos (), by = (1/w)% sin (). (35)

4. Resolution of the non-linear system

Each non-linear system is resolved iteratively. One procedure consists of exploiting the eigen
solutions of the original structure, the stiffness and the damping coefficients of the modified parts
and the exterior force due to an imposed displacement. At each iteration step, the linearized
stiffness and damping coefficients can be evaluated for each of the excitation frequencies. This
estimation is achieved through a linear interpolation using the amplitudes established at the end of
the previous iteration step. The generalized matrices ([B,;], [K,]) are then evaluated and the non-
linear system is resolved. A stationary solution is obtained if the convergence criteria of the
iterative process is met. If this is not the case, the linearized parameters are corrected and the
iterative process is continued to convergence.

If the second non-linear formulation is considered, the non-linear system is also resolved
iteratively. The coefficients of the linearized eigensolutions are corrected with an iterative process
identical to the first one.

4.1. Iterative procedure

The non-linear system obtained by the first or the second non-linear formulation is given by
f(x, ) = [Lu(x, )] - x = b(w). (36)
This non-linear system (36) is of the type

s Xy X)) = 0
{fl(xl . Xam) }, v=1-2m.

Som(X1, Xy, - X2) = 0

(x1, < Xp, == Xom), (f1, =+ fu, -+ f2m) are, respectively, the real unknowns and the real functions of 2m
variables.

The iterative method of Newton—Raphson is exploited to solve the resulting algebraic non-
linear system. A Taylor expansion of the first order gives the iterative solution x’*! at the iteration
t + 1 which verifies the relation

2m )
SO+ D00 - x) Ty =0 (i = 1>2m) (37)
=

0X;
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From an initial estimation of the solution x/, the new estimation x'*! given at the iteration ¢ + 1 is
expressed by x'*! = x’ + Ax’. The non-linear system is then written in the form

[VIX', w)]Ax" + f(x',w) = 0, (38)

where f(x’, ) = [Lu(x, »] - x' — b(w) (first non-linear formulation), f&',w) = [LuX’, »]- x' —
d(w) (second non-linear formulation). This system has solutions, if the Jacobian matrix
[VE(x', w)] is regular and well conditioned around the point x’. The solution of the non-linear
system given at the iteration 7 4+ 1 and expressed by relation (39), represents the standard form of
the iterative Newton—Raphson method and is given by

{(x" = x! = [VI(x, 0)] ! f(x', o). (39)

The solution obtained at the iteration ¢ + 1 from the previous solution x’ given below represents a
first approximation of the Newton—Raphson method:

X"} = [Lu(x', )] 'b(w). (40)

4.2. Convergence criteria

The iteration is continued until convergence to a required response accuracy is obtained. When
the solution {x'*'} gives displacements outside of the defined domain, the step must be reduced by
considering the new estimation of the solution, namely,

g =1 —o)x +ax;0<a<]l. (41)

The convergence is checked by comparing the relative error (42) with a control value ¢,
Consequently, a stationary solution is obtained, when the convergence criteria

& — x| /x| <e (42)

1s verified.

4.3. Algorithm of resolution

The first algorithm of resolution based on the exploitation of the first non-linear formulation is
provided in Appendix A while the second algorithm of resolution based on the exploitation of the
second non-linear formulation is presented in Appendix B.
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5. Theoretical and experimental simulation
5.1. Description of the proposed structures

5.1.1. Description of the non-linear structure

The methods presented have been applied to a non-linear structure (Figs.3 and 4). This
structure is composed of four rigid beams B;, (i =1, ---,4). Each beam is characterized by a
moment of inertia I,. = 4.16 kg m” and articulated at the position points O;,(i = 1, ---,4). The
pivot joining at each articulation points O; of each beam B; induces a couple (C,) = 2250 Nm.
which is modelled by an equivalent linear stiffness (k,) = 2.5 E4 N/m. The four beams of the
structure are connected between them by three linear stiffness (ki»), (k34), (kao) With a constant
numerical value: k; = 1.731 ES N/m, and two localized non-linear supports. The first, placed
between the grounded left side and the beam B; is modelled simultaneously by a linearized
stiffness coefficient (k!?) and a linearized damping coefficient 5!%. The second, placed between the
beams B, and Bj; is modelled by linearized stiffness and damping coefficients (k27) and (b%}). The
characteristics of the stiffness and damping non-linearities obtained experimentally are also
presented in Fig. 5. The three linear stiffnesses and the two non-linear supports are compressed by
a static force of 1000 N. This preconstraint is realized by the displacement of the right and left
clamped points of the structure to ensure non-linear working conditions. One now assumes that:

Fig. 3. Photograph of the proposed non-linear system.
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Fig. 5. Non-linear characteristics of stiffness (a), and damping (b) of the imposed displacements. Key for
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(k19 = (k%) = (ku), (b)) = (b)) = (bu). The linear stiffnesses and the two non-linear supports
are situated at a distance 1 = 0.3m from the rotation axle O;.

The experimental data acquisition system (Fig. 4) incorporated one accelerometer for each
beam B; placed at 0.36 m from the axle rotation O;,(i =1, ---,4); a force cell placed on the beam
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B4 at a distance @ = 0.56 m from the position Oy; a single sinusoidal force f = f(w) applied on the
beam By4. This force is controlled in order to obtain a constant amplitude 04 of the beam B4 For
each frequency excitation, calculated and experimental values are compared for the amplitude
displacement and the phase of each beam, and the force applied on the beam B; when the
displacement is imposed on the beam By.

5.1.2. Description of the associated linear structure

The linear structure and with linear are identical. Two localized non-linear elements are
replaced by the linear stiffness ((kjo),(k23)) with a same constant numerical value k; =
1.731E5 N /m.

5.2. Case of the stiffness non-linearity

First, the model of the articulated beams is only affected by stiffness non-linearities. A
comparison between the harmonic responses obtained by the following methods is presented.

5.2.1. Methods based on the first formulation and applied to the Newton—Raphson method

(1) Exploits a first approximation of the iterative Newton—Raphson with an increasing and
(method 1i) and decreasing (method 1d) sweep frequencies.

(2) Uses Newton—Raphson with an increasing (method 2i) and decreasing (method 2d) sweep
frequencies.

5.2.2. Method based on the second formulation and applied to the Newton—Raphson method

(3) A non-linear method which exploits the second non-linear formulation with an increasing
method 3d) and decreasing (method 3d) sweep frequencies.

One now can consider for example the frequency bands around the first, second and third
modes. The effect of a stiffness non-linearities on the response for both increasing or (and)
decreasing sine-sweep frequencies is considered.

Fig. 6, shows that the results obtained using the proposed methods compare well with an
increasing sine-sweep frequency, around the first mode. An identical numerical treatment around
second and third modes, provides the same conclusions (Figs. 7 and 8).

Note that increasing and decreasing sine-sweep frequencies around the second and third modes
show a non-linear phenomena characterized by a jump, due to the variation of the stiffness with
the frequency and the amplitude (Figs. 7 and 8).

5.3. Stiffness and damping non-linearities

The variation of phase and amplitude of the beam response and the force amplitude has been
studied, when an imposed displacement d is applied to the beam By.

5.4. Comparison between the theoretical and experimental results

The results of the proposed methods were compared to the experimental results. Figs. 9 and 10
show the variation of the phase and the displacement of the beams (B;, B,, B3) as a function of the
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excitation frequency. Comparison is made between theoretical and experimental results,
respectively, for the imposed displacements d = 0.5 and d = 1.5mm with both stiffness and
damping non-linearities effects.

Figs. 9 and 10 confirm also the presence of a first linearized mode around the frequency 8.5 Hz
(first peak displacement). The second linearized mode is identified only by the phase functions
around the frequency 14.5 Hz. This mode does not appear on the displacements functions of the
beams (B;, B,, B3) because it is lightly excited.

Fig. 11 shows the variation of the calculated and measured amplitude of the force as a function
of the excitation frequency for the imposed displacements d = 0.5 and d = 1.5mm. The results
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-, measured response.
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Fig. 12. Superposition of the displacements of the beam B; with an increasing and decreasing sweep frequencies,
changing an imposed displacement of d = 1.5mm. Key: —[]—, increasing sweep frequency; — — # — —, decreasing
sweep frequency.

show that through the measured and calculated transfers and phases functions due to harmonic
excitation, one obtains a good agreement between the measured and calculated points. It was
observed that there is also a good coincidence between the measured and calculated amplitudes
forces.

Fig. 12 shows that a third linearized mode can be identified around the frequency 20.2 Hz
through a superposition of an increasing and a decreasing sine-sweep frequency for the beam Bj;.
A non-linear behaviour characterized a jump phenomenon is the most important characteristic of
this mode.

6. Conclusions

Two non-linear formulations have been proposed in order to study a structural behaviour that
includes the effect of some localized non-linearities.

The first formulation is based on the exploitation of the eigensolutions of the associated
conservative linear system and the characteristics of local non-linearities. The second formulation
was developed using the linearized eigensolutions which are calculated with an iterative process.

A harmonic solution of the proposed non-linear systems was obtained by using the iterative
Newton—Raphson method. A stationary solution is obtained, if the convergence criteria is
satisfied. Note that in the two non-linear formulations, the presence of local non-linearities are
modelled by a variation of the stiffness and damping matrix as a function of the excitation
frequency and the amplitude of each non-linear element. An iterative strategy based on the
correction of the linearized stiffness and damping coefficients at each frequency and for each
amplitude of the non-linear element is used.
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The proposed formulations lead to coherent results. The increasing of the stability of the
solution around the resonance frequency depends on several parameters (sine-sweep frequency,
[weighting] coefficient, convergence criteria).

This method was validated on different cases. The first, study was undertaken to analyze only
the stiffness non-linearity effects on the transfer functions. A second study treated stiffness and
damping non-linearity effects on transfer functions. The comparison between theoretical and
experimental results confirm that the proposed non-linear model yields good coherent results.

Appendix A. Algorithm of the first procedure
Condensation of relation (1) based on the exploitation of the eigensolutions of the associated

conservative linear system is achieved by following the different steps of the algorithm used in the
calculation of the frequencies responses.

(1) Resolution of the linear eigenvalues problem

[K-A,M]y, =0 - linear eigensolutions (A ;Y)

| At afixed pulsation @ |

|(2) Initial estimation of y(w)|

(o2l ]+[A+ jolg, [+ By (v.)Ge=YTF (@)

(3) Calculation of ¢(w) and y(w) y(w) =Yc(w)

(4) Reactualization of 8 and K,

Bu =Y T[8By ()Y

Ku = YT[AKn (y.0)]Y

Appendix B. Algorithm of the second procedure

Condensation, frequency by frequency, on a reactualized modal base Y. The iterative process
allowing the calculation of a stationary solution, is outlined.
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| At a fixed pulsation @

| (1) Initial estimation of y(c) |

(2) Eigensolutions of the associated linearized
conservative System

{—wz[M]+[I2nl(y,w)} =0 - Linearized eigensolutions (A, ;Y )

where [Knl (y,w]=[K +HAK (y,w)]

(3) Stationary solution by condensation : y(w) =V6(w)

FoAi]+ joVT e, ]v+[A ] He(0) =VTF ()

(4) Calculation of &(w) and Y(w) =Y&(w)

(5) Reactualization of y(w)

Appendix C. Nomenclature

[M], [B], [K]e RY-"

(N,N')

f
Y,F
(k10), -+ (k34)
[Knl]a [Bnl]
d, fo

»
(k19); (10
(k2), (b3

[AKnl]n [ABnl]

~

[Kﬂl], [ﬁnl]
[ﬁnl]
ﬁll (y, (L))

mass, damping and stiffness matrices of the associated linear system
the number of degrees of freedom of the general and the reduced linear
system (imposed 60,), respectively,

excitation force due to the imposed displacement,

respectively the displacement vector and the excitation force vector,
linear stiffness coefficient,

linearized stiffness and damping matrices,

the amplitudes of the imposed displacement D and the force f,
respectively,

phase between the displacement D and the force f,

linearized stiffness, damping coefficients between the beam B; and the
reference 0

linearized stiffness and damping coefficients between the beams B, and
Bs.

the linearized stiffness and damping correction matrices, respectively.
the linearized generalised stiffness and damping matrices, respectively.
linearized generalised damping matrix,

force vector of stiffness and damping, non-linear.
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[A] [Y] eigensolutions of the associated conservative linear system,

[Au],[Y] eigensolutions of the linearized eigenvalues problem,

[Ly(x, o], [Lu(X, o] linearized functions, respectively, for the first and second formulations
VI, m)] Jacobian matrix.
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