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Abstract

An exact analytical method is presented for predicting the undamped natural frequencies of beams with
thin-walled open cross-sections having no axis of symmetry. The governing differential equations give a
characteristic equation of the 12th order with real coefficients. The roots are found numerically and the
exact boundary conditions are considered especially for free ends to obtain natural frequencies. The simpler
cases of neglecting cross-sectional warping and/or rotary inertia are also dealt with. It is seen that when the
effect of rotary inertia is neglected significant errors incur for some boundary conditions, cross-section
thicknesses and mode numbers. This is more profound when the warping effect is taken into account.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Beams of thin-walled open cross-sections are widely used in structural design. The most
common application areas are aerospace engineering, civil engineering and related sites. Due to
the reliability requirements of the advanced constructions in such fields, vibration characteristics
of open-section beams have always been of great concern for engineers.

For beams that have the shear centers and the geometric centers of the cross-sections
coincident, the vibration characteristics for lateral and torsional vibrations have been extensively
studied by many researchers. Nevertheless, in general practice, the centroid and the shear center of
cross-sections are not coincident; hence, the flexural and the torsional vibrations are coupled, and
the vibration characteristics of such beams should be investigated in detail.

The case where the cross-section has a single axis of symmetry, and consequently the flexural
vibrations in one direction are coupled with the torsional vibrations, has been extensively studied
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by many researchers using Bernoulli–Euler theory [1–5]. This is called double coupling. However,
the number of studies dealing with doubly coupled flexural–torsional vibrations of monosym-
metric Timoshenko beams is rather limited. Bishop and Price [6], and Banerjee and Williams [7]
have taken into account the effects of rotary inertia and transverse shear. Warping stiffness has
been neglected in both works.

A more recent study carried on by Bercin and Tanaka [8] has included the effect of warping in
doubly-coupled vibration analysis of Timoshenko beams with monosymmetric open cross-
sections. Hence, one supposes the doubly coupled vibrations of thin-walled open cross-section
beams to have been fully investigated.

In the case of triple coupling, where the flexural vibrations in two mutually perpendicular
directions and the torsional vibration are all coupled is dealt with by Yaman [9] and Arpaci and
Bozdag [10]. This is experienced when the cross-sections of no symmetry are of concern. But to the
authors’ knowledge, no work appears in open literature studying even one of the Timoshenko
effects on triple coupling.

The objective of the present study is to include the effect of rotary inertia in triply coupled
vibration analysis of thin-walled open cross-section beams, and to reflect the effect of rotary
inertia over the natural frequencies with and without the warping effect taken into account. The
basis on which the present theory depends is consistent with the Vlasov beam theory partially
accounting for the Timoshenko effects by including rotary inertia but not shear deformation.
Thus it is expected that this will enable the researchers to compare their results with the present
ones if they study the same problem by using the Vlasov beam theory.

2. Theory

2.1. Equations of motion

Fig. 1 represents a typical cross-section of no axial symmetry where the x- and y-axis are taken
through the shear center S and parallel to the principal centroidal axes x and Z: Under the
assumptions of uniform thin-walled open cross-sections for beams with no planar distortions and
the location of the shear center being a function of cross-section only, and homogeneous and
isotropic Hooke material, the governing equations of motion can be derived by considering the
equilibrium of an infinitesimal beam segment.

Fig. 2(a), (b) and (c) show the elastic curve in the Z–z plane, an infinitesimal rotated beam
element and a beam segment with bending moments Mx; and shear forces Fy acting through the
shear center S; respectively.

The condition for rotational equilibrium of the beam segment requires that

Fy ¼
@Mx

@z
þ rIx

@2a
@t2

; ð1Þ

and the condition for translational equilibrium requires that

@Fy

@z
¼ rA

@2

@t2
ðv þ fe1Þ; ð2Þ
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where r is the mass density, A is the cross-sectional area, v is the deflection of shear center in the y

direction, Ix is the principal centroidal area moment of inertia, f is the angle of rotation of the
cross-section, a is the bending slope and t is the time. Combining Eqs. (1) and (2), and considering
that Mx ¼ �EIx@a=@z and a ¼ @v=@z; the final form of the equation is found to be

EIx
@4v

@z4
� rIx

@4v

@z2@t2
þ rA

@2

@t2
ðv þ fe1Þ ¼ 0: ð3Þ

Similarly, Fig. 3 shows the case for the (x–z) plane.
To have rotational equilibrium of the segment, the sum of all torques must be zero:

Fx ¼ �
dMZ

dz
� rIZ

@2b
@t2

: ð4Þ
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Fig. 1. Co-ordinate systems on a sample non-symmetrical cross-section.
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Fig. 2. Equilibrium diagrams for an infinitesimal beam segment in the Z–z-plane.
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The condition for translational equilibrium requires that

@Fx

@z
¼ rA

@2

@t2
ðu � fe2Þ; ð5Þ

where IZ is the principal centroidal area moment of inertia, u is the deflection of the shear center in
the x direction and b is the bending slope.

Substituting Eq. (4) into Eq. (5) and assuming that MZ ¼ EIZ@b=@z and b ¼ @u=@z yields

EIZ
@4u

@z4
þ rIZ

@4u

@z2@t2
þ rA

@2

@t2
ðu � fe2Þ ¼ 0: ð6Þ

To establish the governing equation for the torsional vibration, let mt be the intensity of the
distributed torque assumed to act along the shear center axis. In Saint-Venant theory,
cross-sectional warping is assumed to be uniform along the beam and consequently no
longitudinal stress is produced. This assumption is valid only for members in which all
cross-sections are free to warp. For bars of solid cross-section, if one or more cross-sections
of the beam are caused to remain plane, the warping constraint will produce negligible effect
on the angle of twist. But in the case of thin-walled members of open cross-section, the prevention
of warping during twist is accompanied by bending of the flanges and may have considerable
effect on the angle of twist. The given torque is then balanced at any cross-section partially by
shearing stresses due to twist and partially by shearing stresses due to bending of the flanges.
Hence,

mt ¼ EIw

d4f
dz4

� GJ
d2f
dz2

; ð7Þ

where EIw is the torsional rigidity associated with non-uniform warping and GJ is the
Saint-Venant torsional rigidity [11]. According to d’Alembert’s principle, the governing
differential equations of torsional vibration may be derived by substituting the inertia
torque into the equations of static equilibrium. Because the inertia forces of translation act
through the centroid, they must be transferred to the shear center. Hence, d’Alembert’s principle
leads to

mt ¼ �rIp

@2f
@t2

þ rA
@2

@t2
ðu � e2fÞe2 � rA

@2

@t2
ðv þ e1fÞe1: ð8Þ
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Fig. 3. Equilibrium diagrams for an infinitesimal beam segment in the x–z-plane.
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Substituting Eq. (7) into Eq. (8) yields

EIw

@4f
@z4

� GJ
@2f
@z2

þ rAe1
@2v

@t2
� rAe2

@2u

@t2
þ rI0

@2f
@t2

¼ 0: ð9Þ

Restating the equations above, the system of equations for triply coupled vibrations of beams
with thin-walled open cross-sections can be expressed as follows:

EIx
@4v

@z4
�

@2

@t2
rIx

@2v

@z2
� rAðv þ fe1Þ

� �
¼ 0; ð10Þ

EIZ
@4u

@z4
þ

@2

@t2
rIZ

@2u

@z2
þ rAðu � fe2Þ

� �
¼ 0; ð11Þ

EIw

@4f
@z4

� GJ
@2f
@z2

þ
@2

@t2
ðrAe1v � rAe2u þ rI0fÞ ¼ 0: ð12Þ

Let

u ¼UðzÞeiot; v ¼ V ðzÞeiot; f ¼ FðzÞeiot;

lx ¼o2rA=EIx; lZ ¼ o2rA=EIZ; lw ¼ o2rA=EIw;

lb ¼GJ=EIw; l0 ¼ o2rI0=EIw; m ¼ ro2=E; ð13Þ

where o is the radian frequency. Assuming UðzÞ ¼ Cue
rz; V ðzÞ ¼ Cve

rz and UðzÞ ¼ CFerz for
amplitudes, the governing differential Eqs. (10)–(12) yield

ðr4 � mr2 � lZÞCU þ lZe2CF ¼ 0;

ðr4 þ mr2 � lxÞCV � lxe1CF ¼ 0;

lwe2CU � lwe1CV þ ðr4 � lbr2 � l0ÞCF ¼ 0: ð14Þ

The equations can be expressed in matrix form as

r4 � mr2 � lZ 0 þlZe2

0 r4 þ mr2 � lx �lxe1

lwe2 �lwe1 ðr4 � lbr2 � l0Þ

2
64

3
75

CU

CV

CF

2
64

3
75 ¼

0

0

0

2
64

3
75: ð15Þ

Setting the determinant of the linear system equal to zero yields an ordinary polynomial of the
12th order in terms of r for each function as

fr12 þ a1r10 þ a2r8 þ a3r6 þ a4r4 þ a5r2 þ a6g ¼ 0; ð16Þ

where

a1 ¼ �lb; a2 ¼ �ðl0 þ m2 þ lZ þ lxÞ; a3 ¼ lbðm2 þ lZ þ lxÞ þ mð�lZ þ lxÞ;

a4 ¼ l0m2 þ mlbðlZ � lxÞ þ lxðl0 � e2
1l

2
wÞ þ lZðl0 þ lx � e2

2l
2
wÞ;

a5 ¼ �lblZlx þ m½lxð�l0 þ e2
1lwÞ þ lZðl0 � e2

2lwÞ	;

a6 ¼ lZ½e2
2lxlw þ lxð�l0 þ e2

1lwÞ	:
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Upon defining a new variable p ¼ r2; polynomial (16) becomes

fp6 þ a1p5 þ a2p4 þ a3p3 þ a4p2 þ a5p þ a6g ¼ 0: ð17Þ

The solution to polynomial (17) yields six values as roots after the numerical calculations, and
thereafter, the general solution of U; V and U can be formulated as

U ¼
X12

i¼1

CUiz
kieriz; V ¼

X12

i¼1

CViz
kieriz and U ¼

X12

i¼1

CFiz
kieriz: ð18Þ

In set (18), the possibility of repeated roots has been included in the form of zki when writing the
homogeneous solution formulae. As an example, if the third and fourth roots of polynomial (17)
are equal, as a consequence k3 would equal 0 and k4 would equal 1.

CU ; CV and CF in Eq. (18) indicate three different sets of constants. Substituting u into
Eq. (11) yields the relations between the vector of CU and CF: Similarly, another set of relations
between the vectors of CV and CF can be derived by substituting v into Eq. (10). By imposing the
boundary conditions, the three vectors of constants can be calculated and exact formulae can be
established.

2.2. Boundary conditions

2.2.1. Boundary conditions for clamped end
The well-known boundary conditions for a clamped end are that the translations, rotations and

slopes at a clamped end are identically zero. Hence,

U ¼ 0; V ¼ 0; U ¼ 0; U0 ¼ 0; V0 ¼ 0; U0 ¼ 0: ð19Þ

Notice that the condition F0 ¼ 0 is due to the warping effect bundled in the current theory,
implied by the restricted longitudinal translation of the beam [12], and is not considered if only the
Saint-Venant torsion theory is assumed to be valid.

2.2.2. Boundary conditions for free end

The boundary conditions for a free end are much more complex, and derived accordingly to
clarify the details. For a free end, the moments and the shear forces equal to zero. Thus for
Mx ¼ 0;

�EIx
@a
@z

¼ �EIx
@2v

@z2
¼ 0 and for v ¼ V ðzÞeiot; V00 ¼ 0: ð20Þ

Similarly for MZ ¼ 0;

EIZ
@b
@z

¼ EIZ
@2u

@z2
¼ 0 and for u ¼ UðzÞeiot; U00 ¼ 0: ð21Þ

For Fx ¼ 0; � dMZ=dz � rIZ@2b=@t2 ¼ 0: Since MZ ¼ EIZ@b=@z and b ¼ @u=@z; EIZ@3u=@z3 þ
rIZ@3u=@z@t2 ¼ 0: Assuming u ¼ UðzÞeiot;

rIZo2U0 � EIZU
000 ¼ 0: ð22Þ
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Following the same steps for Fy ¼ 0; dMx=dz � rIx@2a=@t2 ¼ 0: Since Mx ¼ �EIx@a=@z and a ¼
@v=@z; � EIx@3v=@z3 þ rIx@3v=@z@t2 ¼ 0: Proposing v ¼ VðzÞeiot;

rIxo2V 0 þ EIxV
000 ¼ 0: ð23Þ

For zero torsional moment at a free end,

GJU0 � EIwU000 ¼ 0: ð24Þ

Also, since there is no constraint on the warping freedom of the cross-section, normal stresses
due to warping are zero [12], and accordingly

U00 ¼ 0: ð25Þ

2.2.3. Boundary conditions for hinged end

For a hinged end, the boundary conditions are stated as the translations and rotations are
prohibited, but the bending moments and normal stresses are zero. Thus, initially

U ¼ 0; V ¼ 0; U ¼ 0: ð26Þ

Because of restrictions on translation and rotation,

U00 ¼ 0; V00 ¼ 0: ð27Þ

Since bending moments about the x- and Z-axis are zero, respectively, and

U00 ¼ 0; ð28Þ

the normal stresses at a hinged end are zero, providing allowance for warping.

3. Numerical evaluation technique

Application of boundary conditions to Eqs. (18) at z ¼ 0 and l yields 12 linear homogeneous
equations. The characteristic equation, which can be numerically solved to give the natural
frequencies, is obtained by setting the determinant of the linear system of equations for any
function U; V or U equal to zero.

The first step is to form the sixth order characteristic polynomial (17). To realize this, the
material and the geometric properties are fed into a computer program and the coefficients ai of
the polynomial are formed for an initial value of o and the roots pi and consequently ri are
numerically calculated.

Being of the fourth order with real coefficients, Bishop et al. [4] prove, for doubly coupled
vibrations, that the characteristic equation has four non-zero real roots, two of them negative and
two positive. Thus they form the mode shape functions as combinations of trigonometric and
hyperbolic functions. But in the present theory, it is not possible to determine the nature of the
roots because the order of the polynomial is higher than four and the coefficients are too
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complicated to analyze. Instead, the mode shape functions are expressed in exponential form and
the possibility of repeated roots is included in the numerical evaluation algorithm. However, the
numerical values have not demonstrated such a behaviour and all the roots of polynomial (17)
have been found as distinct and real.

The second step is application of boundary conditions to Eqs. (18) and arrangement of the
characteristic determinant considering the relations among the unknown coefficients CUi; CVi and
CFi: The numerical value of the determinant is computed. The next step is to add a small
increment to the initial value of o and to calculate the roots of polynomial (17) and the value of
the determinant. The natural frequencies are obtained by repeating many steps over and over

Table 1

The cross-section studied in Example 1

Cross-section layout for

Example 1

Beam properties

s (mm) 1 2 3 4 5

 

η

G 

ξ

e2 

e1 

S 
x 

y 

h 

s EIx ðN m2Þ 3.42E+3 6.86E+3 10.33E+3 13.85E+3 17.42E+3

EIZ ðN m2Þ 352.80E+0 711.68E+0 1.08E+3 1.47E+3 1.89E+3

GJ ðN m2Þ 1.86E+0 14.87E+0 50.03E+0 118.24E+0 230.24E+0

EIw ðN m4Þ 53.50E�3 109.37E�3 169.88E�3 237.10E�3 312.82E�3

I0 ðm4Þ 29.82E�9 59.44E�9 88.67E�9 117.35E�9 145.39E�9

r ðkg=m3Þ 7.86E+3 7.86E+3 7.86E+3 7.86E+3 7.86E+3

A ðm2Þ 70.00E�6 140.00E�6 210.00E�6 280.00E�6 350.00E�6

e1 (m) 8.68E�3 8.61E�3 8.51E�3 8.36E�3 8.17E�3

e2 (m) 8.99E�3 8.93E�3 8.84E�3 8.70E�3 8.53E�3

l (m) 1.00E+0 1.00E+0 1.00E+0 1.00E+0 1.00E+0

h (m) 40E�3 40E�3 40E�3 40E�3 40E�3

Table 2

The cross-section studied in Example 2

Cross-section layout for

Example 2

Beam properties

s (mm) 1 2 3 4 5

G ξ ξ 

η

S 

x y 

e2 

e1 

h 

s 

EIx ðN m2Þ 1.80E+3 3.61E+3 5.47E+3 7.38E+3 9.37E+3

EIZ ðN m2Þ 5.26E+3 10.55E+3 15.90E+3 21.33E+3 26.88E+3

GJ ðN m2Þ 3.12E+0 24.99E+0 84.50E+0 200.66E+0 392.59E+0

EIw ðN m4Þ 2.01E+0 4.03E+0 6.03E+0 8.03E+0 10.02E+0

I0 ðm4Þ 118.49E�9 235.63E�9 350.19E�9 461.02E�9 567.22E�9

r ðkg=m3Þ 7.86E+3 7.86E+3 7.86E+3 7.86E+3 7.86E+3

A ðm2Þ 116.50E�6 233.00E�6 349.50E�6 466.00E�6 582.50E�6

e1 (m) �16.77E�3 �16.65E�3 �16.46E�3 �16.19E�3 �15.85E�3

e2 (m) �20.80E�3 �20.74E�3 �20.63E�3 �20.47E�3 �20.28E�3

l (m) 1.00E+0 1.00E+0 1.00E+0 1.00E+0 1.00E+0

h (m) 40E�3 40E�3 40E�3 40E�3 40E�3
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Warping effect considered Warping effect disregarded 
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Fig. 4. Plot of relative errors on natural frequencies versus modal index for cross-sections in Table 1. Key for cross-

sections, s; (mm): 2~2; 1; 2’2; 2; 2m2; 3; 2�2; 4; 2�2; 5.

Table 3

The cross-section studied in Example 3

Cross-section layout for

Example 3

Beam properties

s (mm) 2 4 6 8 10

h 

s 

y 

x 

S

e1 

e2 

η η 

ξ G

EIx ðN m2Þ 53.47E+3 106.20E+3 158.41E+3 210.29E+3 262.05E+3

EIZ ðN m2Þ 2.83E+3 5.74E+3 8.79E+3 12.06E+3 15.60E+3

GJ ðN m2Þ 29.75E+0 236.99E+0 795.54E+0 1.88E+3 3.64E+3

EIw ðN m4Þ 3.39E+0 6.85E+0 10.42E+0 14.15E+0 18.06E+0

I0 ðm4Þ 349.05E�9 691.18E�9 1.02E�6 1.34E�6 1.64E�6

r ðkg=m3Þ 7.86E+3 7.86E+3 7.86E+3 7.86E+3 7.86E+3

A ðm2Þ 278.00E�6 552.00E�6 822.00E�6 1.09E�3 1.35E�3

e1 (m) 4.46E�3 4.41E�3 4.31E�3 4.18E�3 4.01E�3

e2 (m) �14.94E�3 �14.79E�3 �14.40E�3 �13.81E�3 �13.04E�3

l (m) 1.00E+0 1.00E+0 1.00E+0 1.00E+0 1.00E+0

h (m) 80E�3 80E�3 80E�3 80E�3 80E�3
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trying to improve the initial guess so that the values of o nullifying the characteristic determinant
are approached.

4. Numerical examples

In this section the natural frequency analysis is applied to three example problems, and the
effect of rotary inertia on the coupled bending/bending/torsional frequencies of thin-walled beams
are investigated. The material and the geometric properties of the beams are listed in Tables 1–3
together with their cross-sectional layouts.

The first six natural frequencies are obtained by including/excluding the effect of rotary inertia
for several cross-section thicknesses ðsÞ: The relative errors ðe ¼ 1 � o0=orÞ due to omission of the
rotary inertia effect are shown in Figs. 4–6 for the cases in which the warping effect regarded or
disregarded. Here, o0 is the natural frequency calculated using Bernoulli–Euler beam theory and
or is the one obtained by including the rotary inertia effect.

Three boundary conditions, namely fixed–fixed, fixed–free and free–free beams are considered.
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Fig. 5. Plot of relative errors on natural frequencies versus modal index for cross-sections in Table 2. Key as for Fig. 4.
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5. Conclusions

Figs. 4–6 reveal that when triply coupled vibrations of thin-walled open cross-section beams are
of concern, the rotary inertia effect may greatly alter the natural frequencies, the relative error
associated with the neglecting of it, for some conditions, reaching 170%, unless the warping effect
is also neglected.

This can be attributed to the fact that excluding warping decreases the torsional rigidity of
beams and consequently the natural frequencies. Thus the modes, which are originally bending
dominated, become strongly coupled or even torsion dominated ones and the rotary inertia effect
gets weaker on them.

Similarly, the cross-section thickness alter the relative error incurred by ignoring the rotary
inertia being considerable in some modes of vibration which are predominantly bending or at least
strongly coupled.

As shown in all figures, existence of free ends increases the errors because their cross-sectional
rotation is obviously expected to be larger. A ship’s hull is an industrial example of this case.
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Fig. 6. Plot of relative errors on natural frequencies versus modal index for cross-sections in Table 3. Key as for Fig. 4.

A. Arpaci et al. / Journal of Sound and Vibration 260 (2003) 889–900 899



The general effect of rotary inertia is to decrease the natural frequencies. For beams where
warping is not negligible, the rotary inertia effect should absolutely be taken account of especially
if free ends are of concern.
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