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Abstract

The stability of vibrations of a mass that moves uniformly along an Euler—Bernoulli beam on a
periodically inhomogeneous continuous foundation is studied. The inhomogeneity of the foundation is
caused by a slight periodical variation of the foundation stiffness. The moving mass and the beam are
assumed to be always in contact. With the help of a perturbation analysis it is shown analytically that
vibrations of the system may become unstable. The physical phenomenon that lies behind this instability is
parametric resonance that occurs because of the periodic (in time) variation of the foundation stiffness
under the moving mass. The first instability zone is found in the system parameters within the first
approximation of the perturbation theory. The location of the zone is strongly dependent on the spatial
period of the inhomogeneity and on the weight of the moving mass. The larger this period is and/or the
smaller the mass, the higher the velocity is at which the instability occurs.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vibrations of a vehicle moving over a flexible guideway can become unstable. This instability
arises due to the interaction between the vehicle and the guideway and shows itself in the
exponential increase of the amplitude of the vibrations in time. The energy needed for this increase
is supplied by an external source (an engine) that maintains the motion of the vehicle.

If the guideway is modelled as a (long) structure that is homogeneous in the direction of
motion, then the instability can only occur if the vehicle moves with a velocity that exceeds the
minimum phase velocity of waves in the structure [1-8]. In real structures, like a railway track, the
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latter is very high, unless the rails are significantly stressed in the axial direction due to the
temperature extension [4,9,10] or the track is built on a soft soil [6].

Most real guideways are however, periodically inhomogeneous in the longitudinal direction.
For example, a conventional railway track is inhomogeneous because of the sleepers and/or
corrugation of the rail surfaces. A catenary system (for trains or trams) is inhomogeneous due to
the hangers that support the contact wire. A guideway for magnetically levitated trains, being a
multi-span structure, is also a highly inhomogeneous system, etc. There are an impressive number
of papers that deal with dynamics of periodically inhomogeneous guideways, see, for example
[11-17]. To our knowledge, however, only two of these papers [18,19] are devoted to the instability
of a moving vehicle that can arise due to the periodicity of the guideway. In Chung and Genin
[18], the stability of a two-mass oscillator was studied as it moved uniformly on a multi-span
beam. It was shown that the system can loose its stability because of the parametric resonance that
is caused by periodical variation of the guideway stiffness under the moving vehicle. The same
conclusion was drawn in Ref. [19] where the stability of a moving mass on a string supported by a
distributed, periodically inhomogeneous foundation was investigated.

In this paper the stability of a mass is considered as it moves with a constant speed on a beam
that is supported by a periodically inhomogeneous visco-elastic foundation. It is assumed that the
stiffness of this foundation varies slightly about its mean value. With the help of a perturbation
technique, it is shown analytically that vibrations of the system can become unstable as the mass
moves with certain velocities that are substantially smaller than the minimum phase velocity of
waves in the respective homogeneous structure.

2. The model and the governing equations

Fig. 1 shows the model under consideration, which is composed of a moving mass and an
Euler—Bernoulli beam on a visco-elastic foundation. The mass moves along the beam uniformly,
with a constant velocity V' and remains always in contact with the beam. The stiffness of the
foundation varies periodically along the beam and is defined by the following expression:

k() = ky(1 + peos(zy), 1 = 2m/d, (1)

with ky the mean stiffness of the foundation, d the period of the inhomogeneity, x the wave
number of the inhomogeneity and p <1 a dimensionless small parameter.
The governing equations that describe small vertical vibrations of the system are

o*w Fw oy

N
Ap— + El — —+ k =0,
A T EL G+ w5y kxw
ow 0w
[ ox x=Vt Ox? x=Vt
W|x:Vt: Uo,

Pw d?wy
5] = ®



S.N. Verichev, A.V. Metrikine | Journal of Sound and Vibration 260 (2003) 901-925 903

w(x,t), w,(t)

Xx=Vt

Fig. 1. Uniform motion of a mass along a beam on a periodically inhomogeneous foundation.

with w(x, #) and wy(¢) the vertical deflections of the beam and the mass relative to their equilibrium
positions, E and p are Young’s modulus and the mass density of the beam’s material, A, the
cross-sectional area of the beam, I the moment of inertia of the beam’s cross-section, uvy the small
viscosity of the foundation, J(...) the Dirac delta function and where the square brackets indicate
the difference between the bracketed quantities on either side of the limit x = V7, for example
Wy, =wx =Vt +0,1) —w(x =Vt —0,1).

The first equation of the system (2) gives the dynamic balance of forces acting on a differential
element of the beam. Equations [x],_;, = 0 and [0w/0x],_,, = 0 ensure that the deflection of the
beam and its slope are continuous in the contact point. Equation [6°w/0x?],_, = 0 implies that
there is no external moment applied at the contact point. Equation w|,_,,= up is the continuity
condition that implies that the mass and the beam are always in contact.

The last equation of the system is the balance of vertical forces that act on the moving mass.
Note that in this equation the dead weight of the mass mg can be omitted in the further
investigation. This can be done deliberately since this weight (external constant force) may not
influence the system stability. In the simplest case of a homogeneous foundation k(x) =k =
const there is a critical velocity V., = \/4ksEI /m?* for which the beam displacement grows linearly
in time. Usually, in the case of a periodically inhomogeneous foundation such an effect occurs if
the normal frequency of the mass equals the frequency of inhomogeneity in the contact point.
Because of these reasons the term mg is omitted from the right-hand part of the last equation in
Eq. (2) since the interest is to determine whether the beam displacement grows in time
exponentially.

Since the inhomogeneity of the beam’s foundation is small, a perturbation technique [20] can be
applied to analyze the system of Eq. (2). The basic idea of the technique that will be first applied is
that the presence of a small inhomogeneity cannot significantly influence the solution to the
problem. Therefore, this solution can be sought in the following form:

w(x, 1) = WO, 1)+ D)+ o, wot) = wl (1) + (1) + -+, (3)

where w(x, r) and Wf)o)(l) are solutions to the unperturbed problem, e.g., to the system of Eq. (2)
in which the small parameter u is set to zero. Physically, these solutions describe vibrations of the



904 S.N. Verichev, A.V. Metrikine | Journal of Sound and Vibration 260 (2003) 901-925

moving mass on a beam that is supported by a homogeneous visco-elastic foundation with the
stiffness kr [1,4]. Obviously, the governing equations for the unperturbed problem are
P @

0
p A PP + EI p + kpw® =0,

[w(o)] B ow® B o*w© _ 0
=vee | ox x:Vt_ ox? x:Vt_ ’

(0) _
w |x:Vt_ Wo s

Pw® d?w®
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The second terms uwM(x, 7) and uwi(7) in expressions (3) should be much smaller than w®(x, 7)

and w{”(1), respectively. To find the system of equations for the variables w(x, 7) and w’(2),

expressions (3) have to be substituted into the system of Eq. (2) after which all terms that are
proportional to u should be gathered. With the use of expression (1) this yields

2w 2w 2O
P A s (;:2 + EI aW4 + kfw(l) = —kfw(o)cos(xx) -V (;}t ,
X
[ (1)] ow® 2wl 0
w = = =V,
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(1 _
w |x:Vt_ Uy s
Pwlh) 2w
EI =-m—2, 5
|: ax3 :|th dtz ( )

Thus, to study the original problem (2), first, the unperturbed problem (4) should be solved.
Second, the unperturbed solutions w(x, f) and WBO)(I) have to be substituted into the system of
Eq. (5), in which these solutions coupled with the inhomogeneity will serve as an excitation. In the
next Section the first step of this analysis is accomplished, e.g., the unperturbed problem is
studied.

3. Solution to the unperturbed problem
The system of Eq. (4) that describes vibrations of the moving mass on a beam that is supported

by a homogeneous visco-elastic foundation has been studied in Refs. [1,4]. As shown in Ref. [4],
the characteristic equation that defines the natural frequencies of vibrations of the mass on the

beam is given as
-1
sz X (k - kﬂ)
— + (4 -0 ’
EI ( 2 R~k — ok — ) k-kn> N

where 1 = 4/ —1, Q the natural frequency and k,, n =1, ...,4 the roots of the equation
—pA(Q — kVY + EIK* + kp +ivp(Q — kV) = 0, (7)
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that have a positive imaginary part and calculated with vy —0. In this limit, which implies a
transition to a system with infinitely small damping, Eq. (7) reduces to the following dispersion
equation for the beam on the elastic foundation (in the reference system that moves together with
the mass):

—pA(Q — kV) + EIK* + k= 0. ()

By using the technique presented in Refs. [1,4], it can be shown that if the velocity of the
mass is smaller than the minimum phase velocity of waves in the beam on the inhomogeneous
foundation, e.g., if V< V;’}j” = (4krEI/ pzAfS)l/ 4 then the roots of the characteristic Eq. (6)
are real. This implies that the heave vibrations of the moving mass on the beam are harmonic in
this case.

Obviously, the mass can vibrate harmonically if and only if these vibrations do not perturb
waves in the beam (otherwise, the radiation damping would cause decay of the vibrations).
Mathematically, this implies that the wave numbers that are found as the roots of the dispersion
Eq. (8) may not be real. The system of inequalities that does not permit the roots of Eq. (8) to be
real can be found analytically to give

Q<0 =\ [k /pA,

V<V(Q),

EI(—p* 42,0 + 20p Aok Q> + 813 — Q\/pA(p A @ + 8K\
V() = : ©))
2kyp> A

In accordance with system (9) the frequency of harmonic vibrations of the mass cannot be larger
that a certain critical value Q' (¥) that depends on the velocity of the mass. This dependence,
which is normally referred to as a bifurcation curve, is depicted in Fig. 2 by the solid line. This
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Fig. 2. Bifurcation curve and the natural frequency of the mass versus velocity for two different magnitudes of the
mass: —, bifurcation curve, ——— m = 1000 kg; — - —, m = 2000 kg.
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figure was drawn by using the following set of the system parameters:
p=7849 kg, A, =7.687x10°m? I=3.055x%x10"m"
E=2x10" N/m*, k; =10° N/m’ (10)

This set describes a realistic rail and a statically measured stiffness of the subsoil.

Thus, the natural frequency of the mass must lie within the domain bounded by the solid line in
Fig. 2. As follows from the characteristic Eq. (6), this frequency depends on the velocity and the
magnitude of the mass. The dependence of the natural frequency on the velocity, calculated in
accordance with the characteristic Eq. (6) is presented in Fig. 2 for two different magnitudes of the
mass, namely for m = 1000 kg and m = 2000 kg. The figure shows that the smaller the mass,
the closer is the natural frequency to the critical frequency Q°(¥) (to the bifurcation curve). The
larger the mass, the smaller is its natural frequency.

Fig. 2 clearly shows that if the velocity of the mass is smaller than the minimum phase
velocity V;,;i“ of waves in the beam, which is given by the crossing point of the bifurcation
curve with the vertical axis (approximately 900 m/s), then the natural vibrations of the mass
are harmonic. Of course, for the mass to start vibrating harmonically a certain time is needed
in order for the transient oscillations related to the initial conditions to have disappeared.
Thus, it is possible to declare that if V' < V[‘},;i“, then in the limit #— oo vibrations of a mass
that uniformly moves along the beam on the homogeneous elastic foundation can be
described as

ul (1) = Aexp(iQr) + Bexp(—iQ), (11)

with Q the natural frequency (real) and A4, B as unknown constants. Deflection of the beam that
corresponds to these vibrations of the mass can be found from the system of Eq. (4) by looking for
the solution w®(x, ) in the following form:

wO(x, 1) = Z(cAn exp(iQ1) exp(ik? (Vt — x)) + Cp, exp(—iQ0) exp(ikZ(Vt — x))). (12

In expression (12), the subscripts and superscripts 4 and B show that the vibrations of the beam
correspond to the mass vibrations of the form A4 exp(iQ¢) and B exp(—iQ¢), respectively. Further,
C4» and Cpg, are unknown constants, while k,/z1 and kf are complex wavenumbers that satisfy the
dispersion Eq. (8).

Substituting expression (12) into the system of Eq. (4), the unknown constants C4, and Cp, can

be found to give
o ei!)t(c{—:1 eikf‘(thx) + Cjzeikg‘(thx)) + efiQt(Cgl eile(thx) + C}—zeikZB(thx)), x>V,
wH(x,t) = . . . . . .
(x,0) e‘Q’(le elkg‘(thx) + C22elkf(Vr7x)) + elet(Cgl elkf(thx) + ngelkf(thx))’ x< Vi,

In this expression, Im(kf’zB)<0, Im(kf’f ) > 0, which fulfils the condition that the beam deflection
should vanish as |x — V|- oo. The constants C%, ,, g s are given in Appendix A. Expression
(13) describes a deflection field in the beam that moves together with the mass and decays
exponentially (having spatial oscillations) with the distance from the mass.

Thus, the unperturbed problem (4) has been solved, and the solution is given by expressions
(11) and (13). The effect of the small inhomogeneity and small viscosity can be analysed by solving

(13)
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the system of Eq. (5). This is accomplished in the next section, whose title involves the term ‘““non-
resonance case’” due to the reasons that will become clear later.

4. Perturbation analysis in the non-resonance case

In this section the system of Eq. (5) is studied that determines the influence of the small
inhomogeneity of the foundation on vibrations of the mass and the beam. The viscosity of the
foundation is temporarily assumed to be equal to zero, e.g., v/ = 0. Substituting the unperturbed
solutions (11) and (13) into this system, and representing cos(yx) as (exp(iyx) + exp(—iyx))/2, the
following equations of motion for the beam before and behind the mass are obtained:

For x> 11,
o*w oAwh
,DACSW + El —— ox 4 + ka
_ 7f el(Ch Vi) | o ok Viixt - | Ok Vinkitn | ot (ki Vit )
i 7](eﬂ{?t(czgl elkatﬂx(kar)() + ClJirl elkf9 Vi—ix(kE—y) + ngelkatﬂx(kwa)() + C;rzelkf thu(kffx)). (14)
For x< V7%,
2w Aw
pAes—5— 4
ot Ox
_ _% (O VI D) | o KV ) | o Vi) | o gk Vit )
. % —1Qt( — 1kBVt ix(kB+y) + Cl;l eik_f Vi—ix(kB—y) + C— kB Vi—ix(kB+y) + C— ikBVi—ix(k® y)). (15)

The boundary conditions at x = V¢ remain unchanged:

owD 2w
[W(l)]x:Vl = |: - :| = |:L2:| = O’
ox x=Vt ox x=Vt

W(l)‘ (1

=i "o
2.(1)
g lklnd Il (16)
oxd |y, KT

To solve the system of Eqs. (14)—(16), it is customary to look for the solution in the following
form:

W(l) = W(llge + Wj(‘(ljud (17)

with w! med the forced solution to Egs. (14) and (15). This forced solution describes the effect of

the inhomogeneity on the deflection field in the beam that is generated by the moving and

vibrating mass. The expression for w}oiw 4 can be found straightforwardly to give
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For x> V't
W}iiced 1Qt(C+ ikl Vi— u(kAJr/)_i_ C+ ik Vi—ix(ki'—y) + C+ ikg Vi— 1x(kA+/)+ C+ ks Vi—ix(ks — y))

_ BYrs_iv(1B By _ By iv(i B, By .
+e th(C;ielkl Vi—ix(ky+y) + C;rzelkl vt 1x(k1 %) + Czrlelkz Vi—ix(k5+7) + C;Eelkz vt 1x(k2 A))' (18)

For x<17t,
Wj("(l)zud —Cth(C7 ik Vi—ix(ki+y) + C7 kg Vi—ix(ks' —y) + C elkA Vi—ix(ki+7) + C7 ik Vi—ix(ky — 1))

+ e—th(C— elkat—lx(kf—&-x) + C;zeik-?”_‘x(k-? —%) + CLelkat—lx(kf+x) + Cbeikat—ix(kf—x)) (19)

with the constants C +, i=1,...,4, j = 1,2 defined in Appendix A.
Substituting (17) mto the system of Eqs (14)—(16), taking into account that w}éiwd is the

solution to Egs. (14) and (15), and making use of solutions (18) and (19), the following system of
equations is obtained with respect to w};g,e:

(1 P W(l)
pAe— ’2’“' + EL— 2 + kpwig), = 0,
1
[ J(‘;ze]‘c Ve — 07

0 L . ' '
[6 }j;} — D" @) | Pef@HY) | p e iU@HV) Dot @1,
X x=Vt

{6x2 /(‘:L)c} = Dy ") 4 Dy @) 4 Dpye MO 4 Poye O,
x=Vt

w](}) — ng) + D3lei’(Q’XV) + D3zeit(§2+xV) + D33efit(£2+xV) + D34efit(szV)
ree =Vt >
0 m (O (Ot it O
[ﬁw}gt} _ — ng) + Dy it Q=1V) 4 D4261t(Q+AV) + Dase iHQ+7V) 4 Due i(Q-1V) (20)
x=Vt

It is easy to see that the system of Eq.(20) is analogous to the system of Eq.(4), which
describes the vibrations of the mass on the homogeneous beam. The only difference between
these two systems is that the boundary conditions at x = V¢ contain the right sides that describe
“forces” that act in the contact force because of the inhomogeneity of the foundation. All these
“forces” are harmonic and have frequencies equal to +(Q+ Vy). Thus, since it is known that
the natural frequency of the mass on the homogeneous beam is equal to €, it can be concluded
that resonance (wf .. — 00) will take place in the system if one of the following four equations is
satisfied:

Q=+@QxVy) 21)

Only one of the Egs.(21) can be satisfied, namely the equation Q= —Q+ Vy (the other
equations cannot be satisfied since 2, V' and y are positive values). The solution to this
equation is

Vy =2Q. (22)
Thus, if relation (22) were to be satisfied, then the solution w(ige would tend to infinity. This would
imply that wO(x, ) <uw(x,f) and, therefore, the original assumption that the small
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inhomogeneity provides a small variation of the unperturbed solution is violated. As a
consequence, series (3) become divergent.

The conclusion, which has to be drawn from this fact, is that the perturbation technique
based on representation (3) is not applicable once relation (22) is satisfied. In Ref. [21],
however, in the analysis of the Mathieu equation, it is shown that the perturbation technique
can be modified to give a relevant solution for the case when relation (22) is satisfied. In this
book, this case was referred to as resonance case, which is a reasonable terminology to
be used.

The modification of the perturbation method is presented in the next section. Before starting
with this section, however, it is worth noting that relation (22) is fully analogous to the condition
of the parametric resonance in the Mathieu’s equation [21,22]. This equation describes, for
example, vibrations of a mass on a spring, whose stiffness varies harmonically in time. If the
Mathieu’s equation is written in the form

¥ 4+ wdx(1 + pcos(wyt)) = 0, (23)

then the condition for the parametric resonance (more precisely, for the first zone of the
resonance) is given as

2m0 X ). (24)

Condition (24) implies that the parametric resonance (that contains in an exponential increase
of the amplitude of vibrations) occurs if the doubled natural frequency of the unperturbed
mass—spring system is approximately equal to the frequency of the variation of the spring
stiffness.

The analogy between conditions (22) and (24) is evident. Indeed, the natural frequency Q of the
mass vibrations on the homogeneous beam is the direct analogy to wg, whereas the frequency y V'
represents the frequency of variation of the stiffness of the elastic foundation under the moving
mass.

Taking this analogy into account it is natural to expect that vibrations of the moving mass on
the periodically inhomogeneous beam can become unstable due to the parametric resonance as
happens in the systems described by the Mathieu’s equation. Correctness of this expectation is
proven in the following section.

5. Perturbation analysis in the resonance case

In this section, the original problem (2) is studied in the resonance case, in which the relation
(22) is approximately satisfied, e.g., the following relation holds

2(2 + po)
=——= 25
% 7 (25)
with ué <Q a small mistuning.
The study is accomplished in the following manner. First, as in the previous section, the results
are obtained for the undamped case vy = 0. The viscosity is taken into account later giving a
generalisation of the results.
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By analogy with the principle used in [21] for the analysis of the parametric resonance in the
Mathieu’s equation, a solution to problem (2) is sought for in the following form:

uo(?) = A(ut)e" @ 4 B(ur)e @) L yn(N(p),

it(Q+,Lt5)(C+ ('ux lul)eikf‘(thx) + +2(‘ux ‘ut)eikg‘(thx))

_|_eflt(9+,ub) C+ X, [t elk (Vt—x) +C X, it elk (Vt—x) , x> Vt,
W ) = oo 1) + (Cpy (ux, ur) (1, ) ) 26)
elt(QJr,u(i)(Cgl(’ux’ ‘ut)elk3(Vt7x) + ng(’ux’ #t)elk4(thx))

+C_ir(Q+H5)(C§1 (px, ‘ut)eik_f(Vt—x) + Cp(ux, ,ul)eikf(Vt—X)), x< Vi,

with k%, , the roots of the dispersion Eq. (8).

Expréééions (26) are similar to solution (3) (in which expressions (11) and (13) are substituted)
with the only difference being that the amplitudes of waves and vibrations are assumed to have a
weak dependence on time and the spatial co- ordmate It will be seen that introduction of this
dependence constrains the perturbation terms uw )(t) and uw(x, 1) to be much smaller than the
modified unperturbed solution. Actually, the following analysis is based on the principle of
finding the slowly varying amplitudes for the unperturbed solution so that the perturbation terms
remain small. Fulfilling this requirement, a relation between the system parameters can be found
that corresponds to a slow increase of the amplitude of the system vibrations in time, e.g. to the
parametric resonance.

Substituting expressions (26) into the system of Eq. (2) and collecting the terms of the order p°,
the system of equations is obtained that is presented in Appendix B. As shown in this appendix,
this system of equations is satisfied 1ndependently of the choice of the amplitudes CA+] and C ;/

Collecting the terms of the order u', the following system of equations is obtained:

For x> I't,
P oA
PAes——— P + El —— ot + kfw(l)

= —ks cos(xx)e”(Q*ﬂd)(Czl (ux, 'ut)eikf‘(thx) + CL( 1L, 'ut)eikg‘(thx))
— ly cos(x)e " (e, ) - O, ppe )

<2pACS(VkA +Q)(iA —sC) ) + HEI(K Al)exp(lkA(Vz X) 4+ it(Q + ud))

(5( t) 5( )

<2pAm(Vk2 + Q)i ( l 5CA2> + MEI(KS) 5 ( +)> exp(iks (Vt — x) + it(Q + pd))
_ <2 A(VEE — )(1 Cp + 5C,;> + 4 EI(kB)3 5 ( )) exp(ikB(Vt — x) — it(Q + pd))
<2pAU(VkB ( Cio + 5ch> + HEI(KEY T 0C )> exp(ik2(Vt — x) — it(Q + ud)).

(27)
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- 911
For x< 11,
?w) otw
(1)
pAcs s + EI p + kew

—ks COS(Xx)eit(Q+”5)(C;“ (pix, lut)eik?(Vt—x) + Cpp(ux, Ml)eikj(Vt—x))
— ky cos(zx)e H(C (s, )0 4 cgzwx ur)e (V)
jond
<2pAcs(VkA 4 g)< i

o ) 5CA1> + 41EI(kA) 8( Al))exp(lkA(Vt X) 4 1t(2 4 uo))

(ZpAcs( Vi + Q) <1 o t) 5CA2> + 4iEI(kf) 8( )) exp(iky (Vt — x) +it(Q + o))
— <2 Aes(VEE — <1 Z(CE') + 5C31> + 4i EI(kB) >exp(ik§(Vz — X) —it(Q + ud))
<2pAcs(VkB <1 0Ch + 5CBQ> + 41E1(kf) 5 ( ) exp(ikB(Vt — x) — it(Q + ud)) (28)

For x = 171,

[W(l)]xz Ve = 0>

(29)
[awm] _ @) (acj1 N oC, L 0Cy acA2>
ox |,y o(ux)  o(px)  o(ux)  o(ux)/ _y,
_ omit(@+pd) <5C§1 n 0Cp _0Cg 6’Cm) (30)
o(ux)  o(px)  o(ux)  o(ux)/) _y,
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oC;: oC; oC; oC;
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o) awy) o4
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+3EI <(k V ao T E 50008 a0 ~ ) 8(#)6)) >

- oB
+ e—lt(Q+,Lt5) <2I’7’ZQ <1 )
o(ur)

oC 0Cy oCy
+3EI <(kB) (kB)2 B2 (kB)2 Bl (kB)Z B2 > ) ) (33)
a0 T © B D ) )
For the perturbation method to be applicable, the perturbation terms w)(x,f) and wf)l)(l)
should be prohibited from increasing with time. To achieve this, all forces that act on the beam
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and on the mass and which can cause resonance must be set to zero. There are two types of forces
that disturb the system: the distributed ones that stay on the right-hand side of Egs. (27) and (28),
and the concentrated ones that enter the boundary condition (33). Note that the external moment
in the boundary condition (31) cannot activate the heave vibrations of the mass.

Consider first the distributed forces in Egs. (27) and (28). It is obvious that the last four terms
on the right-hand side of these equations would cause the resonance response since they are
proportional to the normal waves in the beam: exp(+iQr) exp(lk] 534Vt —x)). Thus, it is
necessary that these terms vanish, e.g.,

2pA (Vi + Q)( Car _ 5le> + MEI(k) 0Ch _ 0,
o(u ) o(ux)
Jr

2pA(VES + Q)( > + MHEI(K3)? Cp _ 0,
o(ux)
+

20A(VE? + Q) <1 ] + 5C31> + MHEI(KBY Cpi _ 0,
o(ux)

2p A (Vs — )(1 2 + 5C§2> + MHEI(KBYy B2 0Cpy _ 0,
o(ux)

2pAc(Vks + Q) (1 1) + HEI(Kk)? Car _ :
o(ux)

2pA(Vky + Q) 1 —0C, | + HEI(K])? Cn _ 0,
o(px)

oCy

2p A (VKD — ( ) L aipruty n g

PV o(u ) 5 Sm)
aCy oCy
2 A(,‘" VkB )( B2 +0Cy > + MEI kB 3 Bl _ 34
pAes( aut) B2 (ky) 2(ux) (34)

Thus, the distributed forces that could cause the increase of the beam vibrations have been
required to vanish. However, some of the remaining forces on the right-hand of Eqs. (27) and (28)
could also lead to resonance in the system. These are the forces whose frequency equals to
(2 + wd) in the contact point. The other forces cannot lead to resonance and, therefore, are not
relevant for the further analysis that is aimed at finding the conditions under which the
perturbation terms do not increase.

Considering relations (34) satisfied, and neglecting the non-resonance terms on the right sides (the
terms whose frequency is not equal to (2 + ud) at x = V), Egs. (27) and (28) are rewritten as follows

For x> 11,
*wh) ot
A EI
Pl —2a T H 53

k¢ ) : : : .
= - exp(—iz)e @M (ur, )T - C (e, pe )

+ kepwD)

ky . . . .
== explizn)e " HC G, e 4 C u, pu)e ), (35)
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For x< 11,

Pwh Faa)
(1)
PA s B + EI p + kew

ks ) . . _ A1 _ A1
= —Ef exp(—ixx)e TN (Cy (uox, pn)e’s Y 4+ Cp (ux, ue)e™ 1)

ky ) - . . .
— - explizx)e O Cy (ux, pu)e S0 4 Cp v, pur)e ), (36)

It is customary to seek for the solution of these equations in the form
n_ M (D
W( ) = Wﬁ'ee + Wfor(?ed (37)

with W]("(l)l)'ced the forced solution of Egs. (27) and (28) that describes the effect of the foundation
inhomogeneity on the deflection field, which the mass perturbs in the beam. This solution reads:

For x> T,
W%ced _ eit(Q+y(3)—ixx(C~v-1|—l (ux, Mt)eikf‘(Vt—x) + @B(Mx’ m)eik;(w-x))
I e_it(Q-o-u(S)—&-iXX(éz-](#x, m)eik?(w—x) + C~’2+2(,ux, m)eikf(w_x))_ (38)
For x< V7%,

‘V}ilced — eil(Q-i—,u(s)—iXX(él—l (sz ’I/Lt)eiké4 (Vt—x) + 61_2 (,ux, ’ut)eikj;1 ( Vl—x))
+ efit(QJr,ué)Jri;(X(évzfl (,UX, ‘ut)eik_f( Vi—x) + 652 ('ux, ut)eikf( thx)) (39)

with the constants CN’;?, i=1,...,4, j=1,2 defined in Appendix C.
Substituting representation (37) and expressions (38) and (39) into the boundary condition (33),
the following equation is obtained

3., 2. (D)
EI O Ve +mdﬂ = ei“‘”ﬂf”{—zmg (i o4 _ 5A>
_ o(ut)

ox3 ds?

+ (k3')

+ + _ -
+ 3EI<(ki4)2 acAl 2 aC‘AZ _ (k§1)2 aCAl . (kf)z 8CA2>

o(px) o(ux) o(px) o(px)

— EIG(f — )’ Cfy +i(kS — 1)’ C3, — iK% — 1)* &y — ik — 2 sz)}

+ 7 HH@+r0) {2mQ <i o8 + 5B>
o)
2 0Cy 2 0Cx e oCp (kBy? 5C32>
o(px) o(px) o(ux) o(ux)

—EIG(ki + 2’ &f, + (ks + 0)* Cf, — iks + 0)* &y — ik + x)3512)}

x=Vt

+ (k%)

+ 3EI ((le)

x=Vt

(40)
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Both terms, which stay in the figure brackets on the right-hand of Eq. (40), should cause
resonance in the system, since their frequency is equal to the natural frequency of the mass. Thus,
these terms must be required to vanish, which yields the following two equations:

. 04 12 0C, 42 0C, 42 0C 42 9C
<_2’"Q<la(m>‘5‘4) I ((kl) a8 g~ B G ) 6(#X)>
CEIGUE — 77 Ch + i — 7 Ch — kP — 7G5, — i — 2°C) =0,

. OB 52 0CH 50 0Chy 52 0Cp 52 0Cp
<2’”Q <l 6(#0”3) ”EI(("I) ae) TR G R g — K a(ux))

—EI(ki! + )’ Cfy +i(ks' + 0° Cfy —ilks' + 0 Cpy = ilky! + 2’ C) 0. (41)

=Vt

=Vt

Eqgs. (34) and (41) are sufficient conditions for the perturbed solutions terms w")(x, 7) and w}’(¢)
not to grow in time.
The solution to these equations can be sought in the form

Cpi(ux, ur) = Cexp(u(git — pix)), C oo, ut) = Chpexp(u(qs't — pix)),
Ch(ux, ut) = Cypexp(u(grt — pix)), Chy(px, ut) = Cpypexp(u(ght — p5x)),
Ci(px, ut) = Cpexp(u(git — p3x)), Cop(ux, ut) = Cppexp(u(git — pix)),  (42)
Cp (ux, ut) = Cypexp(u(gst — pix)), Cpy(ux, ut) = Crypexp(u(gst — pix)),

A(ut) = Ag exp(ust),  B(ut) = By exp(us?).

The eigenvalue s in these expressions determines the stability of the system. Should one of the
eigenvalues have a positive real part, the system would become unstable. To obtain the
characteristic equation with respect to s, it is customary to use Egs. (B.3)—~(B.6). Substituting
expressions (42) into these equations, a set of relations (D.1) is obtained that is presented in
Appendix D. Taking these relations into account and substituting expressions (42) into the
Eqgs. (34) and (41), the following system of two algebraic equations with respect to 4y and By can
be obtained:

(is — 0)0140 + Q4B = 0,
— Q3Ao + QQ(iS + 5)30 = 0. (43)

The characteristic equation is obtained from the system of Egs. (43) by setting the determinant
of this system to zero. This yields

0304
0,0y

It can be shown that the ratio (Q304)/(Q10>) is real and positive in the case under consideration
(V' <V,™). Therefore, the criterion for the instability (parametric resonance) to occur is that % is
real. Thus, the vibrations of the system are unstable if the following inequality is satisfied:

0304
010>

§F =0 +

(44)

-5+ 0,
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This inequality can be rewritten by using the resonance condition (25) as

o | 0304
IV —2Q|<2u 0.0 (45)

If the viscosity of the foundation vy is not equal to zero, exactly the same procedure can be
employed to obtain the characteristic equation. This equation then takes the form

sz—i<%+%>s—5<%—%>+52—Q3Q4—Q5Q6:0, (46)
Q O Q O Q0 QO
with the same expressions for 0,34 that are used in Eq. (44) and the constants Qs defined in

Appendix D.

The criterion for the instability in this case is that one of the roots of the characteristic equation
has a positive real part. It can be shown that this criterion leads to the following system of
inequalities, which being satisfied leads to vibrational instability:

— 0305 — 010; +2010:0506 + 40100304 — 45(5Q1 02 — 050> + 0106) > 0,

06 N 0Os N \/—Q%Q% — 07105 + 201020506 + 401020304 — 46(3Q1 02 — 0503 + 010Q6) o
20, 20 2000,

(47)

The study of the instability zones that correspond to conditions (45) and (47) is carried out in
the next section. Before starting this study, however, it is important to note the following. The
instability conditions (45) and (47) determine the first (main) instability zone of the parametric
resonance. By analogy with the Mathieu’s equation, it is natural to assume that there are more
zones of the instability, which should occur under the condition yV = 2(Q/n + udé),n = 1,2, ....
To find these zones, one should modify the form of solution (26). The idea for such a modification
should be taken from Ref. [21], where the same approach is used in the analysis of the higher order
zones of the parametric resonance in the Mathieu’s equation.

6. The instability zone

In this section, the instability zone is studied numerically. The study is performed using the
following set of the system parameters:

p=7849kg, A, =7.687x 1073 m?,
1=3055%x10"m*, E=2x10"N/m’
kr =108 N/m?, pu=0.3. (48)
First, the instability zone is studied in the case of the purely elastic foundation, e.g., with vy = 0.
In this case the instability zone is defined by the inequality (45). In Fig. 3 the centre of the
instability zone (yV — 2Q = 0) is plotted in the plane “velocity-mass” for two periods of the

inhomogeneity. These periods are chosen to represent the upper and the lower limits of the sleeper
distance utilised in different types of the railway tracks. Fig. 3 shows that the larger the moving
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2000 —
) —— d=07[m|
) ‘\ ——- d=06[m]
1600 —
D 1200
=
£ 800
400
0 T
40 80 120 160 200 240
velocity [m/s]
Fig. 3. Centre of the instability zone in the undamped case for two periods of the inhomogeneity: —, d = 0.7m; ———,

d=0.6m.

mass and/or the smaller the period of the inhomogeneity, the smaller is the velocity at which the
instability occurs.
In accordance with inequality (45), the boundaries of the instability zone are given by the

equations
0304
V—-20=42 : 49
* 0,0, “9)

Because of the small parameter u, the deviation of these boundaries from the centre of the zone is
small and can be found in the following manner. Representing the velocity that corresponds to the
boundary of the zone as V = V; + uV with V; the velocity corresponding to the centre of the zone
and uV the small deviation of the velocity, Eq. (49) are rewritten as

Os(Vo + 1) Qa(Vo + ub)
O\(Vo + 1N 02(Vo + ub)

Since uV is assumed to be small, the function Q(V, + uV) can be expanded using the Taylor’s
series as

(Vo+u17)x—2<Q(Vo+m7)iu\/ =0. (50)

QVy + uV) = Q(Vy) +6_Q

5 V. (51)

"o
Substituting expansion (51) into Eq. (50), taking into account that yVy — 2Q(V,) = 0 (since V)
corresponds to the centre of the zone) and collecting the terms of the order u, the following
expression for Jis obtained:
. (52)
Vo

or

(Vo) Qo) /(09
01(V0) 02(Vo) t
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1600 -
g 1200
é 800
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velocity deviation [m/s]
Fig. 4. Deviation of the boundaries of the instability zone from its centre: —, d = 0.7m; ———, d = 0.6 m.
2000 - |
I —— d=0.7[m]|
1600 4 | — == d=06[m]
2
IS
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velacity [m/s]
Fig. 5. Effect of the viscosity on the centre of the instability zone: —, d = 0.7m; ———, d = 0.6 m.

The deviation u¥ of the velocity from the centre of the zone is presented in Fig. 4 as a function of
the mass. This figure shows that the instability zone is very narrow, which makes it relatively easy
to avoid the parametric instability in practice.

Consider the effect of the viscosity in the foundation on the instability zone. The centre of the
zone is shown in Fig. 5 for vy = 100 Ns/m2 and two periods of the inhomogeneity. From this
figure, it can be seen that, in contrast to the undamped case, the instability does not arise if the
mass is smaller than a critical value that is depicted with the help of the bold (almost horizontal)
segment. Thus, analogous to the parametric resonance that is described by the Mathieu’s
equation, the effect of the viscosity leads to the shifting of the instability zone in the space of the
system parameters.

Besides shifting the zone, the viscosity of the foundation makes the zone shrink in the velocity
direction. However, for the chosen magnitude of the viscosity, this shrinkage is negligible.
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7. Conclusions

In this paper, the stability of vibrations of a mass that moves uniformly along an Euler—
Bernoulli beam on a periodically inhomogeneous foundation has been studied. It has been shown
that these vibrations can become unstable due to the parametric resonance, which caused by the
periodic variation of the foundation stiffness under the moving mass.

The first instability zone has been studied analytically by a perturbation method with the
assumption that the variation of the foundation stiffness is small in comparison to the mean
value of this stiffness. It has been found that the centre of the instability zone is defined by the
condition that the doubled frequency of the mass vibrations on the homogeneous beam is close to
the frequency of the stiffness variation under the moving mass. This condition is fully analogous
to the condition of the parametric resonance in a system that is described by the Mathieu’s
equation.

It has been shown that the position of the instability zone in the system parameter depends
strongly on the magnitude of the moving mass and the period of the inhomogeneity. The larger
this period and/or the smaller the mass, the higher the velocity is at which the instability occurs. It
is important to underline that, in principle, parametric instability can occur at any non-zero
velocity of the mass. This is in contrast to the instability of a moving vehicle on a homogeneous
guideway, which can occur only if the velocity exceeds the minimum phase velocity of waves in the
guideway.

It has been found that the instability zone is very narrow with respect to the velocity of the
mass. This is a natural consequence of the assumption that the inhomogeneity is weak.

The effect of the viscosity of the foundation has been studied. It has been found that this effect
mainly leads to the shifting of the instability zone in the parameter space. This is also in perfect
correspondence with the effect of the viscosity on the classical parametric resonance.

In conclusion, it is worth noting that the model employed in this paper cannot be considered
as being able to describe the realistic train—track interaction. However, the main conclusion is
quite general. It can be formulated as follows. If the inhomogeneity of a guideway is weak and
periodic, then the parametric instability of a uniformly moving vehicle can occur. This instability
should be expected when the frequency of variation of the guideway parameters under the moving
vehicle is close to the doubled natural frequency of the vehicle as it moves uniformly along the
guideway.
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Appendix A

In this Appendix, the constants are defined that are employed in expressions (13), (18), (19)
and (20).
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The constants from expression (13):
L AGE kK~ k) A kK k)
B G e D R e TG}
o Al — Kk — k) Ak — k') (ke — k)
(o = oy = R = ey gy = gy ) 7= oy
o BUE KK kD) BUE KBRS — k)
BUT (kB iB — kB —KBYKB — KBy BT (kP kB — kB — kBB — KBy
B(k§ — k{)(ki — k) B(k3 — k{)(k5 — k%)

Cch = , Cp = .
B2 (kB + KB — kB — kBB — KBy "B (kB + kB — kB — kB)(KF — KkF)
The constants from expressions (18) and (19):
2EI(x + 2k (kY + (k& + 2)%) 2EIy(y — 2k + (it — 2%
2EI(y + 2k (k4Y + (k4 + 7)) 2EIy(y — 2k (k) + (ks — 1))
2EIy(x + 2kB)(kB)? + (kB + 1)) 2EIy(y — 2kP)(KE)* + (KB — 1))
2EIy(y + 2k5)(KE)* + (k2 + 7)) 2ETy(y — 2kB)((KE)? + (k5 — 1))
2EIy(y + 2k)((k4Y + (k4 + 7)) 2EIy(y — 2k (k) + (kg — 1))
2EI(y + 2kH((KEY + (k& + 2)%) 2EIy(y — 2kH((k{) + (kg — )%
2EI(y + 2kB)(kB)* + (kB + 7)) 2EIy(y — 2k5)(KE)* + (KB — 1))
C4*l _kf CI;2 _ —kf C§2

2Ly 1 RENKEY + R ) R T 2EI G kKB T KE— 2
The constants from expression (20):

Dy = i((k{' + 0 Cfy + (5 + 0 C3y — (K + 0 Cry — (k' + 0 Cay),

Dy = i((ki = Cy + (k3 — 1) Ch — (ki — 1) Cpy — (ki — 1) C),

Dis = i((kf + 0 C + (6 + 0 Ciy + (K5 + 0 Csy + (65 + 0 Cyp),

Dy = i((k{ = )Ch + (k5 — 0 Ci + (k3 — ) Csy — (k§ + 1) Cop),

919
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Dy = —((k' + 2’y + (5 + 0P Gy — (g + 0y — (g + 0P ),
Dy = —((k' = 0> Clhy + (k5 = 2> Coy — (kg = 2> Cy — (kg — 1)’ ),
Doy = —((kf + 2)°C + (k5 + 2)° Cqy + (k5 + 20* C3y + (k5§ + 1) Cyy),
Doy = —((kB — 7)°CH + (KB — 1)° Ch + (kK — 32 C5, — (kB + 7)*Cp),

Dy = —(C), + G3)), D3 =—(ChL+ (%), Dy3=—(C5;+ CJ)), D= —(Ci, + Cp),
Day = (ki + 2 Cfy + (k3 + 1)’ Gy = (k5 + 0° Oy = (kg + 20 Cyy),
Dy = i((ki' = 2’ Cly + (4 = 0’ CF, — (g = 2 Cry = (! = 2 Cop),
Daz = i((k{ + 720Gy + (5 + 0> Cfy + (K + 20° Cyy + (K + 2 Cy),
Dag = i((k{ = 1)’ Ciy + (K5 = 2)*Ci + (k5 — 1)° Cy — (kG + 72’ Cp).

Appendix B

The system of equations that is obtained by substitution of expressions (26) into the system of
Eq. (2) followed by collection of terms of the order u° reads

For x> 11,

2
Qi @+1d) Z Cux, 1) VI p 4,0 + kjf.‘l VY + EI (k]‘.“)4 + kr)

Le lt(Q—‘rﬂ())ZC}-j 1ux, ut)e™ PV (= pAes(— Q_|_kBV) +EI(kB) +kr)=0. (B.D)
J=1

For x< 11,

2
el!(@+4d) Z Coi(px, un)e™ =V p A (Q + KA,V + EIGL ) + ky)

Le lt(mua)ZCBj(ux m)e KB (Vi— v)( pAes(—Q + ;+2V) + EI(k +2) +kr)=0. (B.2)
j=1

For x = 171,

2
Zc+ (unt, Mt)en(Q-&-ub) +Zc+ (uvt, /il‘)eﬂt(gﬂl(s)
Jj=1 j=1

MN

Cyi(uVt, pr)e @ 4 Z Cyi(uVt, prye @19, (B.3)
1 j=1

J
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2 2
Z kf Cluvt, pt)e o) Z ka;gj(u Vt, ut)e H@FH)
j=1 J=1
2 . N 2 . o
= DKo Coubtue @ 4N Tkl C(ue, e @), (B.4)
j=1 J=1
2 . N 2 . o
> (K ChiuVe,pt)e @0 4y (kP Cpy(uve, pnje @10
j=1 J=1
= D (k) Ve, pne @0 43 (k) CoyuVe, prje M@, (B.5)
J=1 j=1
2 . 2 . . < . <
> CouVie, pe @D 13" CL(uVe, pne ) = A(ue @ 4 B(une @) (B.6)
Jj=1 j=1

2 2
EI (Z (k') Co(uVe, un)e @ 4N " i(kFy Cf(uVe, prye @)
j=1 Jj=1

2 2
=D ik Cyu e, pne @ =y TilkF ) Cry v, ut)e”(m“‘”)
J=1 J=1

_ mQZ(A('uZ)eit(QJr,u(i) + B('ut)efit(QJru&))‘ (B7)

Obviously, Egs. (B.1) and (B.2) are satisfied automatically, since the wavenumbers kfl’233 4 are the
roots of the dispersion Eq. (8). The Egs. (B.3)~(B.7) can be subdivided into two ’s’y’stems of
equations, one containing the terms proportional to e“+#9 and the other one with the terms
proportional to e @+ The natural frequency Q is the eigenvalue of the determinants of both
these systems. Therefore, Egs. (B.3)~(B.7), as well as Egs.(B.1) and (B.2) are satisfied
independently of the choice of the amplitudes C;l—rj and C ;—Lj.

Appendix C

In this appendix, the constants are defined that are employed in expressions (38) and (39).

S _kfcjl (,LLX, ,Ut) S _kfc;b(:uxa ,Ll[)
11 — s 12 — )
2EI(y + 2k + (ki + 7)) 2EI(y + 2Kk + (k4 + 2)%)

- —ky Cy (px, ut) - —ky Ciy(pix, ut)

b

C = C frd )
2By — 2kBY(KBY + (KB — 2)?) P 2EIy(y — 2kB)(KB)? + (kB — 1))
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C — —ky Cyy (px, o) - — —ky Cpp(px, o)
- s 12 — b}
T 2EL (4 2k (kY + (K + 7)) 2EIy(y + 2Dk + (ki + 1)7)
> —ky Cpy (px, pt) > —ky Cpy(px, pt)

Cy, = , C,= .
2By — 2kBY(KBY + (kB — 2)?) P 2EIy(y — 2kB)(KB)? + (kB — 1))

Appendix D

In this appendix, the relations are presented that are obtained by substitution of expressions
(42) into Egs. (B.3)—(B.6). Further, expressions are given for the constants D;, j=1,...,6 that

are employed in the equations.
Relations obtained by substituting (42) into Eqgs. (B.3)—(B.6):

gl —plV =gt —pdV =q? —ptV =qf - pEV =¢q{ - piV
=qi —piV =05 —p¥V =qf —piV =5,
o MR kD Ak Kk k)
ey A L R e e )

Ao(kd — kMY — k) _ Ao(kd — kMYl — k4
Ccto — 3 1)Ky 1 Con — 3 1)\ 2
Ry ) 1 = gy = gy 2 gy )
Bo(kE — KEYKE — kD) Bo(k — kE)(KE — kD)

CL. = , Crpo= ,
BT (B kB — kB — kBB — KBy B (kP kB — kB — KkB)(KE — kD)
Bo(kE — k)(kf — kf) ; Bk — KPS — kD)

+
o0 = QBT kE KE_KBKE KBy PO T TGUF kB KB kBE — KBy
1 2 3 4 1 2 1 2 3 4 3 4

The constants from expression (43):

01 = — 2mQUki! + k5 — kg — k)
BiEIpAss [ (k{'V + Qki) (kg — k(g — k5) | (k5V + (k) (k§ — kih)(kg — k)
(ki — k) (pAs VKV + Q) + 2EI(k{")) (pAs VAV + Q) + 2EI(k3)?)
_MW&S%W+Wwﬂ%—WM$%$JMV+WMﬂ%—MM$%ﬁ
(ki —kH\ (pA VAV + Q) + 2EI(k{)) (pAs VKAV + Q)+ 2EIk)Y) )’

0y =2mQkB + k5 — kB — k%)
3iEIpAcs [ (kPV — QLY (kY — k) kf — Kk3) | (kEV — QkF) (kY — kf)(kf — kD)
(kY =KD\ (pAsVFV — Q) + 2EI(KE)) (pAes VEV — Q) + 2EI(KS)’)
 3iEIpAes [(KEV — QK (kF — kPYKE — kB)  (kEV — Q)(k§) (K — kP)(k§ — KB)
(F —kD\  (pAL VKBV — Q) + 2EI(KB)) (pAs VKBV — Q)+ 2EI(kE)Y) )’
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0, K ( e+ 0P g — ke — Ky e+ )P — ke — ke )
(e =D\ 2000+ 2k)((kY + (i + 207 270 + 2kH)((K5) + (ks + 1))
Lk ( (K + 0 ki = kg — k) (k4 0 g = kK — kg )
(kg = KD\ 20 + 2Kk + (kg + 07 2000 + 2k )k + U+ 0P )
0, — ks ( (KB — (K5 — KkB) KB —KB) (kB — ) (kB — kP)kP — kD) )
(k7 = KD\ 2500 — 2kBY(KEY + (kF — 0)7) 2200 — 2kB)(KE) + (k& — 1)%)

ik ( (k§ — 0 kG = kPYKE —kF)  (kf — 0’ (kF — kP)(kF — kF) >
(k5 — KD\ 20(r — 2KkB)(KEY + (kB — 20°)  2x(x — 2kB)(KE)Y + (k§ — %))

The constants from expression (46):

05 = — upAc AV< (' V + @ (kf — k(e — k), GV + QP (kg — k(i — k). )
(ki —kD\ 2kfl(pAcs VKLYV + Q)+ 2EI(k{)’) 2k (pAes V(KLY + Q) + 2EI (k1))
3vypAes V< KV + 0 — k)i — k) GV + @Gk — k(K4 — k) >
(kg — kD \ 2k (p A VKAV + Q) + 2EI(A)Y’) 2k (pAes V(K] V + Q) + 2EI(k{)?)

0, = JupAs V( (kBV — QP(KE — kK —KB) | (kBV — QP (kE — kYK — kP) >
(kY =K\ 2kP(pAcsV(KEV — Q)+ 2E1(KEY))  2kE(pAes VSV — Q) + 2E1(K5)*)

BupdeV [ KV — QPE — kP)KE —KE) (Y — @PKF — kP)(KF — KkF)
(k8 — kD) \2kB(p A VKBV — Q) 4+ 2EI(KD))  2kB(pA VKBV — Q) 4+ 2EI(KB)) )’

Appendix E. Nomenclature

A the cross-sectional area of the beam

A,B,C,D the wave amplitudes

d the period of the inhomogeneity

E Young’s modulus

1 =+/—1

1 the moment of inertia of the beam’s cross-section
kr the mean stiffness of the foundation

ky the roots of the dispersion relation which possess a positive imaginary part
k4B the wavenumbers

m the mass

o constants

t time

V the velocity of motion

w the vertical deflection of the beam relative to its equilibrium position
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wo the vertical deflection of the mass relative to its equilibrium position
X the horizontal coordinate

% the wave number of inhomogeneity

0 the mistuning

o(...) the Dirac’s delta function

u the dimensionless small parameter

vy the viscosity of foundation

0 the mass density of the beam material

Q the radial frequency
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