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Abstract

Detection of a circumferential crack in a hollow section beam is investigated using coupled response
measurements. The crack section is represented by a local flexibility matrix connecting two undamaged
beam segments. This matrix defines the relationship between the displacements and forces across the crack
section and is derived by applying fundamental fracture mechanics theory. The suitability of the mode
coupling methodology is first demonstrated analytically. Laboratory test results are then presented for
circular hollow section beams with artificially generated cracks of varying severity. It is shown that this
method has the potential as a damage detection tool for mechanical structures.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Detection and control of damage in mechanical structures is an important concern to
engineering communities. Among many possible damage identification methods, vibration
measurements offer the potential to be an effective, inexpensive and fast tool for non-destructive
testing. During the past several decades, significant amount of research has been conducted in the
area of vibration-based damage identification. The main idea of this approach is that a change in
a system due to damage will manifest itself as changes in the structural dynamic characteristics.
Reviews on vibration of cracked structures were reported by Dimarogonas [1], Wauer [2] and

Doebling et al. [3]. Many identification techniques have been proposed based on different system
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parameters. Some authors used the change of natural frequencies [4–6] or mode shapes [7,8]
as the indicator of damage while others detected structural damage directly from
dynamic response in time domain or from frequency response functions (FRF) [9]. Despite a
certain degree of success with these techniques, a common observation derived from the above
studies is the relative insensitivity of global parameters such as mode shapes and frequencies to
local damage.
In this paper, we examine the suitability of using coupled responses to detect damage

in thin-walled tubular structures. By coupled response we refer to the ability of a
structural member with a circumferential crack to experience composite vibration modes
(axial and bending) when excited purely laterally. These composite modes are only present when
there is a crack.
The starting point in this approach is modelling the crack section. We use a local flexibility

matrix. This matrix defines the relationship between the displacements and forces as shown in
Eq. (1). It can be formulated as a function of the stress intensity factors using fundamental
fracture mechanics theory [10–13].
Generally, for uncracked members the local flexibility matrix is diagonal. In the presence of a

crack, some off-diagonal terms become non-zero. This means excitation along one direction (e.g.,
lateral) will cause response along other directions (e.g., axial).
The simple case of local flexibility was studied by Irwin [14] for beams and by Rice and Levy

[15] for plates, who related the flexibility to stress intensity factors. Papadopoulos and
Dimarogonas [16] presented the comprehensive solution of coupled vibration in a cracked shaft.
But the available results were mostly based on analytical simulations with no experimental
verification and only solid section structures were considered. In fact, all past work in this area has
been limited to solid beams, e.g., turbine or impeller blades.
In welded mechanical and civil structures, hollow or open sections are usually the

preferred shape rather than solid beams. In this paper, a coupled-response of a Circular
Hollow Section (CHS) beam due to circumferential cracks is studied both analytically
and experimentally. After first deriving the local flexibility matrix, analytical simulations of
free and forced vibrations of cracked CHS beams are presented and the efficacy of the
proposed coupling property in crack identification is demonstrated. The results for different
crack severities and locations are compared based on analytical simulations. Finally, the results
of laboratory tests on a similar geometry are presented to show the feasibility of this
approach. Standard modal validation techniques are used to interpret the coupled modes caused
by the crack.

2. Local flexibility matrix and axial–bending coupling coefficients of a CHS member

A crack in a structural member introduces additional local flexibility, which is a function
of the crack depth (severity) and location. In this study, the focus is on circumferential
cracks encountered in CHS beams. The severity of the crack is represented by the ratio
of the crack area to the total cross-sectional area. For example, a 10% crack represents the
loss of 10% of the cross-sectional area of the beam. The extra flexibility introduced by
the crack changes the dynamic behaviour of the system. To see how this happens, one has
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to first establish the local stiffness or flexibility matrix of the cracked member under general
loading.
In general, the local flexibility of a beam at any single point can be described by inserting a

virtual joint at that point and representing that joint by a local flexibility matrix. The matrix size
depends on the number of the degrees of freedom being considered for the joint, the maximum
being 6� 6. The co-ordinate system and the corresponding generalised forces are shown in Fig. 1.
Here subscript 1 is used for the longitudinal force, 2 and 3 for the shearing forces, 4 and 5 for the
bending moments and 6 for the torsional moment. Using the local flexibility matrix, the extra
displacement along any degree of freedom due to the presence of the crack is given by the
following equation:

u
,
¼ C P

,
; ð1Þ

where u, and P
,

are displacement and force vectors and C is the local flexibility matrix: u,AR6�1;
CAR6�6; P

,
AR6�1: The length of the beam and the location of the crack are shown as L and l;

respectively, in Fig. 1.
The displacement ui along the force component Pi due to the presence of the crack is computed

using Castigliano’s theorem as described in Ref. [11]. The general expression for the local
flexibility coefficients is

cij ¼
1

E0

Z a

0

@2

@Pi@Pj

XIII

m¼I

em

X6
n¼1

Kmn

 !2
2
4

3
5 dx; ð2Þ

where E0 ¼ E for plane stress, E0 ¼ E=ð1� n2Þ for plane strain; a ¼ 1þ n; E and n are Young’s
modulus and Poisson’s ratio, respectively; em ¼ 1 for m ¼ I; II and em ¼ a for m ¼ III; Kmn is the
stress intensity factor of mode m ðm ¼ I; II; IIIÞ due to the load Pn ðn ¼ 1; 2;y; 6Þ; a is the length
along the crack tip.
From Eq. (2), the existence of coupling between two vibration modes is described by the

magnitude of the corresponding Kmn coefficient. If some of the loads contribute to the same
fracture mode, for example, beam under extension and bending both create tensile stress and
contribute to mode I of stress intensity factor (i.e., KI1a0;KI5a0), the corresponding flexibility
element would be non-zero (i.e., c15a0).

L
l             P2

P4

P6 P1
P5

P3

Fig. 1. CHS beam under general loading
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Thus, the local flexibility matrix for the beam due to the crack has the following form:

C ¼

c11 0 0 c14 c15 0

0 c22 0 0 0 c26

0 0 c33 0 0 c36

c41 0 0 c44 c45 0

c51 0 0 c54 c55 0

0 c62 c63 0 0 c66

2
6666666664

3
7777777775
: ð3Þ

This matrix relates the displacement vector fug to the corresponding force vector fPg through
Eq. (1).
By inversion of this local flexibility matrix we can obtain the local stiffness matrix:

K ¼ C�1 ð4Þ

Due to reciprocity, the matrix C and K are symmetric for an uncracked beam. The non-diagonal
terms of the matrix C show that coupling exists between longitudinal, bending and torsional
vibrations because of the crack.
As shown in Eq. (2), the calculation of the local flexibility matrix is based on the relevant stress

intensity factors. In this paper, coupling between longitudinal and bending vibration is
considered, i.e., the analysis is restricted to two degrees of freedom, and the 2� 2C and K
matrices can be expressed as

C ¼
c11 c15

c51 c55

" #
; K ¼

k11 k15

k51 k55

" #
: ð5Þ

Using fracture mechanics [10] principles, the stress intensity factors for a circumferential through-
wall crack in cylinders can be expressed as follows:
Axial force P1:

KI1 ¼
P1

2pRt

ffiffiffiffiffiffiffiffiffi
pRy

p
Ft; ð6Þ

where R ¼ ðRo þ RiÞ=2 is the mean radius; and y is the half-angle of the total through-wall crack
(the crack severity will be indicated by y=p as percentage) and

Ft ¼ 1þ At 5:3303
y
p

� �1:5

þ18:773
y
p

� �4:24
" #

;

where

At ¼ 0:125
R

t
� 0:25

� �0:25

for 5p
R

t
p10;

At ¼ 0:4
R

t
� 3:0

� �0:25

for 10p
R

t
p20:
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Bending moment P5

KI5 ¼
P5

pR2t

ffiffiffiffiffiffiffiffiffi
pRy

p
Fb; ð7Þ

where

Fb ¼ 1þ At 4:5967
y
p

� �1:5

þ2:6422
y
p

� �4:24
" #

;

At is same as above.
Substituting KI1 and KI5 to Eq. (2) yields the coefficients Cij by analytical or numerical

integration. The C and K matrices can be derived according to Eqs. (3) and (4). Once the local
flexibility matrix is obtained, the vibration modes of a cracked CHS beam can be developed using
classical beam theory.

3. Free vibration of a cracked CHS beam

In this paper, we will consider a free–free beam. This is done to facilitate ready comparison
between analytical and experimental results without having to consider the effect of the boundary
conditions. The experiments were conducted in free–free boundary conditions. If required, the
treatment can easily be adjusted to model different boundary conditions.
The vibration of a free–free Euler–Bernoulli CHS beam are described by the following

differential equations:
Axial vibration:

@2Ui

@x2
¼

r
E

@2Ui

@t2
; i ¼ 1; 2: ð8Þ

Lateral vibration:

@4Vi

@x4
þ
rA

EI

@2Vi

@t2
¼ 0; i ¼ 1; 2; ð9Þ

where Ui and Vi are the axial and lateral displacements, respectively; i ¼ 1 represents the section
left to the crack (xpl) and i ¼ 2 represents the section right to the crack (lpxpL).
The derivation follows closely traditional Euler–Bernoulli beam theory including continuity

conditions at the crack section. Applying general variable separation technique, the solutions to
Eqs. (8) and (9) are

U1ðx; tÞ ¼ u1ðxÞðAu cosot þ Bu sinotÞ; ð10Þ

U2ðx; tÞ ¼ u2ðxÞðAu cosot þ Bu sinotÞ; ð11Þ

V1ðx; tÞ ¼ v1ðxÞðAv cosot þ Bv sinotÞ; ð12Þ

V2ðx; tÞ ¼ v2ðxÞðAv cosot þ Bv sinotÞ; ð13Þ

where o is the natural frequency of the system, Au; Bu; Av; Bvare unknown coefficients to be
determined from the initial conditions, and ui; vi (i ¼ 1; 2) are unknown mode shapes.
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Substituting Eqs. (10)–(13) into Eqs. (8) and (9) the governing equations for ui; vi are
obtained as

@2u1
@x2

þ k2
uu1 ¼ 0; ð14Þ

@2u2
@x2

þ k2
uu2 ¼ 0; ð15Þ

@4v1
@x4

� k4
v v1 ¼ 0; ð16Þ

@4v2
@x4

� k4
v v2 ¼ 0; ð17Þ

where

ku ¼

ffiffiffiffi
r
E

r
o; kv ¼

rAo2

EI

� �1=4

:

The general solutions of Eqs. (14)–(17) have the following form:

u1ðxÞ ¼ A1 cos kux þ A2 sin kux; ð18Þ

u2ðxÞ ¼ A3 cos kux þ A4 sin kux; ð19Þ

v1ðxÞ ¼ A5 cosh kvx þ A6 sinh kvx þ A7 cos kvx þ A8 sin kvx; ð20Þ

v2ðxÞ ¼ A9 cosh kvx þ A10 sinh kvx þ A11 cos kvx þ A12 sin kvx; ð21Þ

where Ai; i ¼ 1; 2;y; 12 are unknown coefficients that are determined using the boundary and
crack discontinuity conditions. Considering a beam with a small crack, the boundaries include
both ends and the two sides of the crack (totally 12 conditions).
For a cracked free–free beam, the boundary conditions are given by Eqs. (22)–(29). At the free

ends, the axial force, bending moment and shearing force are zero:
Free end 1 ðx ¼ 0Þ:

AEu01ð0Þ ¼ 0; ð22aÞ

EIv001ð0Þ ¼ 0; ð22bÞ

EIv0001 ð0Þ ¼ 0: ð22cÞ

Free end 2 ðx ¼ LÞ:

AEu02ðLÞ ¼ 0; EIv002ðLÞ ¼ 0; EIv0002 ðLÞ ¼ 0: ð23a2cÞ

At the crack section, there is continuity of axial force (Eq. (24)), bending moment (25), shearing
force (26) and lateral displacement (27).

AEu01ðlÞ ¼ AEu02ðlÞ; ð24Þ
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EIv001ðlÞ ¼ EIv002ðlÞ; ð25Þ

EIv0001 ðlÞ ¼ EIv0002 ðlÞ; ð26Þ

v1ðlÞ ¼ v2ðlÞ: ð27Þ

However, the axial displacement and the lateral slope are discontinuous. The relationship with
respect to axial force and bending moment are shown as Eqs. (28) and (29), respectively.

AEu01ðlÞ ¼ k11½u2ðlÞ � u1ðlÞ� þ k15½v02ðlÞ � v01ðlÞ�; ð28Þ

EIv001ðlÞ ¼ k51½u2ðlÞ � u1ðlÞ� þ k55½v02ðlÞ � v01ðlÞ�: ð29Þ

Eqs. (28) and (29) demonstrate the coupling between axial and lateral vibrations. The coefficients
kij are the elements in the local stiffness matrix K (Eq. (5)), which is related to the local flexibility
matrix C through Eq. (4).
Substitution of solutions (18)–(21) into the boundary conditions (22)–(29) yields 12

homogeneous algebraic equations for A1;A2;y;A12: Existence of non-trivial solutions requires
the determinant of the coefficient matrix to be zero, which yields an equation for the
determination of the system’s natural frequencies oi: For each value of oi the corresponding axial
and bending mode shapes are determined using Eqs. (18)–(21).

4. Forced vibration of a cracked CHS beam

Vibrations can be excited by applying a harmonic force along any co-ordinate direction. For an
uncracked beam, lateral force will only excite the corresponding lateral displacement (bending
modes) and axial force only axial displacement (axial modes). In the case of a cracked beam the
vibration modes are coupled. This coupling behaviour can be observed for example by examining
the FRFs of the system.
Assuming a transverse harmonic excitation force FðL; tÞ ¼ f0 cosot is applied at the free end of

the beam the boundary condition of Eq. (22c) becomes:

EIv0001 ð0Þ ¼ f0: ð30Þ

All other boundary conditions remain identical. The coefficients A1;A2;y;A12 can now be
computed by solving the linear system equation:

½Q�fAg ¼ fFg; ð31Þ

where ½Q� is the coefficient matrix; fFg ¼ f0; 0;yf0;y0gT: Substituting the solution of fAg back
into Eqs. (18)–(21) we can get the FRFs U=F ¼ uðx;oÞ=f0; V=F ¼ vðx;oÞ=f0 for longitudinal and
lateral vibration, respectively. Fig. 2 shows a typical driving point FRF for the free end of a beam.

5. Analytical simulations

The following parameters are used: beam length 1.5m, outside diameter 48.3mm, wall
thickness 3.2mm, Young’s modulus 200GPa and mass density 7850 kg/m3. The crack location is
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assumed to be 0.45m (30% of total length) from one end. The calculated driving point FRFs of a
free end of the beam are shown in Fig. 2. Plot (a) is the lateral FRF for an uncracked beam. Plots
(b) and (c) show the lateral FRFs when the crack severity is 10% and 20%, respectively.
As expected the presence of the crack introduces extra peaks into the FRFs. Comparing plots

(b) and (c) against (a), one observes that the presence of the crack influences the FRFs in two
ways: (i) all natural frequencies are reduced because of loss of stiffness at the crack location; and
(ii) an extra peak is introduced as noted on the plots. The natural frequency corresponding to the
new peak is close to the uncracked axial natural frequency. This indicates the coupling of lateral
and axial vibration. The correlation between the new mode and the axial mode can also be
identified by using the modal assurance criterion (MAC) methodology. This is a common modal
analysis tool typically used to compare mode shapes [17]. The mode shape correlation is generally
displayed as the so-called MAC matrix, where each cell represents the degree of fit between two
mode shapes with values between 0 and 1. A value of 1 corresponds to a perfect correlation. In the
paper, the MAC matrix is presented by colour-coded patch plot. The size of the individual square
also indicates the relative value.
Fig. 3 shows the MAC matrix between the lateral modes of an uncracked and a 10% cracked

beam. The first five modes are highly correlated as indicated by high MAC values. However, the
sixth mode of the cracked beam does not correlate with any lateral mode of the uncracked beam.
On the other hand, the seventh mode of cracked beam is highly correlated to the sixth mode of
uncracked beam. This suggests that the sixth mode for the cracked beam is a new mode that
corresponds to none of the lateral modes of the undamaged beam. In fact, a comparison with the
axial mode of the undamaged beam results in a MAC value of 0.7. The correlation does not
indicate a perfect match, since the new mode includes some bending component. This is also the
reason for the small frequency shift between the axial mode of the uncracked beam and the new
coupled mode.

6. Experimental results

In order to determine the practical feasibility of this approach, it has to be demonstrated
that the mode coupling is clearly observable in experimental FRF. Modal tests were conducted
for a CHS beam with the dimensions listed above. The beam was suspended by a pair of soft
elastic straps simulating free–free boundary conditions. The artificial crack was created by a
0.5mm thickness hacksaw. The beam was excited using an impulse hammer. This provided
excitation covering a frequency range up to 2500Hz. The responses were measured at one free end
while the excitation points were evenly located along the beam. The data acquisition and FFT
analysis were implemented by the OR24 analyzer. This is an integrated 4-ch modal testing and
analysis tool featuring multiple trigger model, FRF displaying and flexible data storage format.
The FRFs were calculated from input and output data using standard H1 estimation [17]. A
laptop computer was used as an interface for data acquisition system and for further
manipulation of the data.
Both undamaged and damaged CHS beams were tested and the related FRFs and modal

shapes were generated. Fig. 4 shows the driving point FRFs for one free end of the uncracked and
cracked beam (crack severity is 20% and 40%, respectively). The extra new peak is clearly

D. Liu et al. / Journal of Sound and Vibration 261 (2003) 17–2924



0.0 0.5 1.0 1.5 2.0 kHz
   

-40

-20

0  

20 

40 

dB 

(a) FRF of uncracked CHS beam

0.0 0.5 1.0 1.5 2.0 kHz
   

-40

-20

0  

20 

40 

dB 

New Peak

(b) FRF of  cracked (10%) CHS beam

0.0 0.5 1.0 1.5 2.0 kHz
   

-40

-20

0  

20 

40 

dB 

New Peak 

(c) FRF of cracked (20%) CHS beam

Fig. 2. Analytical FRFs of uncracked and cracked CHS beam.
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observable at a crack severity of 20%. Obviously, as the crack length is increased the
new peak becomes more pronounced. Fig. 5 shows the results of the MAC mode correlation
analysis.
The similarity between the experimental results in Fig. 4 and the analytical results

displayed in Fig. 2 support the thesis that a coupled response analysis is a valid approach to
crack detection in beams. One first should note the good agreement between the measured
(Fig. 4a) and the predicted (Fig. 2a) frequencies for the uncracked beam. The amount of shift
caused by the introduction of the crack is also similar between the two figures (e.g., cf. Fig. 2c
against Fig. 4b).

7. Summary and conclusions

In this paper, we demonstrated the feasibility of a damage detection method that works by
detecting the emergence of a new coupled mode in FRFs produced by unidirectional excitation.
We used a CHS member as an example to analytically study the free and forced vibration of a
cracked CHS beam and then experimentally observe the coupling behaviour of the same structure.
Both methods showed that the coupling property was a good indicator of the existence of cracks.
The results under different crack severities were compared. The analytical model is more sensitive.
A 10% crack causes a new peak at a severity comparable to the other modes in the analytical
chart of Fig. 2c. A crack of the same severity, on the other hand, is barely visible on the
experimentally obtained chart of Fig. 4b.
The reason for the coupling is the non-diagonal terms introduced into the local flexibility

matrix by the presence of a crack. One can observe the coupled response measurements through
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Fig. 3. MAC matrix of uncracked and cracked beam (analytical).
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Fig. 4. Experimental FRFs of uncracked and cracked CHS beam.
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the extra peak in the driving point FRF. The extra peaks on FRF plots suggest the existence of
cracks. Before making any decision these extra modes need to be physically interpreted. Standard
validation tools such as MAC can be used for this purpose.
Although the results presented here were obtained for free–free beams, the principle equally

applies to other beam configurations. A more critical assumption is that of linear fracture
mechanics and an open crack model. Further studies are currently performed to explore the
application of this approach to more complex structures and fatigue crack identification.

Acknowledgements

The authors would like to thank the CRC for Mining Technology and Equipment (CMTE) and
the Department of Mechanical Engineering of the University of Queensland for their support of
this project.

Appendix A. Nomenclature

E Young’s modulus
I moment of inertia
A cross-sectional area
r mass density
n the Poisson ratio
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Uiðx; tÞ axial displacement
l crack location
UT strain energy
JðaÞ strain energy density function
C local flexibility matrix
Kmn stress intensity factor
Q characteristic matrix
Viðx; tÞ lateral displacement
L length of the beam
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