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Abstract

Given one or more vibrational modes of a membrane, the free vibration equation can be applied to infer
the mass surface density. This paper considers determining the surface density of an inhomogeneous
membrane from digitized holographic projections (interferograms) of the modeshapes. Spatially discrete
numerical models of the membrane surface are presented, which can be used to solve both forward and
inverse vibration problems. The accuracy of the discrete models is examined for exactly solvable free
vibration problems involving inhomogeneous membranes. For the solution of the inverse problem, error
estimates are given for the mass surface density deduced from modeshape interferograms. The practicability
of the method is investigated using simulated experimental data for membranes with composite and
continuously inhomogeneous density profiles. Strategies are discussed for reducing errors in the
reconstructed densities.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Vibration problems involving inhomogeneous surfaces are of general interest, as most natural
and man-made materials possess, to some degree, non-uniform physical attributes. Past research
on membranes with inhomogeneous densities has been mainly concerned with determining the
vibrational modes and frequencies from the mass surface density [1–8]. Even for structures with
simple geometries, exact solutions are only available for special cases, and, generally, approximate
analytical or numerical methods are required for the solution of the free vibration problem. Laura
et al. [1] report numerical results for the fundamental of a rectangular membrane with a linear
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density variation in one spatial co-ordinate. Masad [2] considers the same problem, employing
second order finite difference, and first order perturbation theoretical approximations, while
Wang [3] provides some exact solutions. Exactly solvable free vibration problems, involving
continuously inhomogeneous strings, rods and membranes, are also discussed by Horgan and
Chan [4]. Annular and circular membranes, whose densities are only a function of the radial co-
ordinate, have also received considerable attention in the past. Gutierrez et al. [5] compare the
accuracy of several numerical methods for this case, for several types of inhomogeneities. Laura
et al. [6] also provide some numerical results, and exact solutions for special cases may be found in
Refs. [3,7]. The studies reported in Refs. [1–7] involve inhomogeneity in one spatial co-ordinate, in
a manner that allows the casting of the two-dimensional vibration problem, through separation of
variables, into a set of equivalent one-dimensional problems. Bambill et al. [6] tackle several cases
of the more difficult problem of non-separable circularly symmetric inhomogeneity in a square
membrane. Work on composite membranes with piecewise continuous densities is described in
Refs. [2,4,6] and references therein.
In the present study, we consider the inverse problem of determining the mass surface density of

a membrane with uniform surface tension, from modeshape data that one might obtain
experimentally, for example, using holographic interferometry. Our general method is applicable
to any surface object with known elastic properties and an unknown surface density. However,
our discussion has only limited relevance to inverse vibration problems involving inhomogeneous
plates, where the stiffness and the density are generally not independent, and a lack of knowledge
of one usually implies the same about the other. Analytical treatments of inverse vibration
problems involving inhomogeneous plates are given by Elishakoff, in Refs. [9,10]. Here, we
assume that the vibrational modes are observed as light interference patterns in the observation
plane of an interferometer, and describe how the mass surface density may be deduced from
digitized interferograms in practice. Connection between the continuous physical medium and the
spatially discrete data is provided through an interpolation scheme, which presents improved
finite difference approximations of the system. The accuracy of the approximation scheme is
examined by reference to exactly solvable free vibration problems involving inhomogeneous
membranes. For the practical solution of the inverse problem, we analyze the combined effects of
spatial and intensity discretizations of the interferogram data, on the accuracy of the
reconstructed density. Results for simulated data demonstrate that a given level of discretization
in intensity places an upper limit on the spatial resolution for which the method yields an
acceptable accuracy. The reconstruction method is shown to be more robust when an
appropriately chosen low-pass spatial filter is applied to the vibrational amplitude data. The
estimated gain in accuracy due to smoothing is found to be consistent with simulation results. A
preliminary version of this work appears in Ref. [11].

2. Vibration of an inhomogeneous membrane

Let the membrane, under static equilibrium conditions, occupy a bound region S in the x–y
plane. Assuming that internal and radiated energy losses can be neglected (see Section 6), the
transverse displacements Uðx; y; tÞ; at time t; of points ðx; yÞ on S satisfy

KU ¼ s @2t U ; ð1Þ
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where K ¼ Kðx; yÞ is a linear stiffness operator, such that KU is the transverse force per unit
surface area, s is the mass surface density, and @2t is a shorthand for @2=@t2: All solutions U of
Eq. (1) are linear combinations of harmonic oscillations uðx; yÞ e�iot; where o and u are natural
frequencies and modes of the system respectively, satisfying

Ku ¼ �o2su: ð2Þ

Our proposed method for the indirect measurement of the unknown density of a membrane is
based on the fact that Eq. (2) can be rearranged to express s in terms of operator K ; modeshape u
and frequency o:

s ¼ �
Ku

o2u
if ua0: ð3Þ

If K is known, the surface density can be determined from one or more vibrational modes and
frequencies. The purpose of the present work is to demonstrate how this might be done in
practice, for membranes with both smooth and abrupt density variations, when modeshapes u are
deduced from experimental data.

3. Holographic projections of the vibrational modes

The vibration amplitude u may be observed as a fringe pattern in the observation plane of a
suitable holographic interferometer [13–16]. For single-exposure stroboscopic illumination, the
fringe pattern is characterized by the intensity profile

Iðx0; y0Þp1þ cos ½2pa uðx; yÞ � fðx; yÞ�; ð4Þ

where ðx0; y0Þpðx; yÞ are appropriately chosen Cartesian co-ordinates of points in the observation
plane, and f is a phase term associated with the zero displacement ðu 	 0Þ location of the surface
relative to the apparatus [13, p. 112]. Constant a is equal to the number of fringes per unit
increment in displacement u; and its magnitude (of the order of the reciprocal wavelength of the
light) is determined by specifics of the experimental set-up [14]. For a planar surface, proper
alignment of the apparatus will ensure that f is a constant, whose value may be adjusted using an
optical phase-shifter placed in the path of the reference beam [15]. (In practice, the surface may
not be sufficiently planar, for example due to variations in thickness, in which case interferograms
of the surface at rest can be used to determine fðx; yÞ: This also eliminates the need for precise
alignment of the apparatus. For brevity, here we assume f ¼ constant.) Setting f ¼ 0; the
detected intensity (4) becomes

I 01ðx
0; y0ÞpI1ðx; yÞ ¼ 1

2 ð1þ cosjÞ; ð5Þ

where j ¼ 2pau: Setting f ¼ p=2; a second interferogram can be obtained with intensity profile
given by

I 02ðx
0; y0ÞpI2ðx; yÞ ¼ 1

2
ð1þ sin jÞ: ð6Þ

The two interferograms determine the phase j ¼ 2pau modulo 2p:
Let us suppose that the intensity profiles (5) and (6) are recorded using a digital photo-detector

array, whose output has been calibrated to give normalized, high contrast in the recorded images.
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Assuming that the detector samples the light intensity at sites of an L 
 W square lattice in the
observation plane, our hypothetical experimental results are two L 
 W greyscale images G1 and
G2 corresponding to intensities I1 and I2; respectively:

Gjðp; qÞ ¼ nint½ðD þ DÞ Ijðph; qhÞ þ d�; j ¼ 1; 2; ð7Þ

where p and q are integers in ½1;L� and ½1;W �; respectively, D þ 1 is the number of greylevels in the
image, h is the sampling interval at S; D and d are errors in calibrating the detector output, and
nintðZÞ denotes the integer closest to ZAR: In practice, two further arrays, dG1 and dG2; would
specify experimental errors in G1 and G2; respectively, such that

Gjðp; qÞ � dGjðp; qÞpD Ijðph; qhÞpGjðp; qÞ þ dGjðp; qÞ: ð8Þ

Expressing the sampled phase, jðph; qhÞmod 2pCjpq mod 2p of (5), (6) in terms of pixel
values Gj; and considering relation (8), the errors djpq in the phase, jðph; qhÞmod 2p ¼
jpq mod 2p7djpq; can be estimated by

djpq ¼ min
dG1

jG2 � D=2j
;

dG2

jG1 � D=2j

� �
; ð9Þ

correct to first order in dGj: For the sake of definiteness, we assume in what follows that
calibration errors D and d are at most half one greylevel, and that the errors introduced by level
quantization are much greater than all other errors combined. Then, by allowing for rounding
errors in Eq. (7), we have dGj ¼ 0:5Gj=D þ 1; so the errors djpq in the phase may be estimated
from greyvalues Gj alone, using Eq. (9).
From the phase jmod 2p deduced from the two interferograms G1;2; the true phase of the wave

j ¼ 2pau can be obtained by unwrapping the mod 2p phase. In Section 5, we employ a sequential
linear scanning algorithm due to Takeda [16, p. 204–205]. As the unwrapped phase jpq is
proportional to the amplitude of vibration at grid points ðx; yÞ ¼ ðph; qhÞ; it is also a sampled
solution upq ¼ uðph; qhÞ ¼ jpq of Eq. (2), within known error dupq ¼ djpq:With omeasured as the
resonance frequency for displacement amplitude u; a sampled solution ðo; upqÞ of Eq. (2) is
obtained.
Simulated interferograms for the sixth vibrational mode of an inhomogeneous membrane are

shown in Fig. 1. A wireframe plot of the vibration amplitude is shown in Fig. 1a. Figs. 1b and c
are interferograms given by Eq. (7) with D ¼ 255 and L ¼ W ¼ 60: Fig. 1d is a linear greyscale
plot of the phase deduced from the two interferograms, with black and white corresponding to 0
and 2p; respectively. Fig. 1e shows the unwrapped phase upq; obtained after applying Takeda’s
algorithm to the mod 2p data. Here, black and white correspond to maximum negative and
positive amplitudes, respectively. Within estimated errors given by Eq. (9), this unwrapped phase
is proportional to the displacement amplitude shown in Fig. 1a.

4. Spatial discretization of the surface

Eqs. (2) and (3) describe relations between functions of continuous variables, uðx; yÞ and sðx; yÞ
that are defined for all ðx; yÞAS: An approximation to Eqs. (2) and (3), in terms of sampled data
upq; may be obtained by interpolation. Here we describe one method, using polynomial
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interpolation, for a membrane with a surface tension of unity, i.e.,

K ¼ r2 ¼ @2x þ @2y:

We first approximate uðx; qhÞ in the neighbourhood of x ¼ x0 ¼ ph; by a polynomial of degree
2N:

uðx; qhÞCf ðxÞ ¼
X2N

n¼0

anðx � x0Þ
n: ð10Þ

Coefficients an are obtained by requiring that the interpolating polynomial f ðxÞ fit the sampled
data at 2N þ 1 points centred on x ¼ x0:

f ðx0 þ nhÞ ¼ upþn;q for n ¼ �N;y;N: ð11Þ

The second derivative of f is given by

f 00ðxÞjx¼x0 ¼
1

h2

XN

n¼�N

Cnupþn;q; ð12Þ

where coefficients Cn only depend on the degree 2N of the interpolating polynomial. Due to
invariance of the form of Eq. (11) with respect to transformation n-� n; we must have Cn ¼
C�n: The values of coefficients Cn for N ¼ 1; 2; 3; 4 are presented in Table 1.
Similarly, second order partial derivatives with respect to y can be expressed as linear

combinations of sampled values up;qþn; so the transverse force per unit surface area may be
approximated as

K uðx; yÞjðx;yÞ¼ðph;qhÞC
X

rs

Kpq;rs urs; ð13Þ

where

Kpq;rs ¼

Cp�r=h2 if q ¼ s and 1pjp � rjpN;

Cq�s=h2 if p ¼ r and 1pjq � sjpN;

2C0=h2 if p ¼ r and q ¼ s;

0 otherwise:

8>>><
>>>:

ð14Þ

(a) (b) (d) (e)(c)

Fig. 1. Simulated interferogram data for the sixth vibrational mode of an inhomogeneous membrane: (a) displacement

amplitude, (b) cosine fringes, (c) sine fringes, (d) wrapped phase, (e) unwrapped phase, proportional to surface

displacement.
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This leads us to our key result, which is an approximation to (2) at grid points ðx; yÞ ¼ ðph; qhÞ:X
rs

Kpq;rsurs ¼ �o2spqupq; ð15Þ

where spq ¼ sðph; qhÞ: The matrix of coefficients K ¼ ½Kpq;rs�; the stiffness matrix, is the discrete
counterpart of the stiffness operator K : From Eq. (15), we obtain the sampled density as

spq ¼
�
P

rs Kpq;rsurs

o2upq

; upqa0; ð16Þ

which is the discrete version of Eq. (3). Eq. (16) yields spq wherever the right-hand side of the
equation is defined, i.e., at all sampling locations ðx; yÞ ¼ ðph; qhÞ that have at least N nearest
neighbours, in both x and y directions, on the interior of the membrane. Since we need not
consider boundary conditions in the solution of the inverse problem, relation (16) may be applied
irrespective of the shape of the membrane.

4.1. Discretization errors

For N ¼ 1; the approximation of the Laplacian given by Eqs. (13) and (14) is the ordinary finite
difference approximation. For N ¼ 2 it corresponds to the improved fourth order scheme
developed in Ref. [12]. For a sufficiently differentiable function u it may be shown, by direct
substitution of a power-series expansion of u in Eq. (13), that the error in the expression is of
order 2N in the grid spacing h: We examine the accuracy of this discrete representation of the
continuous system by considering two exactly solvable free vibration problems: a membrane with
continuously inhomogeneous density, and a composite membrane with step discontinuity.

4.1.1. Continuous inhomogeneity

We consider a square membrane with a surface density that is linear in x; with sðx; yÞ ¼ 2x: The
area and surface tension of the membrane are unity. The free vibration equation (2) becomes

r2uðx; yÞ ¼ �2o2x uðx; yÞ; ð17Þ

where 0oxo1 and 0oyo1: The membrane is fixed to a rigid support at its boundary with

uð0; yÞ ¼ uð1; yÞ ¼ uðx; 0Þ ¼ uðx; 1Þ ¼ 0:

This system is a limiting case of one considered by Wang [3], with the unphysical property of
vanishing density, and diverging phase velocity, at the x ¼ 0 boundary. Exact solutions for the

Table 1

Coefficients used to estimate second order derivatives of a sampled function

N C0 C1 C2 C3 C4

1 �2 1

2 �5=2 4=3 �1=12
3 �49=18 3=2 �3=20 1=90
4 �205=72 8=5 �1=5 8=315 �1=560
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modes are of the form

uðx; yÞ ¼ sinðnpyÞ ½C1 Aiðax þ bÞ þ C2 Biðax þ bÞ�;

where Ai and Bi denote Airy functions of the first and second kind, respectively, n is a positive
integer, C1 and C2 are constants, and

a ¼ �ð2o2Þ1=3; b ¼ ðnp=aÞ2:

Solutions of the transcendental equations

C1 AiðbÞ þ C2 BiðbÞ ¼ C1 Aiða þ bÞ þ C2 Biða þ bÞ ¼ 0; ð18Þ

which ensure boundary conditions are satisfied at x ¼ 0; 1; yield constants C1;C2 (within an
arbitrary multiplicative factor) and frequencies o:
Solution of Eq. (18) by conventional root search methods can easily miss valid roots. This is

exemplified in Ref. [3], where results are presented for the fundamental frequency of rectangular
membranes with densities linear in x: The results indicate several step-like increases in the value of
the fundamental frequency, as the inhomogeneity parameter is gradually increased. Our
calculations show that all frequencies reported in Ref. [3] are valid frequencies of the membranes,
but many of them are not the fundamental, and the anomalies observed are a numerical artifact
due to missed roots. To solve Eq. (18), we employ the so-called ‘‘shooting method’’, which is often
used to obtain eigenfunctions of quantum mechanical systems [17]. It relies on the fact that if the
modal displacement uðx; yÞ is separable into a product of an x-dependent part X ðxÞ and a y-
dependent part Y ðyÞ; so that u ¼ XY ; then all modes are uniquely identifiable by a 2-D index
ðMx;MyÞAN
N; such that Mx � 1 and My � 1 are equal to the number of zeros of X and Y on
the membrane. For the present case, X ¼ C1 Aiðax þ bÞ þ C2 Biðax þ bÞ and Y ¼ sinðnpyÞ: For
given My ¼ n; the number of valid frequencies less than some trial frequency otrial is found as the
number of zeros of X ðxÞ for xA½0; 1Þ; after letting o ¼ otrial in X and choosing constants C1 and
C2 so that the boundary condition at x ¼ 0 is satisfied with X ð0Þ ¼ 0: Once intervals containing
valid solutions are identified, the sizes of the intervals are iteratively reduced until machine-
precision solutions are obtained. No valid roots are missed because each mode is uniquely
identified by the 2-D mode index ðMx;MyÞ; and the frequency is a monotonously increasing
function of Mx and My:
For an approximate numerical solution of the problem, the displacement amplitude u and the

density s are sampled at ðL þ 1Þ 
 ðL þ 1Þ points on the surface and boundary. Eq. (17) is
approximated by Eq. (15) with spq ¼ 2ph; where h ¼ 1=L: The discrete system has ðL � 1Þ2

degrees of freedom, equal to the number of internal grid points. For N > 1; the degree of the
interpolating polynomials is retained at all grid points, by defining the wave amplitude at grid
points outside the membrane, in a manner consistent with boundary conditions. For example, we
set u0q ¼ 0 and u�p;q ¼ �upq; which approximates the displacement amplitude with an odd
function f ðxÞ at y ¼ qh: Odd- and even-order derivatives of f ðxÞ are even and odd functions,
respectively. This implies that the existence of an even-order derivative f ð2nÞðxÞ; at x ¼ 0; ensures
the continuity of the odd-order derivative f ð2nþ1ÞðxÞ at x ¼ 0: The equation of motion and the
fixed boundary conditions ensure that f will have a vanishing second derivative on the boundary
at x ¼ 0; since there r2u ¼ u ¼ 0: Hence f has continuous derivatives of up to third order, and
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the fourth derivative is, in general, discontinuous at x ¼ 0: This limits the accuracy of the discrete
approximation to Oðh4Þ; for any interpolation order 2N > 4:
For efficient solution of the generalized eigenproblem (15), it is first transformed into the simple

eigenvalue problem X
rs

Mpq;rswrs ¼ o2wpq; ð19Þ

where

wpq ¼ upq

ffiffiffiffiffiffiffi
spq

p
;

Mpq;rs ¼ �
1ffiffiffiffiffiffiffi
spq

p Kpq;rs

1ffiffiffiffiffiffi
srs

p :

Matrix ½Mpq;rs� has the symmetry properties of ½Kpq;rs�; i.e., it is real symmetric. Eq. (19) was solved
for eigenvalues o2 and eigenvectors fwpqg using the Lanczos algorithm. The Lanczos algorithm
provides an efficient way to solve large sparse matrix eigenproblems. Eq. (19) presents a sparse
problem, since, by Eq. (14), most of the stiffness matrix coefficients are zero. Our implementation
of the algorithm is based on that of Cullum and Willoughby [18]. Eigenvalues are obtained at
typically 10 (at worst 8) digits of precision, and eigenvector components are accurate to 6 (5)
digits.
Results for the fundamental frequency of the sðx; yÞ ¼ 2x membrane are presented in Table 2

for L ¼ 10; 20; 50; 100 and N ¼ 1; 2; 4: We have also included frequencies computed using the
finite element method (F-E), with linear element functions. The finite element method is
considerably more taxing on computational resources, so we have only computed frequencies for
L ¼ 10; 20; 50: The exact frequency is shown below each data set. The results show that the
accuracy of the finite difference approximation improves with increasing L and N: The accuracy
of the finite element method is similar to that obtained using ordinary finite differences ðN ¼ 1Þ;
with the latter method underestimating the frequency by about the same amount, for the same L;
as the former overestimates it. For the smallest grid size of L ¼ 10; the frequencies obtained with
these methods are within about 0.5% of the exact value. For the improved finite difference
schemes of order 4 and 8 the accuracies are 0.01% and 0.003%, respectively.
For all values of L considered here, the increase in the accuracy is remarkable when going from

N ¼ 1 to 2. However increasing N beyond 2 results in only modest improvements. This reflects the
fourth-order, Oðh4Þ; limit on accuracy, due to boundary conditions. The discrete approximation
to the Laplacian can only be improved at grid points where the interpolating functions do not
involve ‘‘image’’ points beyond the boundary of the system.
The errors in the computed frequencies are

Do ¼ joðxctÞ � oðapxÞj;

where superscripts ‘‘ðxctÞ’’ and ‘‘ðapxÞ’’ denote exact and numerical, approximate, values
respectively. We define the errors in the modal displacement u as

Dumax ¼ max
L�1

p;q¼1
jDuðph; qhÞj; ð20Þ
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with

Duðph; qhÞ ¼ uðxctÞ
pq � uðapxÞ

pq ;

where arrays fuðxctÞpq g and fuðapxÞpq g are scaled so that the magnitude of the largest elements is equal
to unity, i.e. maxpq juðxctÞpq j ¼ maxpq juðapxÞ

pq j ¼ 1; and the two arrays are in phase (uðxctÞpq CuðapxÞ
pq rather

than uðxctÞ
pq C� uðapxÞ

pq ).
The relative errors Do=o in the computed frequencies are presented in Fig. 2. The errors for the

first 20 modes of the membrane are plotted as a function of the mode index M in Fig. 2a, for a
grid size of L ¼ 60: (The mode index numbers the modes in order of ascending frequency, with
M ¼ 1 for the fundamental.) Results are shown for finite difference schemes of order 2N ¼ 2; 4; 8
and for the finite element method. All frequencies are obtained with relative errors less than 10�4

for N ¼ 2; and 10�6 for N ¼ 4: Errors for the finite element and ordinary finite difference methods
are less than 1%.
In Fig. 2b, we have plotted the relative error in the 10th gravest frequency of the membrane

against grid size L: For the second and fourth order schemes (N ¼ 1; 2), the results clearly indicate
that errors are of the respective order in the sampling interval h ¼ 1=L: For N ¼ 4 and LZ30; the
order of the approximation is dominated by fourth order errors associated with the fixed
boundary.
Exact and approximate results for the first 20 modes of the membrane indicate that the errors in

the modeshapes, as defined by Eq. (20), are no more than an order of magnitude greater than the
relative errors in the corresponding frequencies, or 10�5 (whichever is greater), i.e.,

Dumaxo
10Do=o; Do=o > 10�6;

10�5 otherwise:

(

The upper limit of 10�5 on accuracy reflects the five digits of precision attainable by the
eigensolver.

4.1.2. Step inhomogeneity
To illustrate some of the limitations of the discrete models, we consider a square membrane

with step discontinuity. The membrane surface occupies the domain 0oxo1; 0oyo1; and the

Table 2

Numerical results for the fundamental frequency of the sðx; yÞ ¼ 2x membrane

L N ¼ 1 N ¼ 2 N ¼ 4 F-E

10 4.256 299 776 4.278 110 479 4.278 655 202 4.300 790 193

20 4.272 986 059 4.278 510 940 4.278 545 886 4.284 109 706

50 4.277 646 999 4.278 538 013 4.278 538 914 4.279 430 469

100 4.278 315 786 4.278 538 683 4.278 538 738

Exact 4.278 538 732 4.278 538 732 4.278 538 732 4.278 538 732
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surface density is

s ¼

1:9; x > 0:5;

1; x ¼ 0:5;

0:1; xo0:5:

8><
>:

The total mass of the membrane is unity. Exact solutions for the natural frequencies and modes
may be found by imposing boundary conditions at x ¼ 0; 1 and continuity conditions at x ¼ 0:5
on the general solution for the x-dependent part of the displacement amplitude.
Fig. 3 shows our results for the modeshape of the fundamental. The x-dependent part of the

mode is shown in Fig. 3a. The amplitude in the low-density region, xo0:5; is characterized by
exponential decay, and in x > 0:5; where the density is high, it is sinusoidal. The solid curve
corresponds to the exact result, and the data points represent the fundamental of discrete systems
with L ¼ 60: In Fig. 3b, we have plotted the difference between the exact and approximate
modeshapes for N ¼ 1; 2: For both schemes, the difference is greatest at grid points near the
discontinuity in s:
The relative errors for the fundamental frequency are plotted as a function of L in Fig. 4a for

N ¼ 1 and 2. The error for both schemes decreases as L�2: This is due to a discontinuity in the
density s; which implies discontinuity in the second derivative of the amplitude u: Consequently,
the fourth order scheme is reduced in accuracy to second order. For N ¼ 1; results obtained with
L even (where the continuous system is being sampled on the discontinuity at x ¼ 0:5), are about
five times more accurate than those for odd L: For N ¼ 2; odd values of L yield better accuracy.
The most accurate solutions are obtained with N ¼ 1 and L even. The sensitivity of the system to
small ð71Þ changes in L is less, however, for N ¼ 2: Results obtained with N > 2 are similar to
those obtained with N ¼ 2; i.e., increasing the interpolation order beyond four had no significant
effect on the accuracy. The errors in the first 20 natural frequencies, computed with N ¼ 1; 2 and
L ¼ 60; are shown in Fig. 4b. For N ¼ 2 all frequencies are accurate to at least 0.06%. The
accuracy of the ordinary finite difference scheme ðN ¼ 1Þ; with the exception of the fundamental,
is significantly less, with errors of up to 0.5%.

(a) (b)

Fig. 2. Relative errors Do=o in frequencies o of a square membrane with density sðx; yÞ ¼ 2x; computed using order-

2N finite difference and finite element (F-E) methods. (a) Log-linear plot of error against mode index M for grid size

L ¼ 60: (b) Log–log plot of the error in the 10th gravest frequency against L: Straight lines drawn through data points

represent second and fourth order trends as indicated.

S. Homolya et al. / Journal of Sound and Vibration 261 (2003) 193–211202



4.2. Error estimates for reconstructed densities

Let us suppose that a sampled modeshape upq and the corresponding natural frequency o have
been deduced experimentally within known errors, 7dupq and 7do; respectively. Results
presented in Section 4.1 indicate that, in what follows, the simulated experimental errors dominate
over spatial discretization errors. Therefore, the errors dspq in s by Eq. (16) may be estimated as

dspq ¼
P

rs jKpq;rsjdurs

j
P

rs Kpq;rsurs j
þ

dupq

jupqj
þ 2

do
o

� �
spq; ð21Þ

which is correct to first order in dupq and do: When several modes and their vibrational
frequencies are known, Eq. (16) provides several corresponding estimates for the surface density.
Results from several modes may be combined by selecting the best estimate for spq; for each ðp; qÞ:

5. Results with simulated data

Surface reconstructions are presented for simulated experimental data. We considered two
membranes with inhomogeneous surface densities and surface tensions of unity. The membranes
were assumed fixed to a rigid square boundary. The first step in simulating the experimental data
involved solution of the free vibration equation (2) for the first 20 natural frequencies and modes,
by discretization on a high-resolution, 240
 240; grid, as described in Section 4. Eighth order
interpolations were used to approximate the Laplacian. This high-resolution modeshape data was
down-sampled onto a 60
 60 grid. Intensities I1;2ðx; yÞ were computed from the down-sampled
modeshape data using Eqs. (5), (6), with the amplitude of vibration scaled to give similar fringe
densities for all modes.
Using relation (7), the two greyscale images G1;2 were generated from the computed intensities

I1;2; with calibration errors D and d chosen at random from the interval ½�0:5; 0:5� for each set of
modes. D was set to one of the three values: 15, 63 or 255, which correspond to detector depth
resolutions of 16, 64 and 256 levels, respectively. Approximations upq to the sampled modes, along
with error estimates dupq; were obtained from the simulated experimental data, as described in
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Fig. 3. Results for the x-dependent part of the fundamental of the composite membrane described in the text. (a)

Discrete approximation to the modeshape uðx; 0:5Þ using 59 internal sample points ðL ¼ 60Þ: The solid curve represents
the exact result. (b) Difference between the exact result uðxctÞ and discrete approximation uðapxÞ for N ¼ 1; 2; with L ¼ 60:
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Section 3. The vibrational frequencies o were assumed exact with do ¼ 0: The surface
reconstruction method described in Section 4 was applied to the sampled modeshape data, to
recover the sampled surface density using Eq. (16), with estimated errors given by Eq. (21).
Fourth order interpolations were used in the solution of the inverse problem.

5.1. Test densities

The two density functions used in the simulations are shown as greyscale plots in Fig. 5a and b.
The density of system 1, plotted in Fig. 5a, comprises four homogeneous regions, where s ¼ 1; 2
or 3 (lighter shades of grey represent larger values). The density changes abruptly at the
boundaries between homogeneous regions. The image shown in Fig. 5b represents the density of
system 2, which is a superposition of plane waves with randomly generated relative phases
(bandwidth-limited white noise), with global extrema of 0.25 and 2.0. Figs. 5c and d show the two
density functions with reduced resolution ð60
 60Þ: These are the sought-after solutions of the
inverse problem.

5.2. Reconstruction from raw data

Figs. 6 and 7 provide a summary of results for reconstructed densities, in tabulated form, with
simulated detector depth of 256 levels. The top rows of images are sine-fringe interferograms G2 of
modes M ¼ 1; 2; 5; 10; 20: Densities sM ; shown in the second row, are computed from the
interferograms of mode M: Regions in black represent grid points where the estimated relative
errors in the computed density are greater than 50%: For both systems, the density computations
show poor accuracy near nodal lines, as expected from Eq. (21). Images on the bottom rows of
Figs. 6 and 7 correspond to the reconstructed densities s1;y;M obtained by combining sM deduced
from modes 1 through M: The first 10 modes recover most of the sampled density array for both
systems, and with 20 modes, we have good estimates over more than about 90% of the area of the
membrane.
Both reconstructions show considerable speckle noise. However, these variations are within

estimated errors, which have proved to be conservative, typically less than 20% of the true error,
except at internal boundaries between constant density regions of system 1. Here, the slight

(b)(a)

Fig. 4. Relative errors Do=o in order-2N finite difference approximations to frequencies o of the composite membrane

described in the text. (a) Log–log plot of the error in the fundamental against grid size L; for N ¼ 1; 2: Solid lines

represent second order trends. (b) Log-linear plot of error against mode index M; for N ¼ 1; 2; and L ¼ 60:
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‘‘blurring’’, observed in the reconstructions shown in Fig. 6, arises from errors introduced by
discretization of the stiffness operator, and is present for all D: This was confirmed by simulations
with Dp107:
Poor reconstruction results were obtained with 64- and 16-greylevel interferograms ðD ¼

63; 15Þ: For D ¼ 15; all estimated errors for reconstructed densities were greater than 50%, and
for D ¼ 63; only about 10% of the membrane surface was recovered from the first 20 modes.

5.3. Reconstruction from down-sampled data

The large error estimates in the density computed from low-depth interferograms are due to the
inaccuracy of the approximation on the left-hand side of Eq. (15), involving the stiffness matrix
½Kpq;rs�; to r2u: As the approximation scheme is based on local interpolation, it is differences
between nearest-neighbour sampled values of u that determine the approximated value of r2u:
Whenever differences between such values are similar in magnitude to the errors, the
approximation fails. As the spatial sampling interval h is decreased, and the surface is probed
in more detail, the second derivative (21) of the interpolating function approaches the
corresponding second derivative of the displacement amplitude, only if the sampled data are
exact. Then the sum on the right-hand side of Eq. (12) must vanish as h2:When estimated errors in
sampled values upþn;q are independent of h; the estimated absolute error for the sum remains
similar in magnitude for all h; so the estimated relative error in the expression diverges as h�2:
Therefore, increasing the spatial resolution results in larger errors.
We can compensate for this by increasing the accuracy of the data, increasing the depth

resolution of the interferogram images with DBh�2: Alternatively, the spatial resolution may be
reduced for low depth resolution data, with hB1=

ffiffiffiffi
D

p
: For the simulated interferogram data with

D ¼ 64 and D ¼ 15; estimated accuracies, similar to those obtained with D ¼ 255; may be
achieved, if the spatial resolution is reduced from 60
 60; to 30
 30 and 15
 15; respectively. To
ensure the reliability of the phase unwrapping algorithm, the resolution reduction is introduced in
the unwrapped phase, rather than the interferograms, where it could result in missed fringes.
Results for densities computed from reduced resolution phase arrays are shown tabulated in

Fig. 8. The first and second columns of images show the 15
 15 density arrays for systems 1 and
2, respectively, computed from 16-greylevel interferograms. The 30
 30 density arrays obtained

(a) (b) (c) (d)

Fig. 5. Greyscale plots of membrane surface density functions s used in the simulations: (a) composite of four

homogeneous regions, where s ¼ 1 (darkest), 2 (medium grey), 3 (lightest); (b) low-pass filtered white noise; (c,d) the

same functions sampled on a 60
 60 grid—the arrays sought from the simulated experimental data.
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from 64-greylevel interferograms are shown in the third and fourth columns. The first row of
images shows densities reconstructed from interferograms of mode 5 alone, the second the
combined result from modes 1 to 5, and the third from modes 1 to 20. Apart from the reduced
spatial resolution, the reconstructions are comparable to corresponding results shown in Figs. 6
and 7, for D ¼ 255:

5.4. Reconstruction from filtered data

The main disadvantage of down-sampling is that errors associated with the discretization of the
stiffness operator may become excessive at low spatial resolutions. An alternative is to apply a

Fig. 6. Simulated 256-greylevel modeshape interferograms and reconstructed surface densities for system 1. Definition

of symbols: M; mode index; sM ; density computed from interferograms of mode M only; G2; sine-fringe interferograms
given by Eq. (7) with j ¼ 2; s1;y;M ; density computed from interferograms of modes 1 to M:

Fig. 7. Simulated 256-greylevel modeshape interferograms and reconstructed surface densities for system 2. Definition

of symbols as per Fig. 6.
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low-pass filter to the sampled wave amplitude data. We apply a filter ‘‘window’’, so that

upq-

P
ij Fi�p;j�quijP

ij Fij

; ð22Þ

where the sums are over the entire array (i ¼ 1;y;L; j ¼ 1;y;W ). A Gaussian blur window is
defined by coefficients Fpq given by

Fpq ¼ e�ðp2þq2Þ=R2

;

where R is the radius of the filter. Using the filtered phase to calculate the density from Eq. (3), we
get

spq ¼
�
P

ij;rs Kpq;rsFi�r;j�suij

o2
P

ij Fi�p;j�puij

;

where uij signify the raw, unfiltered, data. Relative errors for the densities spq computed from the
filtered phase may now be estimated, to first order in errors duij and do; as

dspq

spq

¼

P
ij

P
rs Kpq;rsFi�r;j�s

�� ��duij

j
P

ij;rs Kpq;rsFi�r;j�suij j
þ

P
ij Fi�r;j�s

�� ��duij

j
P

ij Fi�r;j�suij j
þ 2

do
o
: ð23Þ

Filtering works because in the first term on the right-hand side of Eq. (23), which is the relative
error in Ku; it is the coefficients Kpq;rs that are being blurred and not the errors. As Kpq;rs alternate
in sign with increments in r or s; and the filter gives a weighted average over these, the magnitude
of this average is going to be smaller than a sum of the magnitudes of Kpq;rs; given in Eq. (21). The
error estimates given by Eq. (23) are generally reduced by filtering. The purpose of filtering is to
make the true errors at neighbouring grid-points similar in value, without excessively blurring the
data. We can check whether we have chosen a reasonable value for the filter radius by comparing

Fig. 8. Reduced resolution surface reconstructions from simulated interferogram data quantized to D þ 1 ¼ 16 and 64

levels. Symbols s5; s1;y;5 and s1;y;20 signify reconstructions from interferograms of mode 5, modes 1 to 5, and modes 1

to 20, respectively.
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filtered and unfiltered data. If the former is not within estimated error of the latter, the filter radius
needs to be decreased.
While expression (23) can be used to compute the reduced error estimates for spq; the

computation of the first sum on the right-hand side of Eq. (23) for each ðp; qÞ is time consuming,
because the coefficient blurring generates many terms in the sum. Instead of computing the errors
directly, we can estimate the ratio r of errors in Ku obtained with and without filtering, by
comparing the magnitude of coefficients of duij in the corresponding terms of Eqs. (21) and (23):

rC
X

ij

X
rs

Kpq;rsFi�r;j�s

�����
�����

X
ij

jKpq;ij j

,
: ð24Þ

Since the summations involve all ði; jÞ and ðr; sÞ; and Kpq;rs only depends on the differences between
indices, p � r and q � s; r is independent of ðp; qÞ: Once r is computed, the reduced error estimates
for spq may be obtained from Eq. (21) after multiplying the first term inside the brackets by r:
Our results indicate that the error reduction factor r given by Eq. (24) is overly conservative,

especially with low-depth resolution interferograms, which require stronger filtering (larger R).
More reasonable error estimates are obtained if we assume the applicability of the central limit
theorem to the first sum in Eq. (23), over the large number of error terms duij: Thus,

rC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxij

X
rs

Kpq;rsFi�r;j�s

��� ���� �



X
ij

X
rs

Kpq;rsFi�r;j�s

��� ���
r X

ij

jKpq;ij j

,
:

Fig. 9 shows surface densities computed from low-pass filtered simulated phase data by
combining results from modes 1 to 5 (s1;y;5) and modes 1 to 20 (s1;y;20). Filters of radii R ¼
2; 1; 0:5 were applied to phase arrays computed from 16, 64 and 256-greylevel ðD ¼ 15; 63; 255Þ
interferograms, respectively. The results illustrate that filtering results in some loss of information

Fig. 9. 60
 60 surface density arrays reconstructed from simulated modeshape interferogram data, with low-pass

filtering used to suppress level quantization errors. Reconstructions with D ¼ 15; 63 and 255 were obtained using filters
of radii R ¼ 2; 1 and 0.5, respectively.
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in the reconstructed density. For system 1 this is observed at internal boundaries between constant
density regions, and for system 2 as a loss of contrast in the reconstructions compared with the
exact data of Fig. 5d. The loss of detail is greatest for the results obtained from strongly filtered
ðR ¼ 2Þ low accuracy ðD ¼ 15Þ data. Conservative use of filtering can however be employed to
speed up data acquisition without significant loss of detail, as in the case of D ¼ 255; R ¼ 0:5;
where the densities recovered from the first 5 modes, compare favourably with those obtained
without filtering (Figs. 6 and 7, s1;y;M ; M ¼ 5).

6. Comments on lossy systems

This work assumes that energy losses are sufficiently small, so that resonant responses of the
system may be regarded as pure modes of a lossless system. When losses are significant, solution
of the inverse problem becomes considerably more complicated. Generalizing Eq. (1), we have

F þ KU � c@tU ¼ s@2t U ; ð25Þ

where function c is a position-dependent positive damping constant, and F denotes the external
applied force per unit area. For harmonic forcing with Fðx; y; tÞ ¼ f ðx; yÞe�iot; and a steady state
response Uðx; y; tÞ ¼ uðx; yÞe�iot; Eq. (25) becomes

f þ Ku þ ðicoþ so2Þu ¼ 0: ð26Þ

Expanding u in terms of natural modes of the corresponding lossless system gives

u ¼
X

m

amum; ð27Þ

where am are constants and u ¼ um satisfy the free vibration equation (2) for o ¼ om: It is
convenient to choose normalized modes that satisfy orthogonality relationsZ

S

umKun dS ¼ �o2
n

Z
S

umsun dS ¼ �dmno2
n; ð28Þ

where dmn denotes the Kronecker delta. Substituting Eq. (27) in Eq. (26), pre-multiplying the
resulting equation by um and integrating over S we obtain

am ¼
fm

o2
m � o2 � io

P
n cmn

; ð29Þ

where we have used orthogonality relations (28) and introduced the symbols

fm ¼
Z

S

umf dS; cmn ¼
Z

S

umcun dS:

When o is a natural frequency of the lossless system, say o ¼ ol ; and losses are sufficiently small
so that

o
X

n

cmn5jo2
m � o2j; 8mal; ð30Þ
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Eq. (29) predicts that the displacement amplitude will essentially be a pure mode, since

jal jbjamj; 8mal;

unless jfl j happens to be small.
In simulating the experimental data presented in Section 5, we have implicitly assumed that

relation (30) is satisfied. Density reconstruction for lossy systems, where Eq. (30) is not satisfied, is
the subject of a paper currently in preparation.

7. Conclusion

We have demonstrated in principle that a digital imaging interferometer can be used to
indirectly measure the mass density of a vibrating membrane. We have analyzed errors arising
from finite spatial sampling and signal quantization in the interferograms, and discussed two
strategies for reducing such errors, one involving down-sampling and another spatial filtering.
Simulation results for inhomogeneous membranes show good agreement with quantitative
analysis of the error reduction methods. Results indicate that the surface reconstruction method is
practicable when energy losses are small enough to allow observation of pure modes as resonant
responses of the system to harmonic excitations. Future work is aimed at extending the method to
lossy systems.
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