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Abstract

The purpose of this study was to develop a theoretical model for the flow-induced vibration of
viscoelastically supported rectangular plates. In particular, the influence of the dynamic mechanical
properties of the elements supporting the plate was investigated. The case of a homogeneous rectangular
plate supported along all four edges by a complex viscoelastic element was treated. The Rayleigh–Ritz
method was used applying beam functions as the trial functions. This approach ensured a fast convergence
rate, which is advantageous for vibration analysis of high order modes. The flow-induced vibration of the
plate was calculated using the Corcos model for the surface pressure loading. The results suggest that there
is an optimal support stiffness that minimizes the flow-induced vibration response of the plate.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flow-induced structural vibrations are encountered in many practical engineering problems.
For example, the side-glass window panels of road vehicles may be excited by turbulent flows
when the vehicle is operated at cruise. This phenomenon is responsible for sound radiated inside
the vehicle, a primary source of aerodynamic broadband noise [1]. In any situation where plates or
panels are supported on one or several edges by compliant viscoelastic systems, such as in the case
of flow-induced vibrations of side-glass windows supported by rubber seals (Fig. 1(a)), dissipation
of vibration energy occurs mostly at the supports rather than within the structure itself [2,3]. In
this case, the effects of the supporting elements on the vibration response of the plate determine
the amplitude of the radiated sound.
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Flow-induced structural vibrations have been the objects of many previous studies [4–7]. Most
studies of the flow-induced vibrations have been devoted to plates with geometric or natural
boundary conditions. The problem of plates with general boundary conditions has been studied
previously. Approximate methods based on the well-known Rayleigh–Ritz method have been
used for a rectangular plate supported elastically on all four edges (general boundary conditions),
for a discrete excitation [8]. The case of a similar structure excited by turbulent flow has been
investigated using finite element and boundary element methods [9]. The Rayleigh–Ritz method
has many advantages over numerical methods such as finite element and bounday element
methods. It is less expensive, requires less computational effort, and thus it is more convenient for
design optimization and parametric studies. It is limited, however, to structures with a simple
geometry.

In the Rayleigh–Ritz method, the selection of the trial functions is important. Young [10] used
beam functions as trial functions for the analysis of clamped and cantilevered plates. Berry et al.
[11] considered two different sets of trial functions: Fourier series and polynomial functions.
Fourier series, however, cannot accurately describe the response when there is a finite
displacement at the boundary, a problem polynomial functions can remedy. Berry et al.
accounted for the effects of the compliance of the support at the edges in their derivation of the
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Fig. 1. (a) Sound radiation from flow-induced vibrations of a seal-supported rectangular plate. (b) Geometry of the

rectangular plate and its boundary conditions. The supports are shown from a side view of the plate.
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Hamiltonian of the system. Beslin and Nicolas [12] analyzed very high order plate bending modes
by using two different trial function sets: hierarchical polynomials and hierarchical trigonometric
functions. It was shown that hierarchical polynomials are inappropriate to predict very high order
modes since the mass and stiffness matrices are often ill-conditioned because of numerical round-
off errors. Hierarchical trigonometric functions yielded much better numerical stability compared
to hierarchical polynomials.

The primary goal of the current investigation was to assess the influence of rubber seal
properties on the flow-induced vibrations of side-glass window panels. The panels were idealized
as rectangular homogeneous plates to allow for simple theoretical methods to be used. The energy
dissipation mechanism was primarily associated with damping at the supports, in contrast with
material damping of the panels themselves [3]. Such external damping mechanism may be easily
controlled by changing the geometry or the material of the support. To analyze the effects of the
support properties, the Rayleigh–Ritz method was used. Modified beam functions were used as
the trial functions to minimize numerical errors at high frequencies. As discussed later, the use of
beam functions ensured fast convergence and allowed the vibration analysis to be extended to
high order modes.

The effects of support stiffness on the modal properties of the plate were investigated. The
results for the first, the fourth, and the 20th modes were selected for discussion. The steady-state
vibration response under a turbulent flow excitation was calculated. The Corcos wall pressure
model was used. The effects of the support stiffness on the flow-induced vibration were
investigated, in particular the velocity response at resonance.

2. Vibration analysis of A viscoelastically supported plate

2.1. Free vibration analysis

Fig. 1(a) illustrates one possible example of sound radiation from flow-induced vibrations of a
viscoelastically supported plate. This configuration is intended to idealize a seal-supported vehicle
side-glass window. One side of the plate is excited by a turbulent flow. The sound generated from
the vibrations of the plate is radiated into the interior of the vehicle. Fig. 1(b) shows a schematic
of the viscoelastically supported rectangular plate. A Cartesian co-ordinate system is used (Fig. 1).
The plate has a uniform thickness, h; and dimensions a � b: The normalized spatial coordinates,
x ¼ x=a and z ¼ y=b; vary between 0 and 1. The motion of the four edges is restrained by
translational and rotational springs. The plate is supported by translational springs with
stiffnesses st1; st2; st3; and st4 along the boundaries at y ¼ 0; y ¼ b; x ¼ 0; and x ¼ a; respectively.
Rotational springs with stiffness, sr1; sr2; sr3; and sr4 are arranged in a similar fashion.

A variational formulation, the Rayleigh–Ritz method, was used for the vibration analysis. The
generalized coordinates were time-dependent. In this case, the Rayleigh–Ritz method is sometimes
referred to in the literature as the assumed-modes method [13]. The kinetic, T ; and potential
energy, V ; for transverse vibration of the plate was calculated using [11]:
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where O and n are the contours and the normal direction (Fig. 1(b)) along the boundary of the
plate, respectively, D ¼ Eh3=12ð1 � n2Þ is the bending stiffness of the rectangular plate, w is the
transverse displacement, r is the density, h is the thickness, E is Young’s modulus, and n is the
Poisson ratio. The contribution of the viscoelastic supports and their interaction with the plate
vibrations is taken into account in the calculation of the potential energy, Eq. (2). The transverse
displacement of the plate was approximated as

wðx; y; tÞ ¼
XN2

mn¼1

Gmnðx; yÞamnðtÞ; ð3Þ

where Gmn are the trial functions chosen from a complete set, and amn are the generalized
coordinates. Given the N2-trial functions, the plate vibration response is approximated as an N2-
degrees-of-freedom discrete system. After substituting Eq. (3) into Eqs. (1) and (2), Lagrange’s
equations of motion,

d

dt

@L

@’amn

� �
�

@L

@amn

¼ 0; mn ¼ 1; 2;y;N2; ð4Þ

were applied, where L ¼ T � V is the system Lagrangian. This yields a set of equations of motion

½M�f.ag þ ½K�fag ¼ 0; ð5Þ

where ½M� and ½K � are the mass and stiffness matrices, respectively. In a normal mode analysis to
calculate the mode shapes and natural frequencies, the solution of Eq. (5) was assumed to be

amnðtÞ ¼ Ref#amne
iotg; ð6Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and #amn is the complex amplitude of amn: The following eigenvalue problem was

obtained from Eqs. (5) and (6):

f�o2½M� þ ½ #K�gf#ag ¼ 0: ð7Þ

A commonly accepted method to model the dissipation of vibration energy is to use a complex
stiffness for the dynamic properties of mechanical supports. In this study, the complex stiffnesses
of the supports were defined

#Stj ¼ Stjð1 þ iZtjÞ; j ¼ 1; :::; 4 ð8aÞ

#Srj ¼ Srjð1 þ iZrjÞ; j ¼ 1; :::; 4 ð8bÞ

where Ztj andZrj are the loss factors. Since the support stiffness is complex, the stiffness matrix in
Eq. (7) is also complex. From Eq. (7), the natural frequencies of the plate, #oj; and the associated
eigenvectors, f #Vjg; were calculated. Note that the eigenvectors are orthogonal because the above
mass and stiffness matrices are symmetric [13]. The calculated eigenvalues from Eq. (7), #oj; are
complex when the plate is supported viscoelastically. The damped natural frequencies, fj:; and the
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system loss factors, Zj; are related to the complex eigenvalues through

#oj ¼ ð2pfjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ iZj:

q
ð9Þ

The calculated eigenvectors were scaled to satisfy the following condition:

f #V�
j g

Tf #Vmg ¼ djm; ð10Þ

where djm is the Kronecker delta function and f #V�
j g is the complex conjugate of f #Vjg:

2.2. Trial functions

As mentioned in the introduction, the selection of trial functions in Eq. (3) determines the
convergence rate and the accuracy of the solution. In this study, beam functions were used. In
general, the trial functions for the transverse plate displacement are in the form

Gmnðx; zÞ ¼ fmðxÞcnðzÞ; ð11Þ

where fm and cn are functions only of the x- and z-coordinates, respectively. These functions
satisfy the boundary conditions for one-dimensional transverse vibrations of the elastically
supported plate, as illustrated in Fig. 2. To obtain fm; the plate is assumed to vibrate only in the x-
direction without any constrain in the z-direction (one-dimensional response). In this case, the
equation of motion is [14]

D

a4

@4w

@x4
þ rh

@2w

@t2
¼ 0: ð12Þ

Fig. 2 shows the elastic boundary conditions imposed in the x-direction. Note that the real part
of the complex stiffnesses (in Eq. (8)) was used when applying the boundary conditions. Thus, the
modal shape functions are purely real. The analysis procedures for one-dimensional vibrations of
plates are exactly same as those for vibrating beams which is discussed for general boundary
conditions in Ref. [2]. The shape functions usually consist of sine, cosine, hyperbolic sine, and
hyperbolic cosine functions, i.e.,

fmðxÞ ¼ Am sin bmxþ Bm cos bmxþ C
0

m sinh bmxþ D
0

m cosh bmx; ð13Þ

where bm are the frequency parameters. In the present study, it was found that the use of
hyperbolic functions caused numerical errors in calculating the shape functions. As discussed by
Chen and Zhou [15], exponential waves affect the vibration response only at the boundaries and
decay exponentially away from the boundary. When hyperbolic functions are used in the
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Fig. 2. Vibrating plate with elastic supports at the boundary. One-dimensional plane bending waves were assumed for

the evaluation of the trial function coefficients.

J. Park et al. / Journal of Sound and Vibration 261 (2003) 225–245 229



numerical calculations, extremely small round-off errors are required to describe these
exponential decaying waves for large value of the frequency parameters, bm. The modified beam
functions were therefore chosen to have the form

fmðxÞ ¼ Am sin bmxþ Bm cos bmxþ Cmebmðx�1Þ þ Dme�bmx: ð14Þ

In the above beam functions, Cm and Dm are the relative magnitudes of exponentially decaying
wave at x ¼ 1 and 0; respectively. The use of modified functions such as Eq. (14) minimizes round-
off errors in the vibration response near the edges.

The plate displacement for one-dimensional transverse vibrations is

wðx; tÞ ¼
XN
m¼1

fmðxÞamðtÞ: ð15Þ

Boundary conditions, shown in Fig. 2, are as follows:

at x ¼ 0;
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¼ �T1fð0Þ; ð16aÞ
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¼ �R2

@fð1Þ
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ð16dÞ

where the non-dimensional stiffness parameters are defined as

Tj ¼ Stja
3=D; ð17aÞ

Rj ¼ Srja=D; j ¼ 1; 2: ð17bÞ

Substituting the beam functions into Eq. (16) results in a set of four homogeneous equations,
expressed in matrix form as follows:

�b3
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Eq. (18) is an eigenvalue problem. The roots, bm; that make the 4� 4 matrix singular were
calculated and the beam function coefficients, Am, Bm; Cm; and Dm; were obtained from the
corresponding eigenvectors. The resulting beam functions are orthogonal. They were normalized
to satisfy the conditions Z 1

0

fmðxÞfpðxÞ dx ¼ dmp: ð19Þ

Similar conditions are also satisfied by the shape functions along the z-direction, cn; which were
calculated following the same procedures as for fm: Consequently, the trial functions, Gmn; satisfy
the following orthogonal conditions:Z 1

0

Z 1

0

Gmnðx; zÞGpqðx; zÞ dx dz ¼ dmpdnq: ð20Þ

The beam functions were transformed into the following form to minimize the number of
integrations necessary in the evaluation of the mass and stiffness matrices:

fmðxÞ ¼ Lm sin bmxþ jm

� �
þ Cmebmðx�1Þ þ Dme�bmx; ð21Þ

where

Lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

m þ B2
m

q
; ð22aÞ

jm ¼ tan�1Bm=Am: ð22bÞ

In Eq. (21), the trial functions consist of sinusoidal and exponential functions. Generally, the
source of ill-conditioned mass and stiffness matrices is the increasing round-off errors as the order
of the trial functions increases. When polynomials are used as trial functions, very high order
polynomials can result in large round-off errors due to the large values of the polynomial
coefficients and the limited dynamic range of computer memory [12]. For beam functions such as
those shown in Eq. (21), round-off errors do not increase as the order of the trial function
increases, which is a significant advantage for the analysis of high order modes.

2.3. Mass and stiffness matrices

The mass and stiffness matrices were calculated using the trial functions defined in Eq. (11). The
coefficients are

Mmnpq ¼ ðrhabÞdmpdnq; ð23Þ
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where X1mp; X2mp; X3mp; Y1nq; Y2nq and Y3nq are defined as

X1mp ¼
Z 1

0

fm

@2fp

@x2
dx; ð25aÞ

X2mp ¼
Z 1

0

@2fm

@x2

@2fp

@x2
dx; ð25bÞ

X3mp ¼
Z 1

0

@fm

@x

@fp

@x
dx; ð25cÞ

Y1nq ¼
Z 1

0

cn

@2cq

@z2
dz; ð26aÞ

Y2nq ¼
Z 1

0

@2cn

@z2

@2cq

@z2
dz; ð26bÞ

Y3nq ¼
Z 1

0

@cn

@z

@cq

@z
dz: ð26cÞ

The evaluation of these integrals was performed using three integral formulas shown in
Appendix A.

2.4. Verification of the method

By adjusting the stiffness of the translational and rotational springs, the Rayleigh–Ritz method
described in the previous sections can be applied to analyze the vibration of plates with arbitrary
boundary conditions. In the following simulations, the stiffness of the supports was assumed to be
uniform along the boundary of the plate. The translational springs in Fig. 1(b) have a uniform
complex stiffness of #Stj ¼ Stð1 þ iZtÞ; and the rotational springs have a constant complex stiffness
of #Srj ¼ Srð1 þ iZrÞ . Internal energy dissipation within the plate itself was assumed to be
negligible. The plate properties were chosen to be: a=0.466m; b=0.375m; h=0.00338m;
r=2700 kg/m3; E=7.2� 1010 Pa; and n=0.34.

Fig. 3 shows plots of a few trial functions defined in Equation (21) for a plate supported by
translational springs only. The first and second trial functions (m=1,2) were selected for
presentation. The trial function shapes are similar to the mode shapes of simply supported beams
when the translational stiffness is large (B1010 Pa). As the translational stiffness is decreased, the
trial function shapes approach the mode shapes of free–free beams. In particular, the first and
second trial function shapes approach the mode shapes of translational and rocking rigid body
modes. In between these two extreme cases, the trial function shapes gradually change from the
mode shapes of a simply supported beam to those of a free–free beam as the translational stiffness
is decreased.

To verify the analytical model, and the accuracy of predictions using beam trial functions, the
natural frequencies predicted using three different methods were compared, as shown in Tables 1
and 2. Table 1 shows results for a simply supported plate. A closed form expression for the natural
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Table 1

Comparison between natural frequencies of a simply supported plate predicted using different methods

Mode number Eq. (27) Beam functions set

1 98.60271 98.60271

2 214.8694 214.8694

3 278.1441 278.1441

4 394.4109 394.4109

5 408.6473 408.6473

6 577.3799 577.3799

7 588.1887 588.1887

8 679.9363 679.9363

9 693.6466 693.6466

10 859.4777 859.4777

Table 2

Comparison between natural frequencies and system loss factors of a viscoelastically supported plate

Mode number Polynomial functions set [11] Beam functions set

fj Zj fj Zj

1 87.38673 0.02835 87.54528 0.02768

2 178.0804 0.04260 178.4281 0.04159

3 221.3751 0.05580 221.6634 0.05522

4 286.873 0.06494 287.8409 0.06321

5 306.2211 0.06845 306.6278 0.06774

6 381.1667 0.08786 381.4951 0.08745

7 390.8103 0.07703 392.1302 0.07540

8 425.8642 0.08925 427.0692 0.08755

9 452.6486 0.07984 453.2667 0.07932

10 518.4296 0.07971 520.3834 0.07778

Fig. 3. Variation of the trial function in the x-direction with the support stiffness, St: (a) First ðm ¼ 1Þ and (b) second

ðm ¼ 2Þ trial function. Sr ¼ 0:
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frequencies of the simply supported plate is

fmn ¼
m

a

� �2

þ
n

b

� �2
� � ffiffiffiffiffiffiffiffiffi

p2D

4rh

s
: ð27Þ

For the Rayleigh–Ritz solution, the boundary conditions were enforced by assigning #St a large
value, 1010 Pa, and #Sr ¼ 0: Good agreement was obtained between the results for the two different
methods.

Table 2 shows the predicted natural frequencies for one viscoelastically supported plate. The
boundary stiffnesses were chosen to be: #St=2.2� 106(1+i 0.15) Pa; #Sr ¼ 0: In this case, the
predicted resonance frequencies were similar to measured values [3]. The trial function shapes are
different from the mode shapes of the simply supported or free–free beam (Fig. 3). The results
were compared to those of another numerical study by Berry et al. [11] who used polynomial
functions as trial functions, Gmn x; zð Þ ¼ xmzn: In applying the method of Berry et al., the plate was
discretized as a system with 196 degrees of freedom (N=14). In the present study, the plate was
approximated as a system with 81 degrees of freedom (N=9). The differences between the natural
frequencies predicted using the two methods were less than 1%.

Fig. 4 shows the convergence rates of the predicted plate natural frequencies obtained using the
beam functions and the polynomial functions. The results converge to nearly the same value for
each mode. The solutions converged faster with the beam functions because the beam functions
are a better representation of the actual mode shapes.

In this study, the frequency range of interest ranged from 0 to 2000Hz. As shown in Fig. 4, the
predicted natural frequencies for the 49th and the 64th modes converged within less than 5% for
N=9. The natural frequencies of the 49th and 64th modes converged to 2200 and 3100Hz,
respectively. This suggests that the use of N=9 did ensure the convergence of all modes with
natural frequencies less than 2000 Hz.

6 7 8 9 10 11 12 13 14 15
1000

2500

5000

7500

10000

25000

f
64

f
49

f
36

f j

N

Fig. 4. Predicted variation of natural frequency with the order of the beam function ðNÞ: Comparison of results

predicted using two different trial functions sets: —’—, beam functions; —J—, polynomial functions.

J. Park et al. / Journal of Sound and Vibration 261 (2003) 225–245234



3. Response to random excitation

3.1. Flow-induced vibration

To calculate the flow-induced vibration response, the frequency transfer function between a
harmonic excitation at one location and the resulting harmonic transverse displacement response
at other location was used. This frequency transfer function was determined from the modal
shape functions and the natural frequencies. The modal shape functions, #Cj; were obtained from
the eigenvalue problem, Eq. (8), using

#Cjðx; zÞ ¼
XN2

mn¼1

Gmnðx; zÞ #VjðmnÞ: ð28Þ

The transverse displacement is given in terms of the associated generalized coordinates qj(t) by
(assuming harmonic vibrations of the plate, qj tð Þ ¼ Ref #qje

iotg)

wðx; z; tÞ ¼ Ref
XN2

j¼1

#Cj x; zð Þ #qje
iotg: ð29Þ

From Eqs. (10), (20) and (28) the modal shape functions are orthogonal to each other, i.e.,Z 1

0

Z 1

0

#Cjðx; zÞ #C�
mðx; zÞ dx dz ¼ djm: ð30Þ

The equations of motion for the N2-degree of freedom system are expressed as

rhab �o2 þ #o2
j

� �
#qj ¼ #fCj

; j ¼ 1;y;N2 ð31Þ

where #fCj
are the modal forces, given by the integrals

#fCj
¼ ab

Z 1

0

Z 1

0

#Cjðx; zÞpðx; zÞ dx dz: ð32Þ

Here p is the external distributed pressure loading from the turbulent flow. The frequency
response function between one applied point force at s1 and the associated transverse
displacement at s2 is [16]

H s1; s2;oð Þ ¼
XN2

j¼1

#Cjðs1Þ #Cjðs2Þ #HjðoÞ; ð33Þ

where #Hj is the frequency response function for the generalized coordinate qj, obtained from
Eq. (31):

#Hj oð Þ ¼
1

rhab �o2 þ #o2
j

� �: ð34Þ
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The turbulent flow excitation is usually specified using the cross-spectral density of the wall
pressure. The spatially averaged mean square velocity of the plate, vav, is [16]

vav oð Þ ¼
XN2

j¼1

o #Hj oð Þ
    2Z

A

Z
A

#C�
j ðs1Þ #Cjðs2Þ #Gppðs1; s2;oÞ ds1 ds2; ð35Þ

where #Gpp is the cross-spectral density of the wall pressure.
To estimate the flow-induced vibration of structures, the Corcos model is widely used due to its

mathematical simplicity compared to other wall pressure models. In the Corcos model, the cross-
spectral density of the wall pressure is assumed to have the form [4]

#Gppðx1; x2; z1; z2;oÞ ¼ FpðoÞe�gx oa x2�x1ð Þ=Ucj je�gy ob z2�z1ð Þ=Ucj je�ioa x2�x1ð Þ=Uc ; ð36Þ

where Fp is the wall pressure spectral density, x1 and x2 are the normalized locations along the
streamwise direction, z1 and z2 are the normalized locations along the spanwise direction. The
parameters gx and gy are the decay rates related to the coherence in the streamwise and the
spanwise directions, respectively, and Uc is the convection speed of ‘‘frozen’’ turbulent eddies near
the wall. The coherence functions are assumed to have an exponential form. Since it is difficult to
perform the integration directly in Eq. (35), the equation was rewritten after replacing #Gpp with
Eq. (36) as (after some algebra)

vav oð Þ ¼ 2abð Þ2FpðoÞ
XN2

j¼1

o #Hj oð Þ
    2Re

Z 1

0

Z 1

0

#C�
j ðx1; z1Þe

�ðgxþiÞoa
Uc

x1e
�gyob

Uc
z1

(

Z z1

0

Z x1

0

#Cjðx2; z2Þe
�ðgxþiÞoa

Uc
x2e

�gyob

Uc
z2 dx2dz2

" #
dx1 dz1

)
; ð37Þ

which is more convenient to integrate. From Eqs (28) and (37), the spatially averaged mean square
velocity of the plate is

vav oð Þ ¼
XN2

j¼1

o #HjðoÞ
    2IjðoÞ; ð38Þ

where Ij is defined as

Ij oð Þ ¼ ð2abÞ2FpðoÞRe
XN2

mn¼1

XN2

pq¼1

#V�
j ðmnÞ #VjðpqÞ #Tx

mp
#Tz

nq

( )
: ð39Þ

The frequency dependent functions #Tx
mp and #Tz

nq were determined from the trial functions and
the parameters of the Corcos model using

#Tx
mp ¼

Z 1

0

fm x1ð Þe
�ðgxþiÞoa

Uc
x1

Z x1

0

fp x2ð Þe
ðgxþiÞoa

Uc
x2 dx2

� �
dx1; ð40aÞ

#Tz
nq ¼

Z 1

0

cn z1ð Þe
�gyob

Uc
z1

Z z1

0

cq z2ð Þe
gyob

Uc
z2 dz2

" #
dz1; ð40bÞ

The integrations in Eq. (40) were performed analytically, as shown in Appendix B.
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3.2. Approximation of the wall pressure spectrum

Although the Corcos model is relatively simple compared to other wall pressure models, the
evaluation of the structural response using Eq. (38) is still rather complicated. Maidanik [17]
proposed a simpler approach using delta functions as the correlation functions for the convecting
and decaying pressure fields. The convection velocity then appears as a parameter in the delta
functions. The Corcos wall pressure cross-spectral density mode, #Gpp; was approximated yielding
the approximate form, G

0

pp; given by

G
0

pp x1; x2; z1; z2;oð Þ ¼ CoFpðoÞd x1 � x2ð Þd z1 � z2ð Þ: ð41Þ

The approximate cross-spectral density, G
0

pp; should yield the same characteristic spatial extent
as the Corcos model. This condition can be expressed asZ

N

�N

Z
N

�N

Z
N

�N

G
0

pp mx;mz;o
� �

dmx dmz do ¼
Z

N

�N

Z
N

�N

Z
N

�N

#Gpp mx;mz;o
� �

dmx dmz do: ð42Þ

where mx ¼ x1 � x2 and mz ¼ z1 � z2; are streamwise and spanwise separations, respectively.
Eq. (42) is satisfied when the approximate cross-spectral density is given as

G
0

ppðx1; x2; z1; z2;oÞ ¼
4gxU2

c

o2gy g2
x þ 1

� �FpðoÞd x1 � x2ð Þd z1 � z2ð Þ: ð43Þ

Inserting the above approximation into Eq. (35) leads to a simplified expression for the spatially
averaged mean square velocity:

vavðoÞ ¼
4abgxU2

c

o2gyðg2
x þ 1Þ

FpðoÞ
XN2

j¼1

o #HjðoÞ
    2: ð44Þ

When delta functions are used as correlation functions, the neighboring pressure fluctuations
are assumed to be perfectly uncorrelated. Thus, the approximation shown in Eq. (44) is valid only
when the decay rates are sufficiently large (i.e., gx, gy > 0.1). The Corcos model is known to
successfully describe pressure fields under separated/reattached flows, which feature large decay
rates [7]. The above approximation is valid for such pressure fields.

4. Results and discussion

4.1. Flow-induced vibration response

The predicted mean square velocity responses obtained using the Corcos model and its
approximate form are shown in Fig. 5. The parameters of the Corcos model were selected to be:
Uc=29m/s, gx=0.3 and gy=0.7 after Han et al. [7]. For all cases discussed in this paper, it was
assumed that the wall pressure spectral density ðFpÞ was unity over the entire frequency range. As
shown in Fig. 5, the Corcos model and its approximate form yield essentially similar results,
except for an overestimation of the response obtained from the delta function formulation at
frequencies less than 30Hz.
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Fig. 6 shows the effects of the decay rates, gx and gy, on the velocity response of the plate
calculated from Eq. (38). A three-fold reduction in the decay rate value did not change the
structural response significantly. This trend is consistent with Eq. (44) which shows that such
change in decay rates increases the structural response by less than 1 dB. Graham [6] discussed the
influence of convection speed on the radiated sound power from flow-excited plates. Eq. (44)
shows that the vibration response is proportional to the square of the convection speed,
corresponding to a 6 dB increase per doubling of the convection speed assuming that the wall
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Fig. 5. Comparison between the spatially averaged velocity of the plate calculated using two different wall pressure

models:,’ the delta function model; ——, the Corcos model. gx ¼ 0:3; gy ¼ 0:7; #St=2.2� 106(1+i 0.15) Pa, and #Sr=0.
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Fig. 6. Effects of decay rates on spatially averaged mean square velocity excited by convecting turbulent flows. The

decay rates of the Corcos model: –.–.–, gx ¼ 1:0 and gy ¼ 1:0; – – – –, gx ¼ 0:6 and gy ¼ 0:6; —, gx ¼ 0:2 and gy ¼ 0:2:
#St=2.2� 106(1+i 0.15) Pa and #Sr=0.
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pressure spectra stays constant. The convection speed is thus an important parameter for accurate
predictions of the flow-induced vibrations.

Fricke and Stevenson [18] showed experimentally that the amplitude of the wall pressure
spectra increases approximately as the fourth power of the free stream flow velocity ðFppU4

0 Þ:
The convection velocity, Uc, is proportional to the free stream flow velocity, U0 [7]. Taking this
into account in Eq. (44), the flow-induced vibration amplitude is proportional to the sixth power
of the convection velocity ðvavpU6

c Þ: The vibration amplitude increases rapidly with flow velocity.
This result supports the well-known observation that vehicle interior aerodynamic noise, often
dominated by flow-induced panel vibrations (in absence of aspiration), increases approximately as
the sixth power of the vehicle velocity [1].

4.2. Effects of support stiffness

The effects of the support stiffness on the modal properties of the plate were investigated. The
loss factors, Zt and Zr, were assumed to be 0.15, independently of St and Sr. The damped natural
frequencies and the system loss factors for three specific modes, namely the first, fourth, and 20th
modes, are shown in Figs. 7, 8, and 9 respectively. The first mode, shown in Fig. 7, features a rigid
body mode with a natural frequency close to zero for values of St near zero. The rigid body mode
properties are independent of Sr. When the rigid body mode occurs, the system loss factor
approaches that of the translational spring. Similar trends were also observed in the study by
Kang and Kim [2].

For all modes, the natural frequencies change from those of freely supported plates to those of
simply supported plates as St is increased, and Sr is maintained at zero. The natural frequencies
change from those of simply supported plates to those of clamped plates when Sr is increased and
St is large. With the exception of the first mode, the system loss factor reaches a maximum for
unique values of St and Sr (Figs. 8 and 9). The maximum occurs at StD106 Pa and SrD103 N/rad
for the forth mode, and larger values of St and Sr for the 20th mode. The values of St and Sr

corresponding to the maximum system loss factor increased as the mode number was increased.
The spatially averaged mean square velocity for a convecting wall pressure excitation,

calculated from Eq. (38), is shown as a function of support stiffness in Figs. 10 and 11. Fig. 10

Fig. 7. Modal parameters vs. support stiffness for the first mode: (a) damped natural frequency, f1; (b) system loss

factor, Z1:
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shows the influence of the translational stiffness, St; for Sr ¼ 0: The support properties strongly
influence the resonance frequencies. The resonance frequencies change from those of freely
supported plates to those of simply supported plates as St is increased. Fig. 11 shows the influence
of the rotational stiffness, Sr; for St ¼ 100: To prevent the rigid body modes of zero natural
frequency, the translational stiffness was not set as zero. The resonance frequencies change from
those of freely supported plates to those of guided plates as Sr is increased. In both Figs. 10 and
11, the velocity response was found to be minimal for intermediate values of the complex
stiffnesses. The amplitude of the minimum in the velocity response was lower for the plate
supported by translation springs than for that supported by rotational spring. This suggests that
restricting the translational motion may be more effective than restricting the rotational motion in
controlling the vibration response amplitude. Small vibration amplitudes are accompanied by
increased vibration energy dissipation at the boundary, and presumably minimal sound radiation.
A systematic investigation of the optimal support stiffness to minimize the forced vibration of
plates was performed by the authors, as described in a separate paper [19].

Fig. 8. Modal parameters vs. support stiffness for the fourth mode: (a) damped natural frequency, f4 ; (b) system loss

factor, Z4:

Fig. 9. Modal parameters vs. support stiffness for the 20th mode: (a) damped natural frequency, f20 ; (b) system loss

factor, Z20:
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5. Conclusions

The Rayleigh–Ritz method was applied to analyze the response of viscoelastically supported
rectangular plates. Modified beam functions were used as the trial functions. The energy
dissipated by the viscoelastic supports was taken into consideration using complex stiffnesses for

Fig. 10. Spatially averaged mean square velocity versus. translational spring stiffness. gx ¼ 0:3; gy ¼ 0:7,
#St=St(1+i 0.15), and #Sr=0.
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Fig. 11. Spatially averaged mean square velocity vs. rotational spring stiffness. gx ¼ 0:3; gy ¼ 0:7; #St=0, and
#Sr=Sr(1+i 0.15).
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the translational and rotational springs at the rectangular plate boundaries. The use of the beam
functions as the trial functions was found to ensure rapid convergence and yielded accurate
solutions. The effects of the support stiffness on the modal properties of the plate were
investigated. There are support stiffness values at which the system loss factors are maximum.
These stiffness values are not the same between different modes and increase as the mode number.
The effects from rotational and translational stiffness on the system loss factor were almost
independent to each other.

The plate response excited by a turbulent flow was calculated. The Corcos model of the wall
pressure correlation function was used. It was shown that the convection speed affected the flow-
induced vibration more significantly than the decay rates. Optimal support stiffnesses were found
that maximized the system loss factor and consequently minimized the forced vibration response
of the plate. The translational springs attached at the edges were more effective than rotational
springs in dissipating vibration energy. The model can be used to determine the optimal support
dynamic mechanical properties for minimal sound transmission.

Appendix A. Integral formulas

Z 1

0

sinðb1xþ j1Þ sin ðb2xþ j2Þ dx ¼
1

2

1

b1 � b2

½sinðb1 � b2 þ j1 � j2Þ � sinðj1 � j2Þ�
#

�
1

b1 þ b2

½sinðb1 þ b2 þ j1 þ j2Þ � sinðj1 þ j2Þ�
$
; ðA:1Þ

Z 1

0

sinðb1xþ j1Þe
b2xþj2 dx ¼

1

b2
1 þ b2

2

fb1½cosðj1Þe
j2 � cosðb1 þ j1Þe

b2þj2 �

þ b2½sinðb1 þ j1Þe
b2þj2 � sinðj1Þe

j2 �g; ðA:2Þ

Z 1

0

eb1xþj1eb2xþj2 dx ¼
1

b1 þ b2

ðeb1þj1þb2þj2 � ej1þj2Þ: ðA:3Þ

Appendix B. Evaluation of #Tx
mp and

#Tz
nq

The evaluation of #Tx
mp and #TB

nq was performed using the following integral formula:

Z 1

0

fmðx1Þe
�gx1

Z x1

0

fpðx2Þe
gx2 dx2

� �
dx1
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¼
Dn

bn � g

Z 1

0

½Lmsinðbmxþ jmÞ þ Cmebmðx�1Þ þ Dme�bmx�ðe�gx � e�bnxÞ dx

þ
Ln

b2
n þ g2

½bncosðjnÞ � g sinðjnÞ� �
Cn

bn þ g
e�bn

( )

�
Z 1

0

½Lm sin ðbmxþ jmÞ þ Cmebmðx�1Þ þ Dme�bmx�e�gx dx
# $

þ
Z 1

0

½Lm sinðbmxþ jmÞ þ Cmebmðx�1Þ þ Dme�bmx�

�
Ln

b2
n þ g2

½�bncosðbnxþ jnÞ þ g sinðbnxþ jnÞ� þ
Cn

bn þ g
ebnðx�1Þ

( )
dx: ðB:1Þ

The integrations in the above equation were evaluated using the integral formulas in
Appendix A.

Appendix C. Nomenclature

a; b plate dimensions in x and y directions (m)
Am;Bm;Cm;Dm;Lm beam function coefficients
amn; #qj generalized co-ordinates
D bending stiffness of plate (N �m)
E elastic modulus (Pa)
f frequency (Hz)
fj damped natural frequency of jth mode (Hz)
#fCj

modal force of jth mode (N)
h plate thickness (m)
#Hj frequency response function in terms of generalized co-ordinates

½ #K� modal stiffness matrix (N/m)
L system Lagrangian (J)
½M� modal mass matrix (kg)
p distributed pressure excitation (Pa)
s1; s2 position vector on plate surface
#Gpp wall pressure cross-spectral density (Pa2/Hz)
#Sr; #St complex stiffness of rotational (N/rad) and translational spring (Pa)
T kinetic energy of plate (J)
W transverse displacement of plate (m)
Uc convection velocity (m/s)
vav spatially averaged mean square velocity of plate (m2/s2/Hz)
vref reference mean square velocity, 10�12 m2/s2

V potential energy of the plate (J)
#Vj jth eigenvector of plate
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O contour along the boundary of plate (m)
gx; gy decay rate in x and y directions
Gmn; #Cmn trial functions of plate displacement
fm;cn beam functions in x and y directions
Zj system loss factor of jth mode
ZR; ZT loss factors of rotational and translational spring
n the Poisson ratio of plate
x; z normalized spatial co-ordinate
mx;mz separations in x and z directions
r density of plate material (kg/m3)
Fp wall pressure spectral density (Pa2/Hz)
o circular frequency (rad/s)
#oj complex natural frequency of jth mode (rad/s)

Indices

m; n; p; q; j integer
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