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Abstract

We present the direct formulation of the two-dimensional boundary element method (BEM) for time-
harmonic dynamic problems in solids of general anisotropy. We split the fundamental solution, obtained by
Radon transform, into static singular and dynamics regular parts. We evaluate the boundary integrals for
the static singular part analytically and those for the dynamic regular part numerically over the unit circle.
We apply the developed BEM to eigenvalue analysis. We determine eigenvalues of full non-symmetric

complex-valued matrices, depending non-linearly on the frequency, by first reducing them to the
generalized linear eigenvalue problem and then applying the QZ algorithm. We test the performance of the
QZ algorithm thoroughly in comparison with the FEM solution. The proposed BEM is not only a strong
candidate to replace the FEM for industrial eigenvalue problems, but it is also applicable to a wider class of
two-dimensional time-harmonic problems.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

We propose the 2-D time-harmonic dynamic boundary element method (BEM) and apply it to
the eigenvalue analysis of general anisotropic solids. Wang et al. [1] have developed the FEM
programs for the eigenvalue analysis of the time-harmonic problems for general piezoelectric
(including anisotropic) solids; the program was applied successfully in the analysis of
piezoelectric/anisotropic resonators. In the face of ever increasing device frequency, however,
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the FEM is experiencing stiff computing requirements. While the FEM must discretize the whole
domain, the BEM for the linear problem models only the boundary of the domain and has the
potential of reducing the computational burden of the FEM drastically. This is true if the proper
fundamental solution of the problem is used in the time-harmonic BEM. For isotropic solids
Kitahara [2] have formulated the BEM based on the fundamental displacement and traction
solutions for the time-harmonic plates and 2-D elasticity problems. For the general anisotropic
solids, the fundamental solution of the time-harmonic problem was obtained by Norris [3]
and Wang and Achenbach [4]. We adopt the fundamental solution by Wang and Achenbach [4]
and formulate the 2-D direct BEM for time-harmonic dynamic problems of general anisotropic
solids.
Due primarily to the unavailability of the time-harmonic fundamental solutions and to their

complex form, use of much simpler static fundamental solution in the time-harmonic BEM has
been attempted. This introduces the volume integral (or area integral in 2-D) in addition to the
boundary integral. Nardini and Brebbia [5] has proposed the dual reciprocity boundary element
method (DRBEM) to reduce volume integrals into boundary integrals. Majority of the DRBEM
papers on eigenvalue analysis of time-harmonic dynamic problems have dealt with the Helmholtz
equation [6]. In general, numerical results of the eigenvalue analysis by the DRBEM are
satisfactory only for lower eigenvalues and the method becomes impractical for higher
eigenvalues.
Wang and Achenbach [4,7] have shown that the fundamental solution can be split into singular

and regular terms; the singular term coincides with the fundamental solution of the static problem
and the additional dynamic contribution is provided by the regular term. Thus the time-harmonic
BEM contains the static BEM; we adopt the direct formulation of the static BEM by Denda [8].
The regular dynamic term of the fundamental solution is expressed by line integrals over the unit
circle. Use of this fundamental solution in the BEM leads to double integrals over the unit circle
and over the boundary element. Exploiting the regularity of the dynamic term, we exchange the
order of integration, perform the integration over the boundary element analytically leaving only
the line integral over the unit circle for numerical evaluation. We perform the detailed error
analysis for the numerical evaluation of the dynamic part to propose a reliable and accurate
integration scheme.
Among a broad range of the BEM applications, we have selected the eigenvalue analysis. The

resulting eigenvalue problems face with complex-valued, non-symmetric full matrices with
elements depending non-linearly on the frequency. Kitahara [2] used the direct eigenvalue search
to obtain the determinant value as a function of the frequency. We reduce this non-linear
eigenvalue problem to the generalized linear eigenvalue problem, which is solved by the QZ
algorithm accurately. The performance of the QZ algorithm is tested thoroughly, first for an anti-
plane strain problem with the analytic solution, then for the generalized plane strain problem with
the FEM solution. The proposed BEM implementation combined with the non-linear eigenvalue
solver provides a reliable platform for the computation of eigenfrequencies for solids with general
anisotropy. The use of the time-harmonic fundamental solution provides a clean boundary only
formulation of the BEM without domain integrals. It is a strong candidate to replace the
traditional dual reciprocity BEM (DRBEM) and FEM designed for the eigenvalue problems.
More important, the proposed BEM is generally applicable to a wider class of two-dimensional
time-harmonic problems not limited to the eigenvalue analysis.
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2. Basic equations for time-harmonic problems

Consider the two-dimensional elastodynamic problem in the linear general anisotropic solid,
where the field quantities depend only on the coordinates x1 and x2: The equations of motion in
terms of the displacement *ui and body force *fi density components are given by

fGijð@1; @2Þ � r@2t dijg *ujðx; tÞ ¼ � *fiðx; tÞ; ð1Þ

where
Gijð@1; @2Þ ¼ ciajb@a@b; ð2Þ

ciajb are the stiffness tensor components, r is the mass density and x and t are the two-dimensional
position vector and time, respectively. We adopt the convention that Roman and Greek subscripts
range from 1 to 3 and 1 to 2, respectively; a repeated Roman or Greek index is summed over its
full range. The derivative with respect to xa of a functionF is denoted either byF;a or @aF; while
its time derivative by @tF: Consider an infinite anisotropic solid subjected, at the origin and at
time t ¼ �N; to a time-harmonic line force in the xk direction given by

*fjðx; tÞ ¼ djkdðxÞe�iot: ð3Þ

The resulting elastic displacement is in steady state motion and written as

*gjkðx; tÞ ¼ gjkðx;oÞe�iot: ð4Þ

By substituting Eqs. (3) and (4) into Eq. (1) and omitting the time factor we get the equations

fGijð@1; @2Þ þ ro2dijggjkðx;oÞ ¼ �dikdðxÞ; ð5Þ

whose solution, gjkðx;oÞ; and the corresponding traction solution,

hjkðx;o; vÞ ¼ vaðxÞcajib
@gikðx;oÞ

@xb
ð6Þ

are called the fundamental displacement and traction solutions, where v is the unit normal to the
segment where the traction is calculated. The Somigliana’s identity gives the displacement in a body
A in terms of these fundamental solutions and boundary traction ðtjÞ and displacement ðujÞ by

ukðx;oÞ ¼
Z
@A

tjðy;oÞgjkðy� x;oÞ dlðyÞ �
Z
@A

ujðy;oÞhjkðy� x;o; vÞ dlðyÞ: ð7Þ

This equation is the basis of the direct formulation of the boundary element method for time-
harmonic dynamic problems for solids of general anisotropy.

3. Fundamental solutions

3.1. Fundamental solution by radon transform

Wang and Achenbach [4,7] have obtained the fundamental displacement solution using the
Radon transform which, for an arbitrary function FðxÞ; is defined as

#Fðs; nÞ ¼
Z

FðxÞdðs � n � xÞ dx: ð8Þ
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This is an integration of FðxÞ along a line n � x ¼ s; defined by a unit vector n ¼ ðn1; n2Þ and a
scalar s; in two dimensions. The inverse Radon transform is defined by

FðxÞ ¼
Z
jnj¼1

%Fðn � x; nÞ dn; ð9Þ

where

%Fðs; nÞ ¼
1

4p2

Z
N

�N

@s #Fðs; nÞ
s � s

ds ð10Þ

and the integral in Eq. (9) is a line integral over a unit circle. In summary, the displacement
fundamental solution is given by a sum of the static singular part gS

jk and the dynamic regular part
gR

jk;

gjkðx;oÞ ¼ gS
jkðxÞ þ gR

jkðx;oÞ: ð11Þ

Key formulas in the derivation of the fundamental solution are:

(1) Radon transform of Eq. (5) that gives

fGijðnÞ@2s þ ro2dijg #gjk ¼ �dikdðsÞ; ð12Þ

where

GijðnÞ ¼ Gijðn1; n2Þ ¼ ciajbnanb; ð13Þ

(2) eigenvalue lm and vector Vim for the symmetric positive-definite matrix GijðnÞ defined by

GijðnÞVjm ¼ lmVim ðm ¼ 1; 2; 3; no sum on mÞ; ð14Þ

(3) adjoint matrix

Em
jk ¼ adj½GjkðnÞ � lmdjk�; ð15Þ

(4) the phase velocity cm and wave number km;

cm ¼
ffiffiffiffiffiffiffiffiffiffiffi
lm=r

p
; km ¼ o=cm; ð16Þ

(5) adjoint and determinant of matrix Gjkð1; ZÞ;

FjkðZÞ ¼ adj½Gjkð1; ZÞ�; DðZÞ ¼ det½Gjkð1; ZÞ�: ð17Þ

3.1.1. Static singular part

The static singular part is given by

gS
jkðxÞ ¼ GS

jkðxÞ þ Cjk ð18Þ

with

GS
jkðxÞ ¼

1

p
I

X3
m¼1

FjkðZmÞ
@ZDðZmÞ

logðzmÞ ð19Þ
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and

Cjk ¼ �
1

p
I

X3
m¼1

FjkðZmÞ
@ZDðZmÞ

logðZm þ iÞ; ð20Þ

where

zm ¼ x1 þ Zmx2 ð21Þ

and Zm ðm ¼ 1; 2; 3 with IðZmÞ > 0Þ are three distinct roots of the sixth order characteristic
polynomial

DðZÞ ¼ 0: ð22Þ

The symbol I in Eqs. (19) and (20) indicates the imaginary part of a complex variable. Without
loss of generality, we assume three distinct roots in this paper. The coincident roots can be made
distinct by introducing a small perturbation in the stiffness coefficients. The term gS

jkðxÞ in Eq. (18)
is the elastostatic fundamental solution obtained by Wang [9]; GS

jkðxÞ in Eq. (19) is equivalent to
the static fundamental solution (37) by Denda [8]. The latter differs from gS

jkðxÞ by the constant
term Cjk: These constants are inessential in the formulation of the elastostatic BEM, but they are
required in Eq. (18) for the time-harmonic BEM.

3.1.2. Dynamic regular part
The dynamic regular part is given by

gR
jkðx;oÞ ¼

Z
jnj¼1

%g
R
jkðn � x; nÞ dn; ð23Þ

where

%g
R
jkðn � x; nÞ ¼

1

8p2
X3
m¼1

1

rc2m

Em
jk

Em
qq

fRðkmjn � xjÞ ð24Þ

with

fRðkmjn � xjÞ ¼ fðkmjn � xjÞ þ 2logjn � xj ð25Þ

and

fðzÞ ¼ ipeiz � 2½cosðzÞciðzÞ þ sinðzÞsiðzÞ�: ð26Þ

Functions ciðzÞ and siðzÞ are the sine and cosine integral functions. Note that logarithmic function
in Eq. (25) removes the singularity of the function fðkmjn � xjÞ at the origin. Without loss of
generality, we assume three distinct cm in Eq. (24). When some of cm coincide, they can be made
distinct by introducing a small perturbation or can use special formulas derived by Wang and
Achenbach [4,7].
The corresponding traction contribution of the dynamic regular part, obtained by substituting

Eq. (23) into Eq. (6), is given by

hR
jkðx;o; vÞ ¼

Z
jnj¼1

%hR
jkðn � x; n; vÞ dn; ð27Þ
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where

%hR
jkðn � x; n; vÞ ¼

1

8p2
signðn � xÞ

X3
m¼1

1

rc2m

E *m

jk

Em
qq

fR0
ðkmjn � xjÞ ð28Þ

with

E *m

jk ¼ gjrE
m
rk; gjr ¼ vacajrbnb ð29Þ

and the prime attached to the function indicates the derivative with respect to its argument such as

fR0
ðkmjn � xjÞ ¼ kmf

0ðkmjn � xjÞ þ 2 log0ðjn � xjÞ: ð30Þ

Repeated indices r and a and b in Eq. (29) should be summed over the ranges 1–3 and 1–2;
respectively. In the evaluation of integrals (23) and (27) we consider only one half of the unit
circle; the contribution from the other half is identical due to the two-fold symmetry of the
integrands.

3.2. Fundamental static solution by Stroh–Lekhnitskii formalism

The static singular part of the BEM, guided by the physical interpretation of Somigliana’s
identity [8], uses the fundamental displacement solutions for the line force and the dislocation
dipole. The Stroh–Lekhnitskii (SL) formalism [8] provides a framework to derive these
fundamental solutions in terms of the L and A matrices defined by

L ¼ ½l1; l2; l3; � ¼

�Z1L21 �Z2L22 �Z3l3L33

L21 L22 l3L33

l1L21 l2L22 L33

2
64

3
75 ð31Þ

and

A ¼ ½A1l1;A2l2;A3l3� ð32Þ

with

Am ¼

s16 � s11Zm; s12; s14 � s15Zm
s26�s21Zm

Zm
; s22

Zm
; s24�s25Zm

Zm

s56 � s51Zm; s52; s54 � s55Zm

2
64

3
75: ð33Þ

The coefficients SMN ðM;N ¼ 1; 2; 4; 5; 6Þ are the reduced compliance coefficients and Zm ðm ¼
1; 2; 3 with IðZmÞ > 0Þ are roots of the sixth order characteristic equation,

d ð4ÞðZÞd ð2ÞðZÞ � d ð3ÞðZÞdð3ÞðZÞ ¼ 0; ð34Þ

where

dð4ÞðZÞ ¼ Z4S11 � 2Z3S16 þ Z2ð2S12 þ S66Þ � 2ZS26 þ S22;

dð3ÞðZÞ ¼ Z3S15 � Z2ðS14 þ S56Þ þ ZðS25 þ S46Þ � S24;

dð2ÞðZÞ ¼ Z2S55 � 2ZS45 þ S44
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and

la ¼
dð3ÞðZaÞ
dð2ÞðZaÞ

ða ¼ 1; 2Þ; l3 ¼
d ð3ÞðZ3Þ
d ð4ÞðZ3Þ

: ð35Þ

These matrices are normalized by the relation

2
X3
i¼1

LimAim ¼ 1 ðm ¼ 1; 2; 3Þ: ð36Þ

Note that the roots of the characteristic equations (22) and (34) are the same.
Consider a line force in xk direction at the origin; the resulting displacement component in the

xj direction at z ¼ x1 þ ix2 is given by

GS
jkðzÞ ¼ I

1

p

X3
m¼1

AjmAkm lnðzmÞ; ð37Þ

where zm ¼ x1 þ Zmx2 ðm ¼ 1; 2; 3Þ is the generalized complex variable. A dislocation dipole is an
infinitesimal segment dz ¼ dy1 þ idy2 (of length ds) over which a displacement jump is prescribed.
Consider a dislocation dipole at the origin in xk direction; the resulting displacement component
in xj direction at z ¼ x1 þ ix2 is given by

G
SðdÞ
jk ðzÞ ds ¼ �I

1

p

X3
m¼1

AjmLkm

dxm

zm

; ð38Þ

where dxm ¼ dy1 þ Zm dy2: Eqs. (37) and (19) provide two alternative and equivalent expressions
for the static displacement fundamental solution, while Eq. (38), without ds; coincides with the
minus of the traction fundamental solution of the line force.

3.3. Anti-plane strain: case study

3.3.1. Analytical and numerical solutions

The regular dynamic part of the fundamental displacement solution in anti-plane strain of the
isotropic materials is given, from Eqs. (23) and (24), by

gRN

33 ðy;x;oÞ ¼
Z
jnj¼1

%g
R
33ðn � ðy� xÞ; nÞ dn ¼

1

8p2
1

m

Z
jnj¼1

fRðk2jn � ðy� xÞjÞ dn; ð39Þ

where fRðk2jn � ðy� xÞjÞ is defined by Eq. (25) and m is the shear modulus. The wave number k2 is
given by k2 ¼ o=c2 in terms of the shear wave speed, c2 ¼

ffiffiffiffiffiffiffiffi
m=r

p
; where r is the density. The

corresponding analytical solution is given by

gRA

33 ðy; x;oÞ ¼
1

4m
� Y0ðk2Þ �

2

p
ln

r

2

� �
þ iJ0ðk2Þ


 �
; ð40Þ

where J0 and Y0 are the zero order Bessel and Neumann functions, respectively, and

k2 ¼ k2r ð41Þ

M. Denda et al. / Journal of Sound and Vibration 261 (2003) 247–276 253



is the product of the wave number and the distance r ¼ jy� xj: Since solution (39) has the form
essentially identical to that for the generalized plane strain, the results of its error analysis serve as
guidelines for the error estimation of the generalized plane strain solution.

3.3.2. Numerical integration of dynamic part

3.3.2.1. Number of subdivision of the half-unit circle. The kernel function fRðk2jn � ðy� xÞjÞ in
Eq. (39), defined by Eqs. (25) and (26), has the form

fRðz2Þ ¼ ipeiz2 � 2½cosðz2Þciðz2Þ þ sinðz2Þsiðz2Þ� þ 2 log z; ð42Þ

which can be split into oscillatory and non-oscillatory parts as follows:

fRosðz2Þ ¼ ipeiz2 ¼ �p sinðz2Þ þ ip cosðz2Þ;

fRnoðz2Þ ¼ �2½cosðz2Þciðz2Þ þ sinðz2Þsiðz2Þ� þ 2 log z; ð43Þ

where z ¼ jn � ðy� xÞj ¼ r cos y; z2 ¼ k2z ¼ k2r cos y; r ¼ jy� xj and y is the angle between the
position vector y� x and the unit vector n: Fig. 1 shows plots of (a) imaginary and (b) real
oscillatory parts, (c) real non-oscillatory part and (d) total real part, respectively, for k2 ¼ 20: As
the magnitude of k2 increases the oscillation becomes increasingly intensive requiring increasingly
smaller size of sub-intervals for numerical integration. We select the sizes of the sub-interval to
match the minimum half-wavelength of the oscillatory parts (AB in Fig. 2) as given by

Dymin ¼
p
2
� arccos

p
k2
: ð44Þ
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Fig. 1. Break up of the kernel function of Radon transformed fundamental solution: (a) imaginary part, (b) real

oscillatory part, (c) real non-oscillatory part, (d) real part total.
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This determines the number of sub-intervals along the half-circle,

n ¼
1

0:5� ð1=pÞarccos p=k2
; ð45Þ

which asymptotically approaches (Fig. 3) to

n ¼ k2; ð46Þ

as k2 increases.

3.3.2.2. Number of Gauss quadrature points. As shown in Fig. 1, the kernel function fRðk2jn �
ðy� xÞjÞ has a cusp at p=2 in the interval ð0; pÞ of integration; this cusp comes from the real
non-oscillatory part (Fig. 1(c)). Integration must be split at this cusp to introduce two
intervals, ð0;p=2Þ and ðp=2; pÞ: After sub-dividing each interval uniformly we have refined it
by further dividing the sub-interval closest to the cusp twice in a row. For this sub-division
scheme of integration, the relative error of the real and imaginary parts is typically of the
order of 10�8 if we use the Gauss quadrature points as recommended in Table 1 for various
ranges of k2: The use of the same Gauss quadrature points for the uniform sub-division
scheme of integration (i.e., no further sub-division near the cusp) results in the relative error of
the order 10�7:

π/2 π/2
A B A B

00

(a) (b)

Fig. 2. Determination of the minimum sub-division size integration: (a) cosðk2r cos yÞ; (b) sinðk2r cos yÞ
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Fig. 3. Relation of the number of division per half-circle and k2:
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4. Coefficients of boundary integral equations

4.1. Interpolation functions

We approximate the whole boundary by a collection of straight elements
P

G; the straight
element enables the analytical evaluation of the boundary integrals. Consider a boundary element
G of length L with end ð1; 2Þ and middle ð3Þ nodes. The boundary displacement and traction are
approximated by quadratic interpolation functions:

ujðlÞ ¼
X3
a¼1

caðlÞuja; tjðlÞ ¼
X3
a¼1

caðlÞtja; ð47Þ

where caðlÞ ða ¼ 1; 2; 3Þ are the quadratic shape functions of the arc length variable 0plpL given
by

c1ðlÞ ¼
2

L2
l �

L

2

� �
ðl � LÞ; c2ðlÞ ¼

2

L2
l �

L

2

� �
l; c3ðlÞ ¼ �

4

L2
lðl � LÞ ð48Þ

and uja and tja are the nodal values of the interpolation functions uj and tj; the continuous
elements are used. If we denote the dth derivative ðd ¼ 0; 1; 2Þ; with respect to l; of the
interpolation functions by u

ðdÞ
j ðlÞ and t

ðdÞ
j ðlÞ; then

u
ðdÞ
j ðlÞ ¼

X3
a¼1

cðdÞ
a ðlÞuja; t

ðdÞ
j ðlÞ ¼

X3
a¼1

cðdÞ
a ðlÞtja ðd ¼ 0; 1; 2Þ; ð49Þ

where cðdÞ
a ðlÞ is the dth derivative of the shape function with respect to l: As the time-

harmonic fundamental solution is split into static singular and dynamic regular parts, so is
the numerical implementation of the boundary elements. They are identified as the static
singular boundary element (SSBE) and the dynamic regular boundary element (DRBE)
implementations.

Table 1

Optimum selection of the number of quadrature points p (for imaginary part) and q (for real part) of the Radon

transformed fundamental solution

Opt. no. of quad. pts.

p q

0pk2p10 5 7

0pk2p20 4 6

20pk2p60 4 5
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4.2. Static singular boundary element

There exist two alternative but equivalent formulas for the static fundamental displacement
solution: Eq. (19) by the stiffness formulation and Eq. (37) by the compliance formulation. Wang
et al. [10] used the fundamental displacement solution (19) and its traction solution for the
implementation of the SSBE in their 2-D transient dynamic BEM. In contrast, Denda’s static
BEM [8] used the SSBE based on the fundamental displacement solution (37) and dislocation
dipole solution (38). In both implementations, boundary integrals are evaluated analytically for
the straight boundary element. In this paper we have adopted Denda’s static BEM for the SSBE
with due consideration of the contribution from the constant term Cjk defined by Eq. (20).
Further details including closed-form boundary element formulas can be found in papers [8,11] by
Denda.

4.3. Dynamic regular boundary element

According to Somigliana’s identity (7) and the regular dynamic part of the fundamental
solutions (23) and (27), the displacement contribution of a dynamic regular boundary element G is
given by

uR
k ðx;oÞ ¼

Z
G

tjðy;oÞ
Z
jnj¼1

%g
R
jkðn � ðy� xÞ; nÞ dn

� �
dlðyÞ

�
Z
G

ujðy;oÞ
Z
jnj¼1

%hR
jkðn � ðy� xÞ; n; vÞ dn

� �
dlðyÞ: ð50Þ

Due to the regularity of the integrands, %gR
jkðn � ðy� xÞ; nÞ and %hR

jkðn � ðy� xÞ; n; vÞ; we can swap the
order of the integration to get

uR
k ðx;oÞ ¼

Z
jnj¼1

Z
G

tjðy;oÞ %gR
jkðn � ðy� xÞ; nÞ dlðyÞ

� �
dn

�
Z
jnj¼1

Z
G

ujðy;oÞ %hR
jkðn � ðy� xÞ; n; vÞ dlðyÞ

� �
dn: ð51Þ

The inner integrals in Eq. (51),

%I
ðGÞ
k ðx � n; n;oÞ ¼

Z
G

tjðy;oÞ %gR
jkðn � ðy� xÞ; nÞ dlðyÞ;

%J
ðGÞ
k ðx � n; n;oÞ ¼

Z
G

ujðy;oÞ %hR
jkðn � ðy� xÞ; n; vÞ dlðyÞ ð52Þ

with interpolation (47) can be evaluated analytically as given by

%I
ðGÞ
k ðx � n; n;oÞ ¼

X3
a¼1

X3
j¼1

%Ijkaðx � n; n;oÞtja;

%J
ðGÞ
k ðx � n; n;oÞ ¼

X3
a¼1

X3
j¼1

%Jjkaðx � n; n;oÞuja ð53Þ
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with

%Ijkaðx � n; n;oÞ ¼
1

8p2
X3
m¼1

1

rc2m

Em
jk

Em
qq

Im
a ðx � n; n;oÞ;

%Jjkaðx � n; n;oÞ ¼
1

8p2
X3
m¼1

1

rc2m

E *m

jk

Em
qq

Jm
a ðx � n; n;oÞ ð54Þ

and

Im
a ðx � n; n;oÞ ¼ �

X3
d¼1

�1
eana

� �d

cðd�1Þ
a ðlÞ

f½d�ðzmÞ

ðkmÞ
d

þ 2 ln½d�ðzÞ

( )" #l¼L

l¼0

;

Jm
a ðx � n; n;oÞ ¼ �

X3
d¼1

�1
eana

� �d

cðd�1Þ
a ðlÞ

f½d�1�ðzmÞ

ðkmÞ
d

þ 2ln½d�1�ðzÞ

( )" #l¼L

l¼0

: ð55Þ

Here f½d�ðzmÞ and ln
½d�ðzÞ are the dth integrals of fðzmÞ and lnðzÞ given by

f½0�ðzmÞ ¼ ipeizm � 2½cosðzmÞciðzmÞ þ sinðzmÞsiðzmÞ�;

f½1�ðzmÞ ¼ peizm � 2½sinðzmÞciðzmÞ � cosðzmÞsiðzmÞ�;

f½2�ðzmÞ ¼ �ipeizm þ 2½cosðzmÞciðzmÞ þ sinðzmÞsiðzmÞ� � 2lnjzmj;

f½3�ðzmÞ ¼ �peizm þ 2½sinðzmÞciðzmÞ � cosðzmÞsiðzmÞ� � 2zm½lnjzmj � 1� ð56Þ

and

ln½d�ðzÞ ¼
zd

d!
lnjzj �

Xd

j¼1

1

j

( )
ðdX0Þ; ð57Þ

in terms of the arguments,

zm ¼ kmz; z ¼ nbðyb � xbÞ ¼ nbfðybjl¼0 þ lebÞ � xbg; ð58Þ

where ybjl¼0 is the initial point and eb is the unit vector along the boundary element G: Notice that
no absolute value is taken for the arguments zm and z except for terms lnjzmj and lnjzj: The
analytical evaluation of integrals (52) in Eq. (51) gives the single integral representation

uR
k ðx;oÞ ¼

Z
jnj¼1

%I
ðGÞ
k ðx � n; n;oÞ dn�

Z
jnj¼1

%J
ðGÞ
k ðx � n; n;oÞ dn ð59Þ

of the displacement contribution over a unit circle; further reduction to the half-circle integration
is possible due to the two-fold symmetry of the integrands. Thus, the burden of numerical
integration for the proposed time-harmonic boundary element remains comparable to that for the
static counterpart involving quadrature integration over the boundary element. This is a
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remarkable advantage for the time-harmonic BEM, which otherwise has to deal with double
numerical integrals as shown in Eq. (50).

4.4. Anti-plane strain: case study

4.4.1. Coefficients of boundary integral equations

The displacement contribution (59) from an element in anti-plane strain has the form

uN
3 ðx;oÞ ¼

X3
a¼1

gN
a ðx;oÞt3a �

X3
a¼1

hN
a ðx;o; vÞu3a; ð60Þ

where u3a and t3a are the nodal displacement and traction, respectively, and gN
a and hN

a are the
coefficients of the boundary integral equations given by

gN
a ðx;oÞ ¼ gN

ar þ i gN
ai ¼

1

8mp2

Z
jnj¼1

I2
aðx � n; n;oÞ dn;

hN
a ðx;o; vÞ ¼ hN

ar þ ihN
ai ¼

1

8p2

Z
jnj¼1

n � vJ2
aðx � n; n;oÞ dn: ð61Þ

The integrands I2
aðx � n; n;oÞ and J2

aðx � n; n;oÞ; defined by Eqs. (55) and (56), consist of the
fundamental displacement solution and its higher order (up to third) integrals; they inherit the
characteristics, such as the cusp, of the fundamental displacement solutions. The corresponding
coefficients of the boundary integral equations, gA

a and hA
a ; based on the analytic fundamental

solutions (40) are obtained by a 60-point Gauss quadrature integration over the element.

4.4.2. Integration scheme
Exploiting the double symmetry of the integrands in Eq. (61) we perform the integration along

a half-circle and double the contribution. These integrands have two types of numerical
singularity: (1) divide 0 by 0 when n ¼ pe is perpendicular to the element and (2) cusps when the
angles n ¼ p1 and p2 become perpendicular to yð1Þ � x and yð2Þ � x; respectively, where yð1Þ and yð2Þ
are the end nodes of the element as shown in Fig. 4(a). The cusps occur only in the real parts hN

ar

and gN
ar:While both the real and imaginary parts face the divide 0 by 0; the imaginary parts hN

ai and
gN

ai can handle this much better than the real parts hN
ar and gN

ar: Fig. 4(b) shows the suggested range
of the half-circle integration that starts with the positive direction (i.e., from node 1 to 2)Ye of the
boundary element yð1Þyð2Þ: The integration is interrupted at each singularity and, before and after
each cusp, the double refinement of the integration step is performed.

4.4.3. Angular and k2 dependency of accuracy
Consider a unit boundary element along the x-axis between �0:5 and þ0:5 and calculate the

relative error of the boundary element coefficients (61) along the quarter unit-circle in the first
quadrant (Fig. 5). We have identified degradation of accuracy at locations of x extremely close to
the element or its extension. Since the coefficients of the boundary equations are calculated with x

exactly on the element or its extension, but not slightly off, this degradation does not affect the
boundary integral equations. The accuracy of the coefficients when x is on the element or its
extension as well as the case when x is not too close to the element is excellent since the relative
error is of the order between 10�5 and 10�6:

M. Denda et al. / Journal of Sound and Vibration 261 (2003) 247–276 259



A O B C

D

X1
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Fig. 5. Unit boundary element on the x-axis and a quarter circular path.
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Θe

y(1)

y(2)
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p2

Θe

Θe+π

pe = Θe+π/2

(a)

(b)

Fig. 4. (a) Geometry of the boundary element yð1Þyð2Þ and the source point x in the determination of critical directions

p1; p2 and pe; (b) integration scheme along the half-unit circle.
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Next, we have calculated the relative error along the perpendicular bi-sector of the same
element. Let r be the distance from the point on the bi-sector to one of the end nodes of the
element. As x moves along the bi-sector the parameter k2 ¼ k2r increases. To accommodate an
increasing value of k2 we have used the guideline for n (number of sub-intervals along the half-
circle) set by Eq. (46) and used the value of q (number of quadrature points for the real part) set in
Table 1. The value of p (number of quadrature points for the imaginary part) did not follow Table
1, instead we have used the same value as q: Table 2 shows the relative error of the boundary
element coefficients in various ranges of k2:

5. Eigenvalue analysis

5.1. Non-linear eigenvalue problem and QZ algorithm

The system of boundary equations resulting from the direct displacement formulation has the
form

½HðoÞ�fug � ½GðoÞ�ftg ¼ f0g; ð62Þ

where ½HðoÞ� and ½GðoÞ� are N 
 N matrices and fug and ftg are the boundary displacement and
traction vectors. The form of the eigenvalue problem for the homogeneous boundary condition is

½QðoÞ�frg ¼ f0g; ð63Þ

where ½QðoÞ� is a N 
 N matrix and frg is N 
 1 boundary value vector consisting of non-zero
displacement and traction components. For example, for the displacement (i.e., fug ¼ f0g) and
the traction (i.e., ftg ¼ f0g) boundary value problems we have

½GðoÞ�ftg ¼ f0g ð64Þ

and

½HðoÞ�fug ¼ f0g; ð65Þ

respectively.
The components of the matrix ½QðoÞ� in Eq. (63) are non-linear complex-values functions of the

eigenfrequency o: Kitahara [2] determined the eigenfrequencies by calculating det½QðoÞ� at

Table 2

Relative error of the boundary element coefficients

Relative error

gN
ar hN

ar gN
ai hN

ai

0pk2p2 10�8 10�7 10�9 10�7

0pk2p10 10�7 10�6 10�9 10�7

0pk2p20 10�6 10�5 10�8 10�7

20pk2p40 10�5 10�4 10�7 10�6

40pk2p60 10�4 10�3 10�7 10�6
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multiple values of o in a given interval; this is called the direct search method. The local minima,
instead of zeros, of the determinant are achieved at the eigenfrequencies. The accuracy of this
method is strongly influenced by the increment size Do and it is inefficient. We propose a
procedure using the QZ algorithm below [12–14]. First, set up an interval ½oA;oB�; where
we approximate ½Q� by a matrix polynomial of order M to get an approximate eigenvalue
problem

½½Q0� þ o½Q1� þ o2½Q2� þ?þ oM ½QM ��frg ¼ f0g: ð66Þ

The N 
 N coefficient matrices ½Q0�; ½Q1�;y; ½QM � are obtained by Newton’s divided differences
in the interval ½oA;oB�: If we introduce a new series of vectors

frig ¼ oifrg ði ¼ 0; 1;y;MÞ; ð67Þ

then Eq. (66) can be written as

½Q0�fr0g þ ½Q1�fr1g þ ½Q2�fr2g þ?þ ½QM �frMg ¼ f0g: ð68Þ

Eq. (68) is equivalent to a linear general eigenvalue problem,

½ *Q�f*rg ¼ o½ *P�f*rg; ð69Þ

where ½ *Q� and ½ *P� are MN 
 MN matrices and f*rg is a MN 
 1 vector defined by

½ *Q� ¼

½QM�1� ½QM�2� ? ½Q2� ½Q1� ½Q0�

½I� ½0� ? ½0� ½0� ½0�

½0� ½I� ? ½0� ½0� ½0�

? ? ? ? ? ?

½0� ½0� ? ½I� ½0� ½0�

½0� ½0� ? ½0� ½I� ½0�

2
6666666664

3
7777777775
;

½ *P� ¼

�½QM � ½0� ½0� ? ½0� ½0�

½0� ½I� ½0� ? ½0� ½0�

½0� ½0� ½I� ? ½0� ½0�

? ? ? ? ? ?

½0� ½0� ½0� ? ½I� ½0�

½0� ½0� ½0� ? ½0� ½I�

2
6666666664

3
7777777775
; ½*r� ¼

oM�1frg

oM�2frg

oM�3frg

?

ofrg

frg

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
; ð70Þ

where ½I� and ½0� are N 
 N identity and zero matrices. Eq. (69) can be solved by the QZ algorithm
[12]. Notice that the QZ algorithm always provides MN eigenvalues for each interval ½oA;oB� of
search. These eigenvalues all satisfy Eq. (69), but most of them are spurious, which are identified
by complex-valued or real-valued eigenvalues outside the interval ½oA;oB�: The physical
requirement for real-valued eigenvalues forces us to throw away all spurious eigenvalues. Since
the real eigenvalues seldom occur in the analysis and they usually come with small imaginary
numbers, we pick up the true eigenvalues using the criterion: (1) the imaginary part is less than a
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small number e to be discussed below and (2) the real part is in the interval ½oA;oB�: If the real
part of an eigenvalue with a small imaginary part, selected by (1), lies outside the interval, then it
actually belong to an adjacent interval, where its value is calculated more accurately. Thus we
discard such eigenvalue as spurious according to (2) above.

5.2. Anti-plane strain: case study

5.2.1. Direct search method for square region
Consider a square isotropic domain of size a: The eigenmodes for the displacement zero BC are

given by the products of cos½ð2p � 1Þp=a�x or sinð2pp=aÞx in the x direction and cos½ð2q � 1Þp=a�y
or sinð2qp=aÞy in the y direction, where p and q are positive integers. The non-dimensional
eigenvalues are given by

%k2 ¼ ak2 ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
; ð71Þ

where m ¼ 2p � 1; 2p and n ¼ 2q � 1; 2q are positive integers. Similarly the eigenmodes for the
traction zero BC are given by the products of sin½ð2p þ 1Þp=a�x or cosð2pp=aÞx in the x direction
and sin½ð2q þ 1Þp=a�y or cosð2qp=aÞy in the y direction, where p and q are non-negative integers.
The non-dimensional eigenvalues are still given by Eq. (71) with m and n being non-negative
integers (i.e., 0 is allowed). The integers m and n indicate the number of half-wavelength in x and y
directions, respectively. Note that we use the wave number k2 instead of the angular frequency o;
they are related linearly by k2 ¼ o=c2; where c2 is the shear wave speed.
First, consider the case for m ¼ 1: Figs. 6(a) and (b) show approximation of half-wavelengths

cosðp=aÞx (displacement zero BC) and sinðp=aÞx (traction zero BC) by the quadratic boundary
element along the boundary. We see that, although the quadratic interpolation can approximate
the half-wavelengths in both cases, the former is more accurate than the latter. In general, for mth
order eigenmode in x and y directions, we need to use m boundary elements in both directions.
However, the eigen modes for displacement zero BC can be represented more accurately than
those for traction zero BC. We have introduced six different meshes, MESH-m ðm ¼ 1;y; 6Þ with
m elements on each side of the square, and determined its eigenfrequencies by the direct search
method to be compared with the analytic results given by Eq. (71). We expect that the finest mesh,
MESH-6; can represent up to sixth order eigenmodes in x and y directions accurately; the

(a) (b)

-a/2 -a/2a/2 a/2

Fig. 6. Approximation (solid line) of eigenmodes (a) cosðp=aÞx (displacement zero) and (b) sinðp=aÞx (traction zero) by
the quadratic interpolation.
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maximum eigenvalue predictable accurately is expected to be %kmax
2 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62 þ 62

p
E26:657298:

Figs. 7 and 8 show variation of the absolute values of the determinants ½Gð %k2Þ� (for displacement
zero) and ½Hð %k2Þ� (for traction zero) as the functions of the non-dimensional wave number %k2 in
the range 0p %k2p27 using the increment D %k2 ¼ 0:1:
For each determinant curve the locations of the eigenvalues are indicated by the local minima

of the absolute value of the determinant but not zeroes. The direct search method is time
consuming since determinant values for non-eigenvalues must also be calculated and the result is
critically dependent on the increment size D %k2: The accuracy of the eigen values is only as good as
the increment size. For the eigenvalue analysis of the completely unknown problem, the optimum
increment size D %k2 must be determined after several trials and there is no guarantee that all
eigenvalues have been picked out in the range of %k2 considered. Nevertheless, the direct search
method is a useful technique to initially identify approximate locations of the eigenvalues up to
the accuracy of the increment.

0 10 20
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Fig. 7. Determinant of ½Gð %k2Þ� as the function of %k2 for MESH-m ðm ¼ 1;y; 6Þ for displacement zero BC. Theoretical
eigenvalues are listed below: solid and shaded squares are eigenvalues for m; np6:
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5.2.2. QZ algorithm for square region
We assume, for now, that all the eigenvalues in the region considered have been picked up by

the direct search method with the increment D %k2; used in the direct search, and the locations of the
local minima are identified. Let %k

ðiÞ
2 be the ith minimum for either displacement or traction zero

BC. We propose to apply the QZ algorithm introduced in Section 5.1 for the interval ð %kðiÞ
2 �

D %k2; %k
ðiÞ
2 þ D %k2Þ; where the presence of at least one eigenvalue is guaranteed, using the matrix

polynomial of order M ¼ 2 in Eq. (66) to improve the accuracy of the eigenvalue %k
ðiÞ
2 : In each

interval the QZ algorithm produces total of 2N eigenvalues of Eq. (69) most of which are spurious
eigenvalues. While the eigenvalues we are looking for have real values, the spurious eigenvalues
are either complex-valued or, if real, lie outside the interval ð %kðiÞ

2 � D %k2; %k
ðiÞ
2 þ D %k2Þ: Thus we look

for eigenvalues with the real parts within this interval and small imaginary parts. Specifically, we
look for the eigenvalue ð %kðiÞ

2 þ dðiÞÞ þ ieðiÞ; where dðiÞ (improvement in the real part) and eðiÞ

(imaginary part) are small real numbers. Although this eigenvalue still has a small imaginary part,
we accept its real part ð %kðiÞ

2 þ dðiÞÞ as the improved version of the eigenvalue %k
ðiÞ
2 : More important,
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Fig. 8. Determinant of ½Hð %k2Þ� as the function of %k2 for MESH-m ðm ¼ 1;y; 6Þ for traction zero BC. Theoretical
eigenvalues are listed below: solid and shaded squares are eigenvalues for m; np6:
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the value of eðiÞ that goes with the true eigenvalue gives an indication on the size of threshold e
used to cut-off other complex-valued eigenvalues as spurious. Our numerical results have
indicated that only a few eigenvalues have small imaginary numbers and all others have large
imaginary parts of order 10 or more times the size of eðiÞ: So the distinction of the true from
spurious eigenvalues has been straightforward. In addition, if the real parts of the selected
eigenvalues are outside of the interval ð %kðiÞ

2 � D %k2; %k
ðiÞ
2 þ D %k2Þ; then we discard them as spurious

since they belong to the adjacent search intervals, where more accurate values can be obtained
than in the current interval. Comparison of the results with theory (71) indicates that the
displacement and traction zero boundary conditions give at least 4 and 3 significant digits
agreement in the eigen values with the theoretical values.

6. Numerical results

6.1. Controlling parameter in eigenvalue analysis

The outcome of the error analysis in Sections 3.3, 4.4 and 5.2 for the anti-plane strain isotropic
problem will be used here to solve the generalized plane strain problems. In generalized plane
strain the fundamental solutions depend on

km ¼ kmr; ð72Þ

where r ¼ jy� xj and km ðm ¼ 1; 2; 3Þ is the wave number defined by Eq. (16). Let %km; %o; %cm and

%r be non-dimensional wave number, angular frequency, phase velocity and distance, respectively,
defined by

%km ¼ akm; %o ¼ ao=c2; %cm ¼ cm=c2; %r ¼ r=a; ð73Þ

where c2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
c66=r

p
is the shear wave speed and a is the characteristic length of the problem. We

can rewrite Eq. (72) as

km ¼ kmr ¼ %km %r; ð74Þ

where

%km ¼ %o=%cm ð75Þ

is the non-dimensional wave number which, along with %cm; varies over the unit circle jnj ¼ 1:
Fig. 9 shows plots of 1=%cm for (a) iron (isotropic), (b) zinc oxide (hexagonal), (c) aluminum crystal
(cubic) and (d) AT-cut quartz. Since the variation of 1=%cm is generally contained in the
neighborhood of 1, we can replace Eq. (75) by

%kmB %o ð76Þ

so that Eq. (74) is given by

kmB %o%r ð77Þ
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for m ¼ 1; 2; 3: Thus %o can be used as the controlling parameter in the eigenvalue analysis. Once
eigenvalues for %o are obtained we can get the actual radial frequency by

o ¼
c2

a
%o: ð78Þ

6.2. Square domain: generalized plane strain

We have analyzed a square domain of size a for AT-cut quartz using MESH-6 of Section 5.2.1
with 24 elements and 48 nodes. The search range considered is 0:0p %op20:0 with n ¼ 9 and the
number of Gauss quadrature points is 8: First, we have applied the direct search method a few
times with different %o increment sizes to get the approximate locations of the eigenvalues in this
range. This information is used to determine the sub-interval size D %o in the QZ-algorithm. A large
sub-interval, which may contain multiple eigenvalues, requires a high value such as M ¼ 5 in
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Fig. 9. Plots, along the unit-circle, of 1=%cm for (a) iron (isotropic), (b) zinc oxide (hexagonal), (c) aluminum crystal

(cubic) and (d) AT-cut quartz. The non-dimensional velocities %c1; %c2 and %c3 are longitudinal and two shear wave

velocities, respectively.
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Eq. (66), which is computationally costly. A better strategy is to use a low value such as M ¼ 1 for
a small sub-interval. The latter strategy requires a larger number of sub-intervals, but
computation for each sub-interval is much faster than the former since the size of the matrices
in Eq. (66) is 720 and 144 for M ¼ 5 and 1; respectively. Thus we have abandoned the two-step

Table 3

Eigenfrequencies for a square AT-Cut quartz domain with displacement zero BC

BEM FEM

D %o ¼ 0:125 D %o ¼ 0:05 25 Elements 4 Elements

6.0078621 6.0077591 6.0076879 6.0076882

6.2608666 6.2607163 6.2606436 6.2606486

7.3603363 7.3601248 7.3599831 7.3599866

8.1828851 8.1823605 8.1823982 8.1824449

8.6754927 8.6750733 8.6749964 8.6750407

9.1434493 9.1431803 9.1432205 9.1432859

10.390321 10.390187 10.390173 10.390239

10.813610 10.813183 10.813485 10.814858

11.256492 11.256445 11.256479 11.256564

11.326389 11.325965 11.326460 11.327588

11.844321 11.844043 11.844122 11.845733

12.018874 12.018719 12.018889 12.019000

12.616882 12.616832 12.617211 12.617773

13.532676 13.532455 13.532471 13.532701

13.638612 13.638519 13.639268 13.643142

14.083201 14.082865 14.084242 14.088313

14.295053 14.294717 14.295843 14.296945

14.488844 14.488750 14.489533 14.490908

14.654810 14.654579 14.655000 14.655818

14.993935 14.993899 14.993949 14.996243

15.214765 15.214546 15.214803 15.218835

15.820995 15.820684 15.821716 15.824148

16.419473 16.419154 16.422267 16.428103

16.521996 16.521880 16.522349 16.534820

16.594179 16.593967 16.595284 16.731951

16.728244 16.728104 16.729384 16.745604

16.942111 16.941781 16.944663 17.101065

17.346473 17.346232 17.348238 17.353431

17.368696 17.368681 17.369626 17.373787

17.760638 17.760569 17.764048 17.769456

18.027522 18.027354 18.028989 18.032073

18.670055 18.669873 18.670554 18.859235

18.954457 18.954115 18.960464 19.102826

19.098938 19.098731 19.102645 19.108244

19.569656 19.569433 19.568221 missed

19.722122 19.722002 19.722133 19.727702

19.848450 19.848240 19.847561 missed

19.993377 19.993331 19.996622 19.969102
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Table 4

Eigenfrequencies for a square AT-Cut quartz domain with traction zero BC

BEM FEM

D %o ¼ 0:125 D %o ¼ 0:05 25 Elements 4 Elements

3.5991203 3.5993905 3.5993212 3.5993213

3.9200069 3.9202453 3.9199152 3.9199467

4.3388588 4.3395542 4.3386493 4.3387021

4.8472878 4.8473558 4.8473166 4.8473177

4.8657352 4.8658312 4.8642374 4.8643740

5.3914851 5.3915252 5.3914491 5.3914492

6.0088374 6.0089080 6.0088437 6.0088446

6.0143505 6.0146279 6.0132876 6.0133099

6.6858113 6.6857881 6.6856712 6.6856713

6.8408549 6.8409950 6.8396530 6.8398026

7.2441487 7.2441563 7.2436488 7.2436617

7.5559054 7.5560045 7.5549415 7.5550866

missed 7.6789820 7.6701030 7.6710782

8.6559273 8.6561644 8.6553847 8.6554587

9.0462354 9.0467825 9.0356755 9.0399610

9.2259863 9.2262870 9.2121759 9.2146103

9.3594178 9.3595094 9.3530747 9.3542897

9.3716618 9.3715970 9.3601576 9.3622508

9.7056323 9.7057153 9.7043710 9.7045917

10.363739 10.363728 10.362191 10.362466

10.821954 10.822052 10.819737 10.821639

10.871366 10.871359 10.871112 10.871123

11.395315 11.395295 11.392039 11.393152

11.483380 11.483517 11.444225 11.459929

11.675887 11.676468 11.642673 11.683010

11.693935 11.694416 11.674124 11.696642

11.916374 11.916680 11.903352 11.921719

12.012801 12.012889 12.012237 12.012458

12.710070 12.710114 12.690238 12.695667

12.824293 12.824343 12.803503 12.811609

13.301219 13.301247 13.300681 13.300697

13.439162 13.439765 13.387852 13.463345

13.583888 13.584021 13.560337 13.577632

14.162303 14.162529 14.118103 14.156795

14.460761 14.460708 14.410169 14.471344

14.468639 14.468687 14.454755 14.483490

14.471720 14.471573 14.469865 14.503652

14.537237 14.537405 14.530465 14.541444

14.748690 14.748408 14.686968 14.747795

14.981675 14.981639 14.971744 14.980332

15.072531 15.072770 15.008505 15.147384

15.139508 15.140088 15.077389 15.154354

15.263604 15.263996 15.248540 15.325252

15.955163 15.955192 15.943572 16.007304

16.290997 16.291039 16.221189 16.292242

16.295308 16.295900 16.289445 16.379562
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search (i.e., the initial global and final local) in favor of the one-step search by the QZ algorithm
using M ¼ 1 and the small sub-interval size.
After selecting the sub-interval size, we have run the QZ-algorithm in the first few sub-intervals

i ð¼ 1; 2;yÞ in each of which the presence of at least one eigenvalue, say %oðiÞ; is guaranteed by the
direct search. Indeed, the QZ algorithm always finds the corresponding eigenvalue with the
improved real part %oðiÞ þ dðiÞ and a small imaginary part eðiÞ in each interval. It may also find a few
new eigenvalues with small imaginary parts but their real parts have usually been outside the
current search range. The other majority of the eigenvalues have imaginary parts one order or
more larger than eðiÞ: The last two groups of eigenvalues are spurious and must be discarded. Most
important, we use the values of the small imaginary parts eðiÞ ði ¼ 1; 2;yÞ associated with the true
eigenvalues to determine the threshold value e used in the subsequent selection of the true
eigenvalues. Thus the criterion used to pick up the true eigenvalues is: (1) the absolute value of the
imaginary part is less than e ¼ 0:1 and (2) the real part is in the search region. We have performed
two sets of searches using two sub-interval sizes, D %o ¼ 0:125 and 0:05: Two different searches with
different sub-interval sizes were used to avoid missing eigenvalues located in the extreme
neighborhood of some of the sub-intervals. Tables 3 and 4 list eigenvalues found for displacement
and traction zero BCs for two sub-interval sizes. Notice that two eigenvalues missed by the sub-
interval D %o ¼ 0:125 were picked up by the use of a sub-interval of 0:05: These tables also list two-
sets of results by the FEM which has used four and twenty-five 36-nodes elements, respectively;
the total number of nodes for the FEM calculation are 121 and 676; respectively. The FEM 36-
nodes element has 20 and 16 nodes on and inside the boundary, respectively; it covers the element
uniformly by a 6
 6 array of nodes. The current FEM, developed by Wang et al. [1], has been

Table 4 (continued)

BEM FEM

D %o ¼ 0:125 D %o ¼ 0:05 25 Elements 4 Elements

16.417150 16.417222 16.388288 16.434174

16.646910 16.646904 16.636428 16.701171

16.963276 16.963301 16.926094 17.038081

17.132414 17.132957 16.966781 17.147070

17.370950 17.370266 17.361264 17.419562

17.516781 17.517728 17.707722 17.536129

17.905002 17.905738 17.740458 18.014818

17.966565 17.965849 17.930135 18.022019

17.979249 17.978643 18.016519 18.114717

18.022839 18.023245 18.034284 18.164537

18.046577 18.047013 18.582509 18.224731

18.689240 18.689638 18.672291 18.830472

missed 18.750517 19.2125 18.862395

19.244393 19.244450 19.333551 19.344924

19.377319 19.377436 19.373203 19.447317

19.433399 19.433580 19.508725 19.666257

19.579222 19.579190 19.867892 19.680866

19.938584 19.938964 19.970848 19.972644

19.975327 19.975341 19.991958 20.099036
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used for industrial applications in the frequency range %oo2 and is considered to be the best in the
low-frequency eigenvalue analysis for general anisotropic/piezoelectric solids. The BEM and
FEM results agree up to 5 and 4 digits for %oo10 of displacement and traction zero BCs,
respectively. The performance of the FEM deteriorates for %o > 15: This is the range where the
FEM results have improved significantly from four to 25 elements; the improved results have
approached those by the BEM indicating that the BEM results are more accurate in this range.
The FEM using four elements has missed two eigenvalues, which have eventually been identified
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Fig. 10. 3-D plots of real and imaginary parts of displacement components obtained by the BEM: %o ¼ 3:5993905 for
traction zero BC.
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by using 25 elements; the BEM has never missed these two. Further, the FEM results for traction
zero BCs show some irregularity in this range. For the majority of industrial applications, the
range of frequency is %oo2; the agreement of the BEM and FEM is excellent in this range.
However, as more higher frequency applications appear, such as the SAW using diamond, the
importance of the higher frequency capability of the BEM should stand out.
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Fig. 11. 3-D plots for the eigenfrequency 6:0089080 (traction zero BC) obtained by the BEM (real part) and the FEM.
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Fig. 12. 2-D plots for the eigenfrequency 6:0089080 (traction zero BC) obtained by the BEM (real part) and the FEM.
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Figs. 10–13 show eigen modes of displacements for four selected eigenvalues for displacement
and traction zero BCs calculated by the BEM and the FEM. The displacement fields by the BEM
have been calculated using the eigenvector which is normalized to have an Euclidean length equal
to one, while the FEM results are normalized by the maximum displacement component in the
field.
Fig. 10 shows 3D plots of the real and imaginary parts of the displacement components ðu1; u2

and u3Þ by the BEM; the eigenfrequency is %o ¼ 3:5993905 for traction zero BC. Figs. 11 and 12
show 3D and 2D contour plots for the eigenfrequency 6:0089080 (traction zero BC) obtained
by the BEM (real part) and the FEM. Although a slight distortion of the BEM results near
the boundary region is observed, the basic agreement between the two results is satisfactory.
Fig. 13 shows 2-D contour plots for a displacement zero eigenfrequency of 10:813183 obtained
by the BEM and the FEM. Notice the basic agreement between the two results; the dis-
agreement in the near boundary region is caused by the inability of the BEM to calculate
the accurate solution in the immediate neighborhood of the boundary as pointed out in Section
4.4.3. While the FEM results are plotted in the full field, i.e., �0:5pxp0:5 and �0:5pyp0:5; the
BEM results are plotted in the region �0:475pxp0:475 and �0:475pyp0:475 to avoid the loss
of accuracy in the near boundary region.

7. Concluding remarks

We have developed a time-harmonic BEM for general anisotropic solids in 2-D using
the fundamental solution obtained by the Radon transform. The evaluation of the boundary
element coefficients is reduced to the line integral over the unit circle. The error analysis
has established guidelines for the accurate numerical evaluation of the line integrals. We
have applied the BEM to the eigenvalue analysis using the QZ algorithm. When no prior
information on the distribution of the eigenvalues is available, the direct search method should be
used prior to the QZ algorithm to determine the approximate locations of the eigenvalues and the
sub-interval size used for the QZ algorithm. For the QZ algorithm, the linear approximation
ðM ¼ 1Þ of the non-linear matrix along with the small sub-interval size should be used. It is
recommended that two sets of searches with different sub-interval sizes are used to eliminate the
possibility of missing eigenvalues located near the sub-interval boundary. Most of the eigenvalues
obtained by the QZ algorithm in a given sub-interval are spurious. The true eigenvalues are
identified by requiring that the real parts are in the sub-interval and the imaginary parts are less
than a small number e:
The eigenfrequency results are in agreement with the most reliable FEM results to several

significant digits. The proposed BEM implementation combined with the non-linear eigenvalue
solver provides a reliable platform for the computation of eigenfrequencies for solids with
general anisotropy. It is a strong candidate to replace the traditional dual reciprocity BEM
(DRBEM) and FEM designed for the eigenvalue problems. The proposed BEM is generally
applicable to a wider class of two-dimensional time-harmonic problems not limited to the
eigenvalue analysis.
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