
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 261 (2003) 309–328

Optimal design of engine mount using an
artificial life algorithm

Young Kong Ahn, Jin Dae Song, Bo-Suk Yang*

School of Mechanical Engineering, Pukyong National University, San 100, Yongdang-dong, Nam-gu,

Pusan 608-739, South Korea

Received 22 October 2001; accepted 23 May 2002

Abstract

When designing fluid mounts, design parameters can be varied in order to obtain a desired notch
frequency and notch depth. The notch frequency is a function of the mount parameters and is typically
selected by the designer to occur at the vibration disturbance frequency. Since the process of choosing these
parameters can involve some trial and error, it seems to be a great application for obtaining optimal
performance of the mount. Many combinations of parameters are possible to give us the desired notch
frequency, but the question is which combination provides the lowest depth? Therefore, an automatic
optimal technique is needed to optimize the fluid mount.

In this study, the enhanced artificial life algorithm (EALA) is applied to minimizing transmissibility of a
fluid mount at the desired notch frequency, and at the notch and resonant frequencies. The present hybrid
algorithm is the synthesis of a conventional artificial life algorithm with the random tabu search (R-tabu)
method and then, the time for searching optimal solution could be reduced from the conventional artificial
life algorithm and its solution accuracy became better.

The results show that the performance of the optimized mount by using the hybrid algorithm has been
better than that of the conventional fluid mount.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Mounts are commonly used to connect two structures together to prevent vibration
transmission from one to the other. Passive mounts consist of a resilient element that is designed
to statically hold the structures together and dynamically isolate them from each other. A major
challenge in designing mounts, particularly elastomeric mounts, is to make them statically stiff
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and dynamically soft. Elastomeric mounts are rubber-to-metal bonded elements that are widely
used for a variety of industrial applications.

The dynamic stiffness of an elastomeric mount increases with increasing disturbance frequency.
Therefore, stiffening the mount to achieve a better connection results in poorer isolation at high
frequency. On the other hand, reducing the dynamic stiffness requires a lower static stiffness and
weaker ability to hold the structures together. In a manner analogous to a spring, dynamic
stiffness for an elastomeric mount is defined as the ratio between the forces applied to the mount
and the displacement that it causes across the mount.

To overcome some of the drawbacks of elastomeric mounts, fluid mounts are often used to
provide a better compromise between the static and dynamic requirements of the mount [1–3].
Following studies performed, modelling of a fluid mount [4–10], its optimization [11–16], and
development of various engine mounts [17] have been presented by many researchers.

The resonance caused by fluid passing between the two compliant rubber chambers can either
provide additional damping to the fundamental mount resonance, or create a tuned absorber
effect to provide a superior isolation at a single frequency depending on how the mount is
designed.

The tuned absorber effect of the fluid results in a dynamic stiffness ‘‘notch’’ at which the
transmissibility and the dynamic stiffness are low and the isolation effectiveness is high.
Therefore, fluid mounts can be designed to have a much higher static stiffness (e.g., as much as
1.5–2 times) than elastomeric mounts, with substantially higher isolation capability (by as much as
10 times, or 20 dB) at the disturbance frequency. Because of their added isolation benefits, fluid
mounts are used in many cars, trucks, and buses. More recently, they have been selected for
aerospace applications such as aircraft engine mounts and helicopter pylon isolators [4]. When
designing fluid mounts, there are many designing parameters that the engineers can vary in order
to obtain the desired notch frequency and notch depth. Since the process of choosing these
parameters can involve some trial and error, it seems to be a great application for the optimization
of the mounts. There are many combinations of parameters possible to obtain the desired notch
frequency, but the question is which combination provides the lowest notch depth.

In general, it is not easy to optimize such a non-linear optimization problem by some
conventional optimization methods that have the probability of being converged into a local
optimum solution. On the other hand, an artificial life algorithm has recently received attention
regarding its capability as a global optimization technique for complex, linear, non-linear, and
multi-optimization problems, and has been successfully applied to several engineering problems
[18–20].

In this paper, the performance of the fluid mount is first investigated by varying the designing
parameters. Then, the enhanced artificial life algorithm (EALA) [21] was employed to minimize
the transmissibility of a fluid mount at the desired notch frequency. The advantage of the artificial
life algorithm is that any kind of objective functions can converge to stable global solution and
does not need to calculate derivatives of the function for the optimization. Even though the
fundamental resonant mode has much more vibration energy than the notch frequency mode, we
are interested in the design parameters chosen to obtain the optimal performance of the fluid
mount at the desired notch frequency because the notch frequency is the main vibration
disturbance frequency. However, minimizing the transmissibility at the fundamental and notch
frequencies was additionally investigated.
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Results show that the transmissibility of the optimized mount at the notch frequency lowered
more than that of the original mount. Furthermore, the optimization results by the EALA were
compared with those of the sequential quadratic programming (SQP) [22].

2. Fluid mount

Fig. 1 shows the configuration of a fluid mount. This device has performance characteristics
compatible with the mounts commonly used for applications such as isolating large turbofan
engines from the air frame in commercial aircraft [23]. The inner member is connected to the
sources of vibration (e.g., engine), and the outer member is connected to the structure to be
isolated (e.g., air frame). The fluid mount is an elastomeric mount with fluid travelling between
two rubber-enclosed chambers. A fluid passage between the two chambers, called an ‘‘inertia
track’’, is used to connect them. The inertia track can be external in the main embodiment of the
mount, as shown in Fig. 1, or internal in the mount. Furthermore, a small volume compensator is
often used to accommodate the change in fluid volume due to the temperature change. The
compensator consists of a fluid cavity that is connected to one of the fluid chambers through a
small valve, and a small nitrogen-charged chamber that is separated from the fluid by a bladder
[24]. The small valve between the compensator and the fluid chamber allows fluid passage
statically to accommodate fluid volume changes, but blocks fluid passage at higher frequencies to
dynamically decouple the compensator from the fluid chamber.

3. Fluid mount model

Fig. 2 shows the fluid/mechanical model for the fluid mount shown in Fig. 1. A dynamic
pressure is created on the piston area Ap (the piston area of the upper and lower chambers) due to
the force F applied to the inner member that is connected to the vibration source. The force F

causes the displacement x between the inner and outer members. The flow rates Q1; Q2; and Q3

are used in the development of the corresponding linear differential equations. Q1 and Q3 are
equal and correspond to the flow in and out of the upper and lower fluid chambers shown in

Fig. 1. Schematic representation of the fluid mount with external inertia track.
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Fig. 2. The volumetric stiffness of the upper and lower chambers, Kvt and Kvb and the volumetric
damping coefficients of the upper and lower chambers, Bvt and Bvb; can be combined as follows:

Kv ¼ Kvt þ Kvb; Bv ¼ Bvt þ Bvb: ð1Þ

It is worth noting that the above equations do not include tensile forces since rubber elements are
not able to withstand repeated tensile force without incurring damage. When the inner member is
displaced relative to the outer member, a restoring force is created due to the elastomer, which is
modeled by the parallel spring Ke and damper Be:

The fluid mount model of Fig. 2 has two different energy domains of hydraulic domain and of
mechanical domain for elastomer. The bond graph model is well known as a convenient means of
representing multiple energy-domain systems [15,25], which is employed to develop a linear model
of the fluid mount in this study. Moreover, the bond graph model has another advantage of
reducing the parameter numbers. The bond graph model has been used in the modelling of
hydraulic mount by many researchers, the standard techniques exits for modelling fluid and
mechanical capacitances, viscous damping, capillary flow, and relations between fluid pressures
and mechanical forces. A bond graph representing the fluid/mechanical model of the mount is

Fig. 2. Fluid/mechanical model of the fluid mount.

Fig. 3. Bond graph model of the fluid mount.
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shown in Fig. 3. Using the bond graph model, we can write the equations for the flow rates as

Q2 ¼ Q3 þ Ap ’x; ð2Þ

Q1 ¼ Q3: ð3Þ

Further, the bond graph implies

’pI ¼ �
ðBv þ BdÞ

If

pI � Kvqv þ ApBv ’x; ð4Þ

’qv ¼ �
1

If

pI � Ap ’x; ð5Þ

’qe ¼ ’x; ð6Þ

where pI is the momentum of fluid inertia If ; qv is the volumetric displacement of combined
volumetric stiffness Kv;Bd is fluid resistance in the inertia track, and qe is the displacement of the
spring representing the elastomer stiffness Ke: Additionally, the equation for the force F can be
derived from the bond graph as

F ¼ Keqe þ ðBe þ A2
pBvÞ ’x � ApKvqv �

ApBv

If

pI : ð7Þ

Assuming sinusoidal motion, Eqs. (4)–(6) can be expressed as follows:

joþ ðBv þ BdÞ=If Kv

�1=If jo

" #
PI

qv

( )
¼

BvAp

�Ap

( )
jox; ð8Þ

qe ¼ x: ð9Þ

Substitution of PI and qv obtained by using Cramer’s rule in Eq. (8), and Eq. (9) into the force
F given by Eq. (7) yields

F ¼Kex þ joxðBe þ A2
pBvÞ � ApKv

fApIf o2 � joApðBd þ BvÞ þ ApBvjogx

Kv þ joðBd þ BvÞ � If o2

� ApBv

fApKvjo� joApBvo2gx

Kv þ joðBd þ BvÞ � Ifo2
: ð10Þ

The ratio between the force F and the displacement x is called the dynamic stiffness K� of the
mount, and is given by

K� ¼
F ðsÞ
xðsÞ

¼ Ke þ sðBe þ A2
pBvÞ þ

A2
pfsKvðBd � BvÞ � B2

vs2 þ KvIf s2g

Kv þ sðBd þ BvÞ þ If s2
; ð11Þ

where s is the Laplace operator. Rewriting Eq. (11) in the frequency domain through using s ¼ jo;
where j ¼

ffiffiffiffiffiffiffi
�1

p
and o is the dynamic frequency in rad/s, yields

K� ¼ K 0 þ jK 00; ð12Þ
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where

K 0 ¼ Ke þ A2
p 


o2fIfo2ðKvIf � B2
vÞ � KvðKvIf � B2

dÞg

ðKv � If o2Þ2 þ o2ðBd þ BvÞ
2

; ð13Þ

K 00 ¼ ðBe þ A2
pBvÞoþ A2

p 

K2

v ðBd � BvÞoþ o3f2KvBvIf � B2
vðBd þ BvÞg

ðKv � If o2Þ2 þ o2ðBd þ BvÞ
2

: ð14Þ

The real stiffness K 0 represents the stiffness properties of the mount, while K 00 indicates its
damping properties. Assuming there is no damping (i.e., Be ¼ Bv ¼ Bd ¼ 0), the dynamic stiffness
in Eq. (11) exhibits an undamped pair of poles and an undamped pair of zeros. The maximum
value for the dynamic stiffness occurs at the poles

ors ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Kv=If

q
; ð15Þ

the resonant frequency of the mount by fluid passing. The minimum value for the dynamic
stiffness occurs at the zeros

ons ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KeKv

ðKe þ A2
pKvÞIf

s
or ons ¼ ors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ke

Ke þ A2
pKv

s
; ð16Þ

the notch frequency of the mount. As indicated by Eqs. (15) and (16), the fluid resonant frequency
ors (rad/s) due to fluid passing is always greater than the notch frequency ons: Furthermore, the
dynamic stiffness is equal to Ke at low frequencies and Ke þ KvA

2
p at high frequencies, as evident

from Eq. (11) with assuming no damping. The dynamic stiffness is used to demonstrate the
isolation effectiveness of the mount. Lowering the dynamic stiffness results in a higher dynamic
isolation of the mount at the notch frequency.

Another useful measure in assessing the isolation effectiveness of the mount is the dynamic
transmissibility T ; which is defined as the ratio between the output and input forces. Using the
real stiffness K 0; imaginary stiffness K 00 and the mass M1 supported by the mount, we can obtain
the transmissibility as follows:

T ¼
K 02 þ K 002

ðK 0 � M1o2Þ2 þ K 002

	 
1=2

¼ ðTn=TdÞ
1=2; ð17Þ

where

Tn ¼o2fBvKe þ BeKv þ BdðKe þ A2
pKvÞ � ðBe þ A2

pBvÞIf o2g2

þ ½KeKv � fBvBe þ BdðBe þ A2
pBvÞ þ If ðKe þ A2

pKvÞgo2�2;

Td ¼o2½BvKe þ BeKv þ BdðKe þ A2
pKvÞ � fðBe þ A2

pBvÞIf þ ðBd þ BvÞM1go2�2

þ ½KeKv � fBvBe þ BdðBe þ A2
pBvÞ þ If ðKe þ A2

pKvÞ þ KvM1go2 þ If M1o4�2:
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Assuming no damping (i.e., Be ¼ Bv ¼ Bd ¼ 0), the transmissibility in Eq. (17) exhibits an
undamped pair of poles and an undamped pair of zeros. The maximum value for the
transmissibility occurs at the poles

or1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4If KeKvM1 þ A2Þ

p
2If M1

s
; ð18Þ

or2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�4If KeKvM1 þ A2Þ

p
2If M1

s
; ð19Þ

where

A ¼ If Ke þ Ap2If Kv þ KvM1:

The resonant frequency or1 is the fundamental resonant frequency of the mount. The fluid
resonant frequency or2 due to fluid passing between the two compliant rubber chambers and is
almost equal to the frequency ors of Eq. (15). The minimum value for the transmissibility occurs
at the zeroes, which means that the transmissibility has the notch at the zeros. The notch
frequency of the transmissibility is exactly the same that of the dynamic stiffness.

4. Parametric study of fluid mount

A parametric study using the transmissibility Eq. (17) was conducted to see how sensitive
location of the notch and fluid resonant frequencies and the notch depth were to the design
parameters. This study is important to determine which parameters need the most accurate
estimation. The following parameters were considered for the study:

* Rubber stiffness
* Volumetric damping
* Piston area
* Fluid inertia: If ¼ rL=As

* Volumetric stiffness

Original parameters of the fluid mount listed in Table 1 taken from Refs. [4,5] except the sprung
mass were varied by 730%. The cases with negative error indicate parameter underestimation
and the cases with positive error represent parameter overestimation. The parameters of the fluid
resistance and the elastomeric damping were not considered because their variation is too small to
alter the mount performance in the study. As shown in Fig. 4(a), changing the rubber stiffness Ke

greatly affects the fundamental resonant frequency, the notch frequency and the transmissibility
at the notch frequency. As expected, lowering the rubber stiffness results in a lower fundamental
resonant frequency of the mount, a lower notch frequency and a lower transmissibility at the
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notch and fundamental resonant frequencies. This parameter is one of the easiest parameters to
measure in a fluid mount.

The performance of the mount according to the parameter variations except rubber stiffness
was only observed around the notch and fluid resonant frequencies because the volumetric
damping and stiffness, the piston area and the fluid inertia are closely related with both the
frequencies. The notch, fluid resonant and fundamental resonant frequencies can be calculated
from Eqs. (16), (19) and (18), respectively.

Fig. 4(b) shows that the volumetric or bulge damping Bv greatly affects the mount
transmissibility at the notch frequency. The notch depth of underestimating volumetric damping
is lower than that of overestimating volumetric damping. Since underestimating volumetric
damping reduces damping ratios of the modes of the notch and fluid resonant frequencies, the
transmissibility at the notch frequency decreases but the transmissibility at the fluid resonant
frequency increases. Although not easy to analytically predict as some of the parameters, the
volumetric damping can be measured in a given mount.

Fig. 4(c) shows that the piston area Ap; which is defined as the effective area of the fluid cavity
that pumps the fluid into the inertia track, greatly affects the mount transmissibility at the notch
frequency. Overestimating the piston area lowers the notch frequency and the transmissibility at
the notch frequency, but raises the transmissibility at the fluid resonant frequency. However, the
fluid resonant frequency does not change. The piston area can be estimated accurately either
through direct measurement or through geometric analysis of the fluid cavity.

The volumetric or bulge stiffness Kv of the mount has a similar effect on the mount
transmissibility as the piston area because the amount of the volumetric stiffness is proportionate
to the piston area. As shown in Fig. 4(d), the overestimation of the volumetric stiffness lowers the
transmissibility at the notch frequency and also increases the notch and fluid resonant frequencies.
However, The variation of the volumetric stiffness has an almost no effect on the transmissibility
at the fluid resonant frequencies. Estimating analytically the volumetric stiffness is not easy and
therefore, the parameter has to be measured in a given mount.

The properties of the fluid inertia If affect little the transmissibility at the notch and fluid
resonant frequencies, but has a great effect on both the frequencies. As shown in Fig. 4(e), the
underestimation of the fluid inertia increases both the frequencies. The fluid inertia can be
estimated accurately either through direct measurement or through analytical prediction.

Table 1

Mount parameters used in numerical simulation

Parameters Value

Piston area Ap 0.00839m2

Inertia track area As 7.1
 10�5m2

Fluid elastomeric Bd 6.4
 106N.s/m5

Elastomeric damping Be 17.5N s/m

Volumetric damping Ke 5.78
 107N/m

Elastometric stiffness Kv 4.15
 1011N/m5

Inertia track length L 0.17m

Fluid density r 1.765
 103 kg/m3

Sprung mass M1 3.7
 105 kg
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5. Optimal design of fluid mount

The EALA [21] is applied for choosing optimum parameters for obtaining optimal performance
of the fluid mount. Artificial world in the EALA is defined as the domain of the given
optimization problem. The artificial organisms colonize emergently around the optimal solutions
by metabolism, movement and reproduction of the organisms, and the optimal solution is given
by the location of an artificial organism having the best fitness.
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Fig. 4. Effect of design parameters on transmissibility. (a) Rubber stiffness Ke; (b) volumetric damping Bv; (c) piston

area Ap; (d) volumetric stiffness Kv; (e) fluid inertia If :
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The solution accuracy and calculating speed of the artificial life algorithm are greatly affected
by the method of deciding the locations of the resource, the offspring and movement of the
organisms. Therefore, the R-tabu method [26] was employed to determine the locations for being
in the region nearest to the optimum point. The colonization at the EALA with R-tabu method
can be formed more quickly and compactly than the conventional artificial life algorithm [21]. It
means that the calculating speed to find the optimum solution and solution accuracy in the
artificial life algorithm depends on the speed and density of forming colonization. Therefore,
the hybrid algorithm is improved in the calculating speed and the accuracy of solution [21]. The
calculation procedure of the EALA shown in Fig. 5 is as follows.

Step 1. Initialization: There are four kinds of species and resources, respectively. Individual
numbers of the species and resources have the same number as the other. All the organisms with
the internal energy Ie and the resources are randomly distributed in the artificial world.

Step 2. Search: The artificial organisms look for the nearest resource needed for metabolism
within their neighborhood region. Here the neighborhood region is defined as follows:

C ¼ fxARnj jjx � xsjjpDg;D ¼ D0e
�ðt=TÞg;

xs: the current location of an arbitrary organism
D0 ¼ 1: the initial value

Start

Initial distribution

Search resource

End

Age = Age+1

Generation (Gen) = Gen+1

Make offspring using R - tabu

Gen>Gen_max

Yes

No

Movement using R − tabu
Metabolism using R − tabu

Fig. 5. Flow chart of the optimization algorithm.
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t: the current generation number
T ¼ 3000: the last generation number
g ¼ 12: the constant
n ¼ 6: the number of design variables

Step 3. Metabolism: First, if the organisms find the resources in the region, they move to the
nearest location of the resources. Then they get the metabolism energy Ge through the metabolism
with resources and also randomly produce wastes in the neighborhood region. The locations of
the wastes are decided by the R-tabu method as with the following description. First of all, the
neighborhood region is divided into as many sub-regions as step size Ns: In the next place, a
location is randomly selected for a step. If the function value of the selected location is better than
one of the current locations, the selected location is saved as the candidate location of the waste. If
not, a location is randomly selected over again until the selection number is the same as that of the
count number Nc; or satisfaction of this condition. Finally, after the process is conducted for all
steps, the best candidate location among the candidate locations is selected as the location of the
waste.

Step 4. Random movement: If the organisms could not find any resource within their
neighborhood region, their locations will be changed randomly by using the R-tabu method. The
elite organisms defined as the organisms belonging to the upper 90% in fitness get as much energy
as the elite energy Ee:

Step 5. Increasing age & generation: In this process, the artificial organism’s age and generation
are increased by 1.

Step 6. Reproduction: If the organism’s age and its internal energy are more than the adult age
Ra and the adult energy Re respectively, an organism reproduces two offspring with a mate of the
same species according to the reproducing probability Rp: The location of one offspring is decided
by using R-tabu method within the neighborhood region of one parent, and that of the other
offspring is done within the neighborhood region of the other parent.

Step 7. Reducing energy: To extinguish the organisms with low fitness the internal energy of
each organism is decreased by the reducing energy Le: If an artificial organism’s energy drops
below the defined energy level Li to survive, it is considered to be dead and is removed from the
artificial world.

In returning to Step 2, this process is iterated until the final generation. Some conventional
optimal algorithms require derivatives of an objective function, but the EALA does not do any
gradient information of the function and also finds global optimal solutions without dependency
on the initial value of the design parameters. The parameters of the EALA in this study are listed
in Table 2. The design parameters of the fluid mount listed in Table 1 were taken as the design
variables as follows:

X ¼ fAp Bd Bv Be If g
T; ð20Þ

where If ¼ rL=As:
The parameters, Bv and Be are commonly treated as the functions of stiffness as follows:

Be ¼ aKe; Bv ¼ bKv; a ¼ 3:03
 10�7; b ¼ 2:53
 10�4: ð21Þ
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The present optimization problem with the weight factors a1; a2 and scale factors b1ð¼
1=Tr1ðX0ÞÞ; b2ð¼ 1=TnsðX0ÞÞ is formulated as

Find X which minimizes f ðXÞ ¼ a1b1Tr1ðXÞ þ a2b2 TnsðXÞ

subject to the constraints 0:7X0oXo1:3X0; ð22Þ

where X0 is the original parameters in Table 1, and Tr1ðXÞ and TnsðXÞ are the dynamic
transmissibilities of the mount at the fundamental resonant and desired notch frequencies
respectively. A mount requires minimizing the transmissibility at the vibration disturbance
frequency and therefore, the notch frequency is selected to occur at the disturbance frequency.
The weight factors was defined as a1 ¼ 0 and a2 ¼ 1 to minimize just the transmissibility TnsðXÞ .
To illustrate the solution accuracy of the EALA its optimized results were compared with those of
the well-known SQP as a conventional optimization method. The optimized mount parameters by
the EALA and SQP are shown in Table 3, and the transmissibilities of the original and optimized
mounts are shown in Fig. 6. Fig. 6(b) shows the transmissibilities zoomed around notch
frequency. The SQPmin, SQPmid and SQPmax are named according to the initial values of the
design parameters defined by the minimum, middle and maximum values respectively.

In Table 3 the optimized parameters by the EALA are exactly the same as those by the
SQPmin, but are different from those by the SQPmid and SQPmax. The volumetric damping
parameters Bv by +30% calculated from the SQPmin and EALA are contrary to the result
of the parametric study in Fig. 4(b). The reason why the volumetric damping was increased
through the optimization is that the notch depth of overestimating the volumetric stiffness treated
as the volumetric damping function lowers more than that of underestimating volumetric
damping.

To obtain good isolation, we must keep the transmissibility as low as possible. The dash-dot
line of the SQPmin is not visible in Fig. 6 because the line is overlapped under the solid line of the
EALA. The optimized mounts for the notch frequency mode, by using the EALA and SQPmin,
have a much lower transmissibility than the original mount and the mounts optimized by the
SQPmid and SQPmax. The optimization results show that the solution accuracy of the SQP
depends on the initial design parameters, while the performance of the mount optimized by the
EALA has the same that of the best mount among the mounts optimized by the SQP.

The transmissibility of the mount optimized by the EALA for the notch frequency mode
compared with that of the original mount decreased by about 75.68% and the fluid resonant
frequency by about 30.34%. Even though the design parameters were chosen to obtain the

Table 2

Parameters used in the EALA

Parameters Value Parameters Value

Ee 10 Ra 3

Ge 50 Re 150

Ie 150 Rp 0.0002

Le 5 Nc 3

Li 125 Ns 5
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optimal performance of the mount at the desired notch frequency, the transmissibility at the
fundamental resonant frequency for the optimized mount by the EALA compared with that of the
original mount decreased by about 31.23% and the fundamental resonant frequency also
decreased by about 16.34%.

Comparison of the dynamic stiffness plots among the original mount and the mounts optimized
for the notch frequency mode by the EALA and SQP are shown in Fig. 7, and the dynamic
stiffness plots zoomed around the notch frequency are shown in Fig. 7(b). The dash-dot line of the
SQPmin is not visible in Fig. 7 because the line is overlapped under the solid line of the EALA. The
optimized mount by using the EALA and SQPmin has a lower dynamic stiffness at the notch
frequency compared with that of the original mount and the mounts optimized by the SQPmid and
SQPmax, and provides better isolation using the vibration absorbing effect of the oscillating fluid
in the mount. The dynamic stiffness at the notch and fluid resonant frequencies decreased and
increased by about 75.67 and 69.15% respectively. The optimization results shown in Figs. 6 and
7 were summarized in Table 4.

Obtaining the optimal performance of the mount for the notch frequency mode is very
important. However, the fundamental resonant mode of the mount has a much more vibration
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Fig. 6. Transmissibility of the original mount and the optimized mount for the notch frequency mode. (a)

Transmissibility for the frequency region from 1 Hz to 100 Hz; (b) transmissibility zoomed around the notch frequency.
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energy than the notch frequency mode. Therefore, another study for minimizing the
transmissibility at the fundamental and notch frequencies was additionally investigated with
weight factor a1 ¼ 1 and a2 ¼ 1 and their results are shown in Fig. 8. Fig. 8(b) shows the
transmissibilities zoomed around notch frequency. The optimized parameters by the EALA and
SQP are shown in Table 5. The dot line of the SQPmax is not visible in Fig. 8 because the line is
overlapped under the solid line of the EALA.

The performance and design parameters of the optimized parameters by the EALA shown in
Fig. 8 and Table 5 respectively are almost the same that by the SQPmax but not by the SQPmin, and
the mounts optimized by the EALA and SQPmax, have much lower transmissibility than the
original mount and the mounts optimized by the SQPmin and SQPmid. The optimization result of
the SQPmin is meaningless because the notch frequency obtained by the SQPmin differs greatly
from the desired notch frequency of 40.6 Hz.

The transmissibility of the mount optimized by the EALA at the fundamental and notch
frequencies compared with that of the original mount decreased by about 60.98% and 71.97%
respectively, and the fluid resonant frequency increased by about 30.45%. Since the design
parameters were chosen to obtain the optimal performance of the mount at the modes of the
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fundamental and notch frequencies, the transmissibility at the fundamental resonant frequency
decreased more than that shown in Fig. 6, while the transmissibility at the notch frequency did not
do more than that shown in Fig. 6.

Comparison of the dynamic stiffness plots among the original and the mounts optimized by the
EALA and SQP for the modes of the notch and fluid resonant frequencies are shown in Fig. 9.
The dot line of the SQPmax is not visible in Fig. 9 because the line is overlapped under the solid
line of the EALA. The optimized mount by using the EALA and SQPmax has a lower dynamic
stiffness at the notch frequency compared with that of the original mount and the mounts
optimized by the SQPmin and SQPmid. The dynamic stiffness at the notch and fluid resonant
frequencies decreased and increased by about 71.92% and 64.60%, respectively. The optimization
results shown in Figs. 7 and 8 are summarized in Table 6.

6. Conclusions

When designing fluid mounts, many design parameters can be varied in order to obtain the
desired notch frequency and depth. It is not easy to obtain the optimal performance of the
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notch frequency.
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mount at the notch frequency in the iteration process of choosing the parameters with trial and
error.

In this study, the performance of the fluid mount was investigated according to variation of the
designing parameters. Then the EALA was applied to get the optimal performance of the fluid
mount at the desired notch frequency, and at the notch and fluid resonant frequencies. To
illustrate the solution accuracy of the EALA its optimized results were compared with those of the
well-known SQP as a conventional optimization method. The advantage of the artificial life
algorithm is that any kind of objective functions can converge to stable global solution and does
not need to calculate derivatives of the function for the optimization. However, the SQP requires
gradient information of the function.

The results of the parametric study will be helpful to a fluid mount designer. The mount
optimized by the EALA has much lower transmissibility than the original mount and its
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Fig. 9. Dynamic stiffness of the original mount and the optimized mount for the modes of the notch and fluid resonant

frequencies.

Table 6

Property of the original mount and the optimized mount for the modes of the notch and fluid resonant frequencies

Original

value

SQPmin SQPmid SQPmax EALA

Optimal

value

Remark

(%)

Optimal

value

Remark

(%)

Optimal

value

Remark

(%)

Optimal

value

Remark

(%)

Tr1 (
 103) 9.6351 4.2122 �56.28 4.5499 �52.78 3.8053 �60.51 3.7591 �60.98

K�
r1 (MN � s/m) 57.753 49.068 �15.04 57.783 0.05 40.434 �29.99 40.419 �30.02

or1 (Hz) 1.988 1.833 �7.83 1.989 0.03 1.664 �16.32 1.663 �16.34

Tns (
 10�5) 34.180 1.5638 �5.4267 17.664 �48.32 9.5961 �71.92 9.5805 �71.97

K�
ns (MN � s/m) 8.2291 2.7347 �6.6785 4.2563 �48.28 2.3119 �71.91 2.3111 �71.92

ons (Hz) 40.60 34.59 �14.80 40.62 0.03 40.61 0.03 40.64 0.09

Tr2 (
 10�3) 9.6737 17.972 85.78 12.702 31.30 9.3584 �3.26 9.3380 �3.47

K�
r2 (MN � s/m) 354.59 726.38 104.85 648.22 82.81 584.06 64.71 583.67 64.60

or2 (Hz) 50.15 52.61 4.92 59.13 17.91 65.36 30.35 65.41 30.45
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performance is the same as that of the best mount among the mounts optimized by the SQP. The
properties of the EALA are that any gradient information of the objective function is not needed
in the algorithm and the global optimal solutions of the function can be always found without
dependency on the initial value of the design parameters. However, since the optimization result
by the SQP depends on the initial value of the design parameters, its design iteration would need
to be repeated with a different set of initial parameters.
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