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Abstract

This paper addresses the problem on the identification of moving vehicle axle loads based on measured
bridge responses using a frequency–time domain method. The focus is on the evaluation of two solutions to
the overdetermined set of equations established as part of the identification method. The two solutions are
(i) direct calculation of the pseudo-inverse and (ii) calculation of the pseudo-inverse via the singular value
decomposition (SVD) technique. For this purpose, a bridge–vehicle system model was fabricated in the
laboratory and the bending moment responses of bridge model were measured as a two-axle vehicle model
moved across the bridge deck. The moving axle loads are then calculated from the measured responses via
the two solutions to the over-determined set of equations. The effects of changes in the bridge–vehicle
system, measurement and algorithm parameters on the two solutions are evaluated. Case studies show that
the moving force identification is more feasible and its accuracy acceptable with the use of the SVD
technique. This technique can effectively enhance the identification method and improve the identification
accuracy over that of the direct pseudo-inverse solution.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Accurate identification of moving forces in a bridge–vehicle system is an important issue from
the aspects of design, diagnosis and maintenance of bridges. The indirect force calculation is of
special interest when the moving wheel forces cannot be measured directly while the bridge
responses caused by the moving vehicles can be measured easily [1,2].
Moving force identification has been studied extensively in recent years. A comprehensive

survey of the references and methods for solving the problems involving moving loads on
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structures can be found in Fryba’s book [3]. The original ‘‘moving-mass moving-force’’ problem
was approximated by the simplified ‘‘moving-force’’ problem by Timoshenko et al. [4]. In this
field, the authors have successively proposed four identification methods, in which the interpretive
method I (IMI) [5] calculated the moving dynamic forces directly by modelling a bridge as an
assembly of lumped masses interconnected by massless elastic beam elements. Time domain
method (TDM) [6] modelled the forces on a simply supported Euler beam as step functions in a
small time interval and identified the forces by using the modal superposition principle in time
domain. Frequency–time domain method (FTDM) [7] performed Fourier transformation on the
equation of motion that was expressed in modal co-ordinates. The relation between the responses
and the forces was obtained in frequency domain. The time histories of the forces were found by
the least-squares method. Interpretive method II (IMII) [8] identified the forces completely in the
modal co-ordinates by using the Euler beam theory and modal analysis technique.
Further comparative studies [9–11] showed that each of the four methods could effectively

identify moving forces with acceptable accuracy to some extent but with some limitations. In
particular, the identification method gives poor results and sometimes even incorrect estimate of
moving forces in some situations. Insufficient accuracy of the measured data, ill conditioning of
the mobility matrix, lack of proper consideration of the participation of the structural modes, and
insufficient measurement locations are some of the reasons for poor accuracy of the force
determination in a number of applications [12]. In addition, different ways to solve the equations
are another important reason [13]. This is mainly because elements of pseudo-inverse (PI) matrices
are sensitive to small perturbations in the data with noise, or say small perturbations in the data
can yield large perturbations in the computed PI. In this sense, the singular value decomposition
(SVD) can be thought of as a filter that provides a signal estimate from noise data [14]. The SVD
technique, applied to structural dynamics problems in the last 35 years [15–17], is one of the most
important tools in numerical analysis and widely used in the identification problem [18].
This paper concentrates on the evaluation of two different solutions to the overdetermined

equations established in the FTDM. The two solution methods are (i) direct calculation of the PI
and (ii) adopting the SVD technique to calculate the PI of the coefficient matrix in the over-
determined equations. This paper first outlines the FTDM method and the laboratory
experiments are then introduced. Case studies on the effects of various parameters on the two
solutions are finally used to illustrate the practical aspects of the two solutions.

2. Basic theory

2.1. Equation of motion

Referring to Fig. 1, consider a force P moving from left to right at a speed c on a simply
supported bridge deck with a span length L; constant flexural stiffness EI ; constant mass per unit
length r and viscous proportional damping C: The bridge deck is modelled as an Euler beam [3],
and the differential equation on the deflection of the beam can be expressed as

r
@2nðx; tÞ

@t2
þ C

@nðx; tÞ
@t

þ EI
@4nðx; tÞ
@x4

¼ dðx � ctÞPðtÞ; ð1Þ
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where nðx; tÞ is the beam deflection at point x and time t; PðtÞ is the time-varying point force, E is
Young’s modulus of the beam, I is the second moment of inertia of the beam cross-section, and
dðxÞ is the Dirac delta function. Based on modal superposition, if the nth mode shape function of
the beam FnðxÞ ¼ sinðnpx=LÞ; the solution of Eq. (1) is obtained as

nðx; tÞ ¼
XN
n¼1

sin
npx

L
qnðtÞ; ð2Þ

where n is the mode number (MN), qnðtÞ; (n ¼ 1; 2;y;N) are the nth modal displacements. After
substituting Eq. (2) into Eq. (1), integrating the resultant equation with respect to x between 0 and
L; and then using the boundary conditions and the properties of the Dirac delta function, the
equation of motion in terms of the modal displacement qnðtÞ is given as

d2qnðtÞ
dt2

þ 2xnon

dqnðtÞ
dt

þ o2
nqnðtÞ ¼

2

rL
pnðtÞ ðn ¼ 1; 2;y;NÞ; ð3Þ

where

on ¼
n2p2

L2

ffiffiffiffiffiffi
EI

r

s
; xn ¼

C

2ron

; pnðtÞ ¼ PðtÞsin
npct

L

� �
ð4Þ

are the nth modal frequency, the modal damping and the modal force, respectively.
Performing the fast Fourier transform (FFT) on Eq. (3), the Fourier transform of the dynamic

deflection nðx; tÞ is obtained as

V ðx;oÞ ¼
XN
n¼1

1

Mn

FnðxÞHnðoÞPnðoÞ; ð5Þ

where Mn ¼ rL=2; HnðoÞ is the frequency response function of the nth mode, and

HnðoÞ ¼
1

o2
n � o2 þ i2xnono

; ð6Þ

FnðxÞ ¼ sinðnpx=LÞ; ð7Þ

PnðoÞ ¼
1

2p

Z
N

�N

pnðtÞe�iot dt: ð8Þ

x = c t

c

L

xν
P

EI ,ρ ,C

Fig. 1. Moving force on a simply supported beam.
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2.2. Force identification from accelerations

The Fourier transform of the acceleration of the beam at point x is obtained from
Eq. (5) as

.Vðx;oÞ ¼ �o2
XN
n¼1

1

Mn

FnðxÞHnðoÞPnðoÞ: ð9Þ

Substituting Eqs. (6)–(8) into Eq. (9) and rewriting in discrete terms,

.VðmÞ ¼ �
XN�1

k¼0

XN
n¼1

Df 3m2

Mn

FnðxÞHnðmÞCnðm � kÞF ðkÞ; m ¼ 0; 1;y;N � 1; ð10Þ

where Cn and F are the Fourier transform of the nth mode shape and the moving
force PðtÞ respectively. Df is the frequency resolution, N is the number of data samples,
k and m denote the kth and the mth term in the FFT, respectively. Considering the
periodic property of the discrete fourier transform (DFT), then Eq. (10) can be rewritten in
matrix form

.VðNþ2Þ�1 ¼ AðNþ2Þ�ðNþ2ÞFðNþ2Þ�1; ð11Þ

where .V and F are Fourier transform of the acceleration vector .n and the force vector PðtÞ;
respectively. The matrix A is associated with the bridge–vehicle system. Dividing F into real and
imaginary parts, FR and FI ; respectively, Eq. (11) becomes

.V ¼ ðARR þ iARI ÞFR þ iðAIR þ iAII ÞFI : ð12Þ

Dividing .V into real and imaginary parts .VR and .VI ; Eq. (12) can be rewritten in the form of the
real and imaginary parts as

.VR

.VI

( )
ðNþ2Þ�1

¼
ARR �AII

ARI AIR

" #
ðNþ2Þ�ðNþ2Þ

FR

FI

( )
ðNþ2Þ�1

: ð13Þ

Since the first and last elements of the Fourier transform of the imaginary parts of vectors .n
and P are equal to zero, i.e., .VI ð0Þ ¼ .VI ðN=2Þ ¼ 0; FI ð0Þ ¼ FI ðN=2Þ ¼ 0; Eq. (13) can then be
condensed into a set of Nth order simultaneous equations by deleting corresponding rows and
columns as

.VRIðN�1Þ ¼ ACðN�NÞFRIðN�1Þ; ð14Þ

where .VRI consists of components .VR and .VI : FRI consists of FR and FI ; which can be found
from Eq. (14) by solving the N order linear equations. The time history of the moving
force PðtÞ can then be obtained by performing the inverse Fourier transformation. However,
for the general case when N > NB; where NB ¼ L=ðcDtÞ; Dt is the sampling time interval, the
identified force in the time interval ðN � NBÞDt must be equal to zero when the response
is not polluted by noise. Otherwise, a non-zero force identified in this interval would be
meaningless. Furthermore, the computation cost for solving Eq. (14) is high in finding the
inverse of a full matrix, and therefore the following procedure is developed to overcome these
difficulties.
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If the DFTs are expressed in matrix form, the Fourier transform of the force vector F will be
written as follows:

F ¼
1

N
WP; ð15Þ

where W ¼ e�i2kp=N and all terms in F are real.

k ¼

0 0 0 ? 0 0

0 1 2 ? N � 2 N � 1

0 2 4 ? N � 4 N � 2

^ ^ ^ & ^ ^

0 N � 2 N � 4 ? 4 2

0 N � 1 N � 2 ? 2 1

2
6666666664

3
7777777775

N�N

: ð16Þ

The matrix W is an unitary matrix, which means

W�1 ¼ ðW�ÞT; ð17Þ

where W� is the conjugate of W : Substituting Eq. (15) into Eq. (14), yields

.V ¼
1

N
A½ WB

N�NB

0	
PB

0

( )
; ð18Þ

or

.V
N�1

¼
1

N
A

N�N
WB

N�NB

PB
NB�1

; ð19Þ

linking the Fourier transform of acceleration .v with the force vector PB of the moving forces in the
time domain. WB andPB are the sub-matrices of W and P, respectively. Using Eq. (19) for
identification has the advantage of weighting the response data in the frequency domain, but the
disadvantage is that the noise of the responses during the time interval ðNBDtÞ to ðNDtÞ will affect
the accuracy of the identified forces. Eq. (19) can be written using Eq. (15) to relate the
accelerations and force vectors in the time domain as

.n
N�1

¼ ðW�ÞT
N�N

A
N�N

WB
N�NB

PB
NB�1

: ð20Þ

If N ¼ NB; PB can be found by solving the Nth order linear equations in Eq. (19) or (20). If
N > NB or more than one acceleration is measured, the least-squares method can be used to find
the time history of the moving forces PðtÞ: If only NcðNcpNÞ response data points of the beam are
used, the equations for these data points in Eq. (20) can be extracted as

.n
Nc�1

¼ ðW�ÞT
Nc�N

A
N�N

WB
N�NB

PB
NB�1

: ð21Þ

In the usual cases, Nc > NB; the least-squares method can be used to find the time history of the
moving forces PðtÞ and more than one acceleration can be used to identify a single moving force
for a higher accuracy.
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2.3. Identification from bending moments

Similarly, the relationships between bending moment m and its Fourier transform M, and the
moving force vector P can be described as follows:

M
N�1

¼
1

N
B

N�N
W

N�NB

PB
NB�1

; ð22Þ

m
N�1

¼ ðW�ÞT
N�N

B
N�N

WB
N�NB

PB
NB�1

; ð23Þ

m
Nc�1

¼ ðW�ÞT
Nc�N

B
N�N

WB
N�NB

PB
NB�1

: ð24Þ

The force vectors PB can be obtained from the above three sets of equations by using the least-
squares method.

2.4. Two forces identification

The above procedures are derived for single-force identification, Eq. (23) can be modified for
two force identification using the linear superposition principle as

m ¼ ðW�ÞT
Ba 0

Bb Ba

Bc Bb

2
64

3
75WB

P1

P2

( )
; ð25Þ

where Ba½Ns � ðNB � 1Þ	; Bb½ðN � 1� 2NsÞ � ðNB � 1Þ	 and Bc½Ns � ðNB � 1Þ	 are sub-matrices of
matrix B: The first row of sub-matrices in matrix B describes the state when only the first force on
the beam after entry is acting. The second and third rows of sub-matrices describe the states of
having two forces on the beam and only one force on the beam after the exit of the first force,
respectively. The two moving forces can be identified in a similar manner as before using more
than one measured bending moment responses.

2.5. Solutions

As outlined in the previous sections, it is easy to find whether the measured acceleration or
bending moment responses are used for moving force identification, the method will usually result
in a system of equations that is often of the form

Ax ¼ b; ð26Þ

where x is the time series vector of the unknown time-varying force PðtÞ; b is the time series vector
of the measured bending moment response mðx; tÞ or of the acceleration response .nðx; tÞ of the
bridge deck at the point x and time t: The system matrix A is associated with the system of bridge
deck and the force. Its size is of k � n; where k and n ¼ NB ¼ L=ðcDtÞ are the numbers of data
samples for the response mðx; tÞ or .nðx; tÞ and for the force P; respectively, when the force crosses
the whole bridge deck.
The solution we seek corresponds to the optimal solution in terms of the unknown forces,

which is equivalent to find the best fit to the given data in a least-squares sense. The optimal
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solution is the one that minimizes the norm jjAx � bjj2: Such a minimization leads to

x ¼ Aþb; ð27Þ

where Aþ denotes the PI of matrix A: If A is square and non-singular, then Aþ ¼ A�1; and the
unknown force vector x can be directly obtained by solving the linear Eq. (26). If A is rectangular
(k > n) and of full rank, then Aþ ¼ ðATAÞ�1AT; the calculation of Aþ presents no problem and the
solution x is unique as

x ¼ ðATAÞ�1ATb; ð28Þ

which is called the (PI) solution.
But often A is rank deficient or nearly rank deficient due to noise or uncertainty in the measured

data. In such a situation, x will not be unique. If this is the case, the best way to calculate the PI is
via the SVD technique for matrix A [19]. The SVD of an ðk � nÞ matrix A is a factorization of A
into a product of orthogonal matrices

U ¼ ½u1;y; uk	 and V ¼ ½n1;y; nn	

and a diagonal matrix S

A
k�n

¼ U
k�k

S
k�n

VT

n�n
; ð29Þ

where S ¼ ½sii	 is a ðk � nÞ matrix all of whose entries is zero except for the diagonal elements
sii ¼ si: The values si are called singular values of matrix A and the vectors ui and ni are the ith left
singular vector (eigenvector of AAT) and the ith right singular vector (eigenvector ATA),
respectively. When A is rank deficient, only r singular values are non-zero and they are the
positive square roots of the eigenvectors of AAT

s1Xs2X?Xsr > 0; srþ1 ¼ ? ¼ sp ¼ 0; p ¼ minðk; nÞ:

Once the SVD of the matrix A is known, its inverse can easily be calculated below

Aþ

n�k
¼ V

n�n
Sþ

n�k
UT

k�k
: ð30Þ

For simplicity, it can be shown that the least-squares solution vector x is given by

x ¼
Xr

i¼1

uTi bi

si

ni; ð31Þ

which is called the SVD solution in this paper.

3. Experiment in laboratory

In order to validate and evaluate the above identification method, a model car and model
bridge deck were made in the laboratory. The car axle spacing to bridge span ratio (ASSR) was set
at 0.15 [9]. The model car had two axles at a spacing of 0.55m and was mounted on four rubber
wheels. The static mass of the whole vehicle was 12.1 kg in which the mass of the rear wheel was
3.825 kg. Referring to Fig. 2, the model bridge deck consisted of a main beam, a leading beam and
a trailing beam. The leading beam was used to speed up the car so that the car could reach a
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constant speed when it approaches the main beam. The trailing beam was used for decelerating
the car. The main beam, with a span of 3.678m long and a 101mm� 25 mm uniform cross-
section, was simply supported. It was made from a solid rectangular mild steel bar with a density
of 7335 kg/m3 and a flexural stiffness EI ¼ 29:97 kN=m2: The first three theoretical natural
frequencies of the main beam bridge were calculated as f1 ¼ 4:5 Hz; f2 ¼ 18:6 Hz; and f3 ¼
40:5 Hz:
A U-shaped aluminum track was glued to the upper surface of the main beam as a guide way

for the model car, which was pulled along by a string wound around the drive wheel of an electric
motor. The speed of the motor could be adjusted. Seven photoelectric sensors were mounted on
the beams to measure and check the uniformity of speed of the model car. Seven equally spaced
strain gauges and three equally spaced accelerometers were mounted on the lower surface of the
main beam to measure the response. A system calibration of the strain gauges was carried out
before the actual testing program by adding masses at the middle of the main beam. A 14-channel
tape recorder was employed to record the response signals. The first seven channels were used for
logging the bending moment response signals from the strain gauges. Channels 8–10 were used for
logging the accelerations from the accelerometers. Channel 11 was connected to the photoelectric
sensors. In addition, the response signals from channels 1 to 7 and channel 11 were also recorded
simultaneously on a PC for easy analysis. The software Global Lab from the Data Translation
was used for data acquisition and analysis in the laboratory test. Before exporting the measured
data in ASCII format for identification, the Bessel IIR digital filter with low-pass characteristics
was implemented as cascaded second order systems. The Nyquist fraction value was chosen
to be 0.03.

4. Case studies

In the moving force identification process, many parameters affect the identification accuracy,
such as bridge–vehicle system parameters, measurement parameters and algorithm parameters.
This case study is aimed to investigate the effects of these parameters on the identification method
by comparing the SVD solution in Eq. (31) with the PI solution in Eq. (28).

4.1. Definition of accuracy

In practice, the parameters were studied one at a time. The procedure was to examine each
parameter in studied cases and to isolate the case with the highest accuracy for the corresponding

A

Main beam

Leading beam Trailing beam

String
Car

Photoelectric sensor

AccelerometersStrain gauges
A

Motor

Fig. 2. Experimental set-up of moving force identification.
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parameter. The accuracy is quantitatively defined as follows, which is called a relative percentage
error (RPE).

RPE ¼
P

jftrue � fidentjP
jftruej

� 100%: ð32Þ

Since the true forces are unknown, Eq. (32) is not practical. The true force ðftrueÞ and identified
force ðfidentÞ are here replaced by the measured response ðRmeasuredÞ and rebuilt response ðRrebuiltÞ;
respectively [9]. Here, the rebuilt responses are calculated from the identified forces using Eq. (26).
The RPE values between the measured and rebuilt responses are calculated instead of comparing
the identified forces with the true forces directly.
The case study results are only based on the measurements of bending moments in this paper.

The identified forces are first calculated from the bending moment responses at all seven
measuring stations. The rebuilt responses are then computed accordingly from those identified
forces, and the RPE values between the rebuilt and measured bending moment responses at each
station are finally examined for validation of the identification method. The maximum acceptable
RPE value adopted here is 10% [9]. The results for the measurements of accelerations will be
reported separately.

4.2. Effect of tolerence parameter

Usually, the SVD computation is performed in two stages. In the first stage, matrix A is reduced
to an upper bidiagonal matrix using the Householder transformation in the following forms:

B ¼ *UTA *V ¼

s1 e1

s2 e2 0

& &

0 sp�1 ep�1

sp

2
6666664

3
7777775
; ð33Þ

where

*U ¼ U1U2?Uk; k ¼ minfn; m � 1g; ð34Þ

*V ¼ V1V2?Vl ; l ¼ minfm; n � 2g: ð35Þ

Each transformation matrix Uj ðj ¼ 1; 2;y; kÞ sets the elements in rows j þ 1 through m;
column j of matrix A to be zero, whereas the matrix Vj ðj ¼ 1; 2;y; lÞ sets the elements in columns
j þ 2 through n; row j of matrix A to be zero.
The second stage is an iterative process. It applies a variant of the QR algorithm to reduce the

super-diagonal elements to a negligible size and to result in a diagonal form through an iteration
procedure. If a super-diagonal element ej satisfies

jej jpeðjsjþ1j þ jsj jÞ; ð36Þ

then the element ej is considered to be zero. Similarly, if a diagonal element sj satisfies

jsj jpeðjej�1j þ jej jÞ ð37Þ
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the element sj is also considered to be zero, i.e., zero singular value. Here e is a given tolerance
parameter. It is also a criterion related to rejecting or accepting of zero singular values. This
criterion may depend on the accuracy of the expected results and, in practice, may be difficult to
establish. Fig. 3 shows the effect of the tolerance parameter e on the identification accuracy (RPE)
at the second station. It is observed that a smaller tolerance parameter e is beneficial to moving
force identification and the RPE data are constant if the e is equal to or smaller than 1e�4.
However, if the e is too small value the computation cost (CPU) is higher. Table 1 shows the
detailed effect of the different e on the RPE, the CPU time and the rank of the matrix A in
Eq. (26). To take account of all the above aspects at the same time, the e value is set to be 1e-6 for
all subsequent cases.

4.3. Effect of measurement parameters

4.3.1. Sampling frequencies
The sampling frequency (fs) depends on the measurement frequency range of interest. When

conducting experiments in the laboratory, the bridge response was acquired at a sampling
frequency of 1000Hz per channel. This frequency is higher than the practical demand because
only a few first lower frequency modes are usually used in moving force identification. Sequential
data points acquired at 1000Hz were sampled again at a few intervals in order to obtain new
sequential data at a lower sampling frequency. New sequential data at the sampling frequencies of

0

5

10

15

20

1.00E -101.00E -081.00E -061.00E -041.00E -021.00E +00

EPS (Log)

R
PE

 (
%

)

Fig. 3. Effect of tolerance (EPS) used in the SVD technique.

Table 1

Effect of tolerance parameters e in SVD (15Unit, MN ¼ 5; 250Hz)

e RPE (%) CPU time (s) Rank of A

1e�2 2.72 1839.07 1207

1e�3 2.53 1897.73 1207

1e�4 2.52 1920.41 1208

1e�5 2.52 1947.00 1208

1e�6 2.52 1971.28 1208

1e�7 2.52 2001.48 1208

1e�8 2.52 2013.24 1208

1e�10 2.52 2071.41 1208
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333, 250 and 200Hz would be obtained by sampling the data again at every third, fourth and fifth
point, respectively. In the identification, the sampling frequency should be high enough to ensure
sufficient accuracy in the discrete integration. However, because there is a computer memory
problem in the computation of the inverse of a large matrix, the maximum sampling frequency is
limited to be within 500Hz, the sampling frequencies of 200, 250 and 333Hz were set here for
different MNs involved. The sampling frequency giving the highest accuracy will be adopted for
the subsequent studies.
Table 2 shows the effect of the sampling frequency taken into account, in which the RPE values

between the measured and rebuilt bending moment are given for the SVD solution and the PI
solution, respectively. The case used is for MN which equals to 5, the sensor number is 7 and the
vehicle speed is 15Unit (1UnitD0.102m/s). It can be observed from Table 2 that there is an
apparent difference in the RPE data by using the SVD and the PI, respectively, particularly at the
highest sampling frequency of 333Hz. When using the PI and the sampling frequency is 333Hz,
the identification method failed since none of the RPE data at seven stations are acceptable and
higher than 148%. But the identification accuracy increases with decrease in the sampling
frequency. When decreasing the sampling frequency to 250Hz, the identified results are in the
acceptable range. This shows that the identification method is suitable for a lower sampling
frequency when the PI is used to solve the equation. Significantly, the SVD identified results are
clearly different from those found by PI. They are almost constant at each station for the different
sampling frequencies. This means that the identification method is independent of the sampling
frequency when adopting the SVD. The SVD can effectively improve the identification accuracy
especially when the sampling frequency is of the highest value of 333Hz. The use of the SVD not
only makes the identification method effective but also results in good identified results with
higher accuracy, whereas direct calculation of the PI solution causes the identification method to
fail.
Evaluating the identified results further, Fig. 4 also compares two moving forces identified by

the SVD and PI methods, respectively, under different sampling frequencies. When fs ¼ 250 Hz;
obviously, the PI results become much worse as there are many higher frequency components in
the identified forces, whereas the SVD curve remains almost unchanged. When fs ¼ 333Hz; the
identification method fails if the PI is adopted, but the identification method is effective and
results in almost the same good as the previous cases if the SVD is adopted. Fig. 4 illustrates the
PI method is effective only under the lower sampling frequencies, while the identification method
consistently achieved good identification accuracy when the SVD is adopted at different sampling
frequencies.

Table 2

Effect of sampling frequencies (15Unit, MN ¼ 5)

fs Sta.1 Sta.2 Sta.3 Sta.4 Sta.5 Sta.6 Sta.7

333 4.51 2.53 1.87 1.95 1.82 2.25 3.17

204.8a 168.6 156.8 148.0 153.6 161.9 186.9

250 4.53 2.52 1.87 1.95 1.82 2.24 3.17

5.74 2.80 2.15 2.08 2.14 2.41 4.74

a Italics data are for the pseudo-inverse technique.
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There include higher frequency components, i.e., more perturbation in the system matrix A in
Eq. (26) when the sampling frequency is higher. Elements of PI matrices are sensitive to those
small perturbations in the data, say ill-conditioned problem, when the PI method is adopted [20].
However, the SVD overcomes the problem by setting very small singular values to zero in the
inverse matrix [18]. Therefore, the SVD solution is stable but the PI solution varies clearly with the
sampling frequency.

Fig. 4. Effect of sampling frequencies (15Unit, MN ¼ 5).

L. Yu, T.H.T. Chan / Journal of Sound and Vibration 261 (2003) 329–349340



4.3.2. Measurement stations
If parameters MN ¼ 5; fs ¼ 250Hz; c ¼ 15 Unit are not changed, measurement station

numbers (No.) are set to be 2, 3, 4, 5, and 7, respectively, for all study cases in this section. The
RPE data between the rebuilt and measured responses are given in Table 3 when using the SVD
and the PI to solve the equations in the identification method. Here, the RPE data for the case No.
= 2 are not listed because the identification method fails for both solution techniques. It shows
that the identification method adopted to identify two moving forces requires at least three
measurement stations whichever solution technique is used to solve the equations.
When using the PI and the No: ¼ 3; the underlined RPE data in Table 3 show that the

identification method failed to correctly identify the two moving forces. However, if there is an
increase by one more measurement station, i.e., No: ¼ 4; the RPE data dramatically fall into the
acceptable range and are at a very low level of less than 3% at each one of the four stations.
Unfortunately, if No: ¼ 5; the RPE data obviously increase and are unacceptable. On studying the
location of the additional fifth station, it is found that the fifth station is on the half span point,
which is the node of the second and fourth modes of the supported beam. This makes the PI
solution unstable and makes the identification method ineffective. Nevertheless, when No: ¼ 7;
i.e., two more stations are added at the 1

8
span and 7

8
span, respectively, the RPE data recover to

normal acceptable levels to within 10%. These indicate that the identification method is very
sensitive to the locations of the measuring stations when the PI is used. Selection of measurement
stations should be taken therefore, with care.
Once the SVD is used in the identification method, the RPE data in Table 3 show that the

identified results are acceptable and achieve a very high accuracy for all the study cases in this
section. In particularly, the RPE data are less than 2.53% at the middle five stations. It is also
predicted that the identification method is independent of the measurement stations if the SVD
method is adopted. Further, Fig. 5 illustrates a comparison between the identified first axle forces
and the identified second axle forces when changing measurement stations. Obviously, the
identified results are getting better and better with an increase in the number of measurement
stations. The best result corresponds to the case with the most measurement stations No: ¼ 7: The
others are also acceptable except for the case with No: ¼ 3: The two dynamic moving forces vary

Table 3

Effect of measuring stations (15Unit, 250Hz)

Station RPE (%)

No.=3 No.=4 No.=5 No.=7

1 a a a 4.53 5.74

2 a 1.67 2.90b 2.14 34.63 2.52 2.80

3 1.24 70.15 1.50 2.09 1.71 17.25 1.87 2.15

4 1.38 77.27 a 1.77 34.68 1.95 2.08

5 1.05 73.90 1.51 2.11 1.71 16.65 1.81 2.14

6 a 1.68 2.74 1.63 32.87 2.24 2.41

7 a a a 3.17 4.74

a Indicates the station is not chosen.
b Italics data are for the pseudo-inverse technique.
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about the static weight line of vehicle axles. It is credible and feasible, especially when the two
axles are on the bridge.

4.4. Effect of bridge–vehicle system parameters

4.4.1. Bridge MNs

Usually, in a moving force identification system, a sufficient number of vibration modes of
bridge must be included in the identification calculation. But what is the sufficient number of
modes? The answer depends not only upon the characteristics of the bridge–vehicle system but
also upon the solution to the overdetermined equation used in the moving force identification
method. In this section, MNs varied from MN ¼ 1 to 5. The case fs ¼ 250Hz and c ¼ 15 Unit
was chosen for detailed examination. If the MNs are less than three, the RPE values are very high
and the identified forces become unacceptably inaccurate, and the identification method fails to
identify the two moving forces caused by the vehicle crossing the bridge. However, if the MNs are
equal to or bigger than three, the RPE data move into an acceptable range as listed in Table 4.
This shows the identification method is effective only if a sufficient number of modes is achieved
or exceeded, otherwise the method fails. Studying the RPE data in Table 4 more carefully, when
the RPE data at all seven stations are acceptable, a sufficient number of modes are four for the use
of the SVD, but five for the use of the PI.
Table 4 also shows that the RPE data decrease slightly with an increase in the MN whether

using the SVD or the PI. Further, comparing the RPE data at each station, it can be found that
the RPE data using the SVD are clearly improved, particularly for the lower MN cases MN ¼ 3
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Fig. 5. Effect of measurement stations when using the SVD (MN ¼ 5 and 250Hz).
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and 4. When MN ¼ 3 and using the PI, the method fails, but using the SVD the identified results
are acceptable except the RPE values at the 1st and 7th stations. When MN ¼ 4; use of the SVD
effectively reduces the RPE data at each station about 60% more than those using the PI. It shows
that using the SVD to solve the system equation can effectively improve the identification
accuracy. Fig. 6 also shows the identified forces for MN ¼ 4 and 5 when the SVD and the PI are,
respectively, used in the identification method.
The PI curves in Fig. 6 are apparently worse than the SVD curves because they have

components with higher frequency noise. Fortunately, the identified forces are clearly getting
better and better with increase in the MN especially for the PI method. The scatter in the
magnitudes of forces identified by the PI is apparently reduced with increase in MN. Although
increase in MN is also beneficial to the SVD approach, the improvement is not so obvious as with
the PI approach. Fig. 7 shows the forces identified by the SVD when MN ¼ 4 and 5. It clearly
illustrates that when increasing MN the improvement of the identified forces is mainly focused on
about 0.365 s for the first force, i.e., the moment when the second wheel approaches the bridge,
and located before 0.365 s for the second force. When both vehicle wheels are on the bridge, the
identified forces are independent of change in MN. This indicates use of the SVD is not so
sensitive to a change in MN.
When the MN is equal to five, the RPE data in Table 4 show that the identified forces are

acceptable whether using the SVD or the PI. As an example, the corresponding rebuilt responses
are compared in Fig. 8. The curves in Fig. 8 illustrate that both the SVD and the PI are feasible
and in a good agreement with the measured responses except there are obvious discrepancies in a
few small intervals. Of course, as for the comments on the identified forces, the rebuilt responses
due to the SVD are matched better than that due to the PI. It can be seen that although the latter
also matches with the measured responses in the trend its curves show many jumps, i.e., higher
frequency noise.

4.4.2. Vehicle speeds

If bridge MNs, sampling frequencies and bridge span length are not changed, changes in vehicle
speeds would mean changes in data samples, i.e., changes in the size of coefficient matrix A in
Eq. (26). Some limitations on the identification method have been considered. In particular, a

Table 4

Effect of MNs (15Unit, 250Hz)

MN RPE (%)

Sta. 1 Sta. 2 Sta. 3 Sta. 4 Sta. 5 Sta. 6 Sta. 7

3 12.10 3.51 5.26 2.61 5.21 3.70 12.91

Faila Fail Fail Fail Fail Fail Fail

4 5.88 3.24 2.03 2.64 1.97 3.55 5.83

13.58 7.19 5.69 5.93 5.55 6.75 12.91

5 4.53 2.52 1.87 1.95 1.81 2.24 3.17

5.74 2.80 2.15 2.08 2.14 2.41 4.74

a Italics data are for the pseudo-inverse technique.
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minimum necessary RAM memory and personal computer CPU speed are required for the
method. Otherwise, calculation will take a significant amount of execution time due to the large
size of matrix A; or they might not be capable of being performed at all due to insufficient
memory. Therefore, in order to make the identification method effective and to properly evaluate

Fig. 6. Effect of MNs (250Hz and 15Units).
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the effects of various vehicle speeds on the identified results, the case with MN ¼ 4; fs ¼ 200Hz
was selected for this section.
While conducting the experiments in the laboratory, three vehicle speeds were set manually at 5,

10 and 15Unit, respectively. In order to make vehicle speed as constant as possible when the
vehicle moved across the main beam, some measures were taken in the experiments. For instance,
a sufficiently long leading-beam was placed in front of the test main beam to enable the vehicle to
reach a constant speed by the time it reaches the main beam. Using a sufficiently stiff string to take
the vehicle can also reduce the effects of string elastic deformation on the vehicle speed. After
acquiring the data, the vehicle speed was calculated and the uniformity of speed checked. If the
speed was stable, the experiment was repeated five times for each speed case to check whether or
not the properties of the structure and the measurement system had changed. If no significant
change was found, the corresponding recorded data was accepted for moving force identification.
After checking the vehicle speed between two triggers, it was found that apparent differences in
the speed existed in different segments of the main beam, but the variation was within an
acceptable error level. However, the average speed of the vehicle on the whole beam was used to
identify the moving forces in the calculation.
The RPE data are calculated and tabulated in Table 5 for cases 5-2, 10-4 and 15-2, where, case

‘‘5-2’’ means the second set of data was recorded when the vehicle moved across the bridge at a
speed of 5Unit. Others are similarly identified. Table 5 shows that the RPE data decrease with
increase in vehicle speeds whether for the SVD or for the PI. For the PI approach, the
identification method fails to identify the two moving forces when the vehicle speed is lower, say
5Unit, but the identified results are getting better and better as the vehicle speed increases.
Fortunately, the identified result is acceptable at last in the case of 15Unit. However, when using
the SVD approach the situation is completely changed. When the speed is 5Unit, the originally
ineffective identification method becomes effective although the RPE data at the two end stations
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are higher than 10%. The originally more significant RPE data become small when the speed is
10Unit. When the vehicle moves at 15Unit the identification accuracy is also a little improved and
a little better than that due to the PI approach although both sets of RPE data are very close to
each other. Fig. 9 illustrates a comparison of the responses at station 4 under three different
vehicle speeds. It indicates that a proper solution to a set of equations plays a very important role
in moving force identification. It is better to use the SVD to solve the system equation so that the
identification method can be effective and can identify the two moving forces with a higher
accuracy. These results also show that the identification accuracy for the faster vehicle speeds is
greater than for the lower vehicle speed whether the SVD or the PI approach is used.

a. at stations: 1-4
-120

-100

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

Time (sec.)

Time (sec.)

Measured SVD PI

b. at stations: 4-7
-120

-100

-80

-60

-40

-20

0

20

0 0.5 1 1.5 2 2.5 3

B
en

di
ng

 m
om

en
ts

 (
kN

.m
)

B
en

di
ng

 m
om

en
ts

 (
kN

.m
)

Measured SVD PI

Fig. 8. Comparison of responses (MN ¼ 5; 250Hz and 15Unit).

L. Yu, T.H.T. Chan / Journal of Sound and Vibration 261 (2003) 329–349346



Fig. 9. Comparison of responses at station 4 under different speeds (MN ¼ 4 and 200Hz).

Table 5

Effect of vehicle speeds (MN ¼ 4; fs ¼ 200Hz)

Station RPE (%)

5–2 10–4 15–2

1 23.71 Fail 23.3 110.0a 5.87 5.94

2 13.00 Fail 12.6 50.0 3.24 3.29

3 6.79 Fail 7.99 25.9 2.04 2.05

4 7.90 Fail 8.32 48.2 2.65 2.66

5 6.93 Fail 7.79 24.8 1.98 2.01

6 12.40 Fail 11.8 47.6 3.55 3.57

7 26.37 Fail 26.3 102. 5.84 5.89

a Italics data are for the pseudo-inverse technique.
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5. Conclusion

The frequency–time domain method is used in this paper to identify the axle force history of a
moving vehicle on a bridge. A bridge–vehicle system model is made in the laboratory for moving
force identification. A series of experiments on bridge responses caused by the vehicle moving
across the bridge are conducted. Case studies on moving force identification are carried out. The
effects of parameters, such as bridge–vehicle system parameters, measurement parameters and
tolerance parameter used in the singular value decomposition (SVD), are investigated. Emphasis
has been placed on a comparison between the SVD solution and the pseudo-inverse (PI) solution
adopted in the identification method. The following conclusions are drawn: (1) a moving force
identification method is often converted into the solution of a set of overdetermined equations.
The solution plays a very important role in moving force identification. It is vital to understand
whether the identification method is likely to be successful or not. (2) When the PI solution is
adopted to solve the overdetermined equations, the method can effectively identify two moving
forces in some situations, but it sometimes fails. The PI solution is sensitive to changes in various
parameters and the identified results are often unstable. (3) In contrast, if the SVD solution is
adopted, the method not only effectively identifies the two axle moving forces with a higher
accuracy but also gives stable and reliable results. The identification method is almost
independent of changes in parameters. (4) The identified results from the use of the SVD
solution in the identification method are therefore better than those found by direct calculation of
the PI solution. The SVD solution, as the more practical approach, should be incorporated into
the moving force identification system. (5) The great drawback of using the SVD explicitly is its
computation cost. For instance, it increases by about 60% for the case studies when compared to
that for the PI. It is not beneficial to the real-time analysis on site. Performing a full-SVD could be
too expensive in practical applications since the size (k � n) of matrix A in Eq. (26) may be
extremely large. In these cases, algorithm to compute a partial SVD could be used [21]. Another
possibility is to replace the full-SVD by a RRQR factorization, which can save substantially
computational effort [20].
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