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1. Introduction

Much of the theory developed in non-linear random vibration addresses the joint probability
density of the state space vector. Another important function describing the dynamics of the
system is the power spectral density, which is the Fourier transform of the displacement
covariance function and gives the distribution of energy on the frequency components. Solutions
to non-linear random vibration problems in terms of the power spectral density have generally
received less attention.
A method based on local similarity with the free undamped response was proposed by Krenk

and Roberts [1]. The response is here described by a set of modified phase plane variables, and the
free undamped response at a given energy level is expanded in a Fourier series. The power spectral
density at a given energy level is then obtained as an infinite series, where the first term
corresponds to the fundamental frequency, the second term to the first higher harmonic, and so
forth. The method was demonstrated considering the Duffing oscillator with linear–quadratic–
cubic damping and both white and coloured noise excitation, and has been extended to include
systems with parametric excitation by Krenk et al. [2].
In the present case a system with linear stiffness, power law viscous damping and white

noise excitation is considered. The approach proposed by Krenk and Roberts [1] can in this
case be considered as an extension of the method of equivalent non-linearization [3]. Since the
stiffness of the system is linear no higher harmonics appear in the spectrum. The method is
compared to results obtained by statistical linearization and Monte Carlo simulation both with
respect to the probability density of the mechanical energy and the power spectral density of the
response.
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2. Power law viscous damper

An oscillator with linear stiffness and power law viscous damping excited by external white
noise is considered. The normalized equation of motion for a system of this type can be expressed
as

.X þ hð ’XÞ ’X þ o2
0X ¼ W ðtÞ; hð ’XÞ ’X ¼ c signð ’XÞ j ’Xja; ð1a;bÞ

where X is the displacement and a dot indicates the derivative with respect to time. o0 is the
natural angular frequency and hð ’XÞ is termed the damping function. When given in the form (1b),
the damping function describes the behaviour of the Jarret Elastomeric Spring Dampers
reasonably well. c is the damping coefficient and has the dimension lengthð1�aÞ � timeða�2Þ: The
damping law exponent a is a number in the range aA½0; 1	: For a ¼ 1 the case of linear viscous
damping is retrieved. Dry friction corresponds to a ¼ 0: W ðtÞ is assumed to be a broadband
process, which is approximated by an ideal white noise,

E½W ðtÞW ðt þ DtÞ	 ¼ 2pSWdðDtÞ; ð2Þ

where SW is the intensity of the white noise. E½ 	 is the expectation operator and dðDtÞ is the Dirac
delta function.

2.1. Non-dimensional formulation

Initially the problem is rewritten in non-dimensional form. A length scale and a time scale are
introduced as

X0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2pSW

o3
0

s
; t0 ¼

1

o0
: ð3Þ

The equation of motion is then multiplied by t20=X0; whereby the following non-dimensional
equation of motion is obtained:

.Y þ dð ’YÞ ’Y þ Y ¼ UðtÞ: ð4Þ

The excitation process UðtÞ is a unit white noise, i.e., a white noise with intensity 1=2p: The non-
dimensional time t; displacement Y and velocity ’Y are given by

t ¼
t

t0
; Y ¼

X

X0
; ’Y ¼

dY

dt
: ð5Þ

A dot used in connection with Y thus indicates the derivative with respect to t: The non-
dimensional damping function dð ’YÞ is given by

dð ’YÞ ’Y ¼ b signð ’YÞ j ’Yja; b ¼
c

o0

2pSW

o0

� �ða�1Þ=2

; ð6Þ

where b is the non-dimensional damping coefficient. The equation of motion is seen only to
depend on the parameters a and b in this form.
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2.2. Equivalent non-linearization

In the method of equivalent non-linearization [3], an equivalent non-linear system is introduced
as

.Y þ deqðLÞ ’Y þ Y ¼ UðtÞ; L ¼ 1
2
’Y2 þ 1

2
Y 2; ð7a;bÞ

where L is the mechanical energy non-dimensionalized by multiplication with t20=X 2
0 from Eq. (3).

deqðLÞ is a non-dimensional equivalent damping function, which is assumed to be a function of the
mechanical energy only. The equivalent damping function is evaluated by

deqðlÞ ¼
/dð ’YÞ ’Y2 j lS
/ ’Y2 j lS

; ð8Þ

where / j lS is the mean value for a given energy level, which can be evaluated by considering free
undamped vibration at energy level l as discussed by Krenk et al. [2]. Free undamped vibration at
energy level l is given by

y ¼
ffiffiffiffiffi
2l

p
sin t; ’y ¼

ffiffiffiffiffi
2l

p
cos t: ð9Þ

The equivalent damping function is now evaluated from Eq. (8) considering the harmonic motion
given by Eq. (9),

deqðlÞ ¼
ð1=2pÞ

R 2p
0 ðb j ’y j aþ1 jlÞ dt

ð1=2pÞ
R 2p
0 ð ’y2 j lÞ dt

¼ alða�1Þ=2; a ¼
b2ðaþ1Þ=2ffiffiffi

p
p Gð1

2
aþ 1Þ

Gð1
2
aþ 3

2
Þ
: ð10a;bÞ

The probability density of the mechanical energy of the equivalent system (7) is given by

plðlÞ ¼ A expð�2DeqðlÞÞ; DeqðlÞ ¼
Z l

0

deqðeÞ de; ð11Þ

where A is a normalizing constant and DeqðlÞ is the damping potential. With the equivalent
damping function deqðlÞ evaluated in Eq. (10), the probability density of the energy reduces to

plðlÞ ¼ A exp �
4a

ðaþ 1Þ
lðaþ1Þ=2

� �
; A ¼

aþ 1

2Gð 2
aþ1

Þ
4a

aþ 1

� �2=ðaþ1Þ

; ð12Þ

where a is as given in Eq. (10b). The power spectral density is obtained by a weighted average of
spectral densities at various energy levels [1]. According to this method the two-sided spectral
density at a given energy level is introduced as

SyðrjlÞ ¼
deqðlÞl

p
1

½ð1� r2Þ2 þ deqðlÞ
2r2	

; r ¼
o
o0

; ð13a;bÞ

where r is a non-dimensional frequency and r ¼ 1 corresponds to resonance. The total spectrum is
obtained by integrating over all energy levels each weighted by the probability density of that
particular energy level,

SyðrÞ ¼
Z

N

0

SyðrjlÞplðlÞ dl ¼
Z

N

0

alðaþ1Þ=2

p
plðlÞ

½ð1� r2Þ2 þ a2la�1r2	
dl: ð14Þ
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The integral in the expression for the power spectral density is evaluated numerically in the
following.

2.3. Statistical linearization

In statistical linearization (also known as equivalent linearization or stochastic linearization)
the non-linear equation of motion is replaced by an equivalent linear one, which is easily solved.
Based on the non-dimensional formulation (4) the equivalent linear system is expressed as

.Y þ 2zeq
’Y þ Y ¼ UðtÞ; ð15Þ

where zeq is the equivalent damping ratio. The probability density of the non-dimensional velocity
’Y and the non-dimensional energy L introduced in Eq. (7b) for the linear system (15) are given by

p ’yð ’yÞ ¼

ffiffiffiffiffiffiffiffi
2zeq

p

r
expð�2zeq ’y

2Þ; plðlÞ ¼ 4zeq expð�4zeqlÞ ð16Þ

which are seen to be a zero mean normal distribution and an exponential distribution. zeq is
obtained by

2zeq ¼ E
@

@ ’Y
ðdð ’YÞ ’YÞ

	 

¼
Z

N

�N

p ’yð ’yÞ
@

@ ’y
ðdð ’yÞ ’yÞ d ’y: ð17Þ

Solving this equation for zeq the following value is obtained:

zeq ¼
1

2

abGð1
2
aÞffiffiffi

p
p

 !2=ðaþ1Þ

: ð18Þ

The power spectral density of the non-dimensional linear system (15) is given by

2pSyðrÞ ¼
1

½ð1� r2Þ2 þ ð2zeqrÞ2	
; ð19Þ

where r is the non-dimensional frequency introduced in Eq. (13b). Both the probability density
(16) and the power spectral density (19) are seen to depend only on the parameters a and b in the
combination zeq in Eq. (18). For a discussion of statistical linearization, see e.g., Roberts and
Spanos [4].

3. Numerical examples

In order to investigate the results derived in the previous section, the analytical expressions for
the probability density of the energy and for the spectral density of the response are compared to
results obtained from stochastic records. The simulation of the stochastic records follows the
procedure used in Ref. [5] and will not be discussed here. It should however be mentioned, that 50
time steps are taken per period.
In Figs. 1–4 the probability density of the energy and the power spectral density of the response

are given for various combinations of the parameter a governing the magnitude of non-linearity,
and the damping level of the system as defined by zeq: The dashed line corresponds to the
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Fig. 1. Probability density and spectral density for a ¼ 0:2 and zeq ¼ 0:1 ðb ¼ 0:355Þ: –, equivalent non-linearization;
- -, statistical linearization; �; stochastic simulation.
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Fig. 2. Probability density and spectral density for a ¼ 0:1 and zeq ¼ 0:1 ðb ¼ 0:376Þ: –, equivalent non-linearization;
- -, statistical linearization; �; stochastic simulation.
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Fig. 3. Probability density and spectral density for a ¼ 0:2 and zeq ¼ 0:3 ðb ¼ 0:686Þ: –, equivalent non-linearization;
- -, statistical linearization; �; stochastic simulation.
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analytical solution obtained by statistical linearization and the solid line corresponds to the
method proposed by Krenk and Roberts [1], which can be considered an extension of the method
of equivalent non-linearization when oscillators with linear stiffness are considered. The dots
correspond to stochastic simulation of records with a length of 50,000 natural periods.
Figs. 1 and 2 show the probability density and the spectral density for zeq ¼ 0:1: In the first case

a ¼ 0:2 and in the second case a ¼ 0:1: In both cases the probability density is approximated very
accurately by the method of equivalent non-linearization. Statistical linearization on the other
hand gives a relatively poor estimate of the probability density, especially the tail. This is an effect
of the Gaussian nature of the response of the equivalent linear system leading to an exponential
distribution of the energy, i.e., a straight line in the semi-logarithmic plots in Figs. 1–4a. As to the
spectral density of the response, both methods seem to give accurate results, except at the
resonance peak, where the method of statistical linearization slightly underestimates the peak.
In Figs. 3 and 4 the equivalent damping is increased to zeq ¼ 0:3; which can be seen by the

significant broadening of the peak, when comparing with the spectral densities in Figs. 1b and 2b.
The non-linearity parameter is again chosen as a ¼ 0:2 and 0.1, respectively. The probability
density is seen to be accurately evaluated by the method of equivalent non-linearization, while the
statistical linearization procedure displays the same shortcomings as observed in Figs. 1a and 2a.
The accuracy of the statistical linearization with respect to the power spectral density is seen to be
decreasing with increasing damping. The peaks in the spectra shown in Figs. 3b and 4b are thus less
accurately represented by the statistical linearization than in the previous case in Figs. 1b and 2b.
This is partly due to the broadening of the peak and thereby broadening of the range containing
the inaccuracy. The method of equivalent non-linearization gives more accurate results. However,
in the last case for zeq ¼ 0:3 and a ¼ 0:1 this method seems to overestimate the peak slightly.

4. Conclusions

Approximate solutions for the probability density of the energy and the power spectral density
of the response of an oscillator with power law viscous damping have been considered. As to the
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Fig. 4. Probability density and spectral density for a ¼ 0:1 and zeq ¼ 0:3 ðb ¼ 0:687Þ: –, equivalent non-linearization;
- -, statistical linearization; �; stochastic simulation.
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probability density of the energy, the method of statistical linearization gives very inaccurate
results, since the probability density of the energy of the equivalent linear system is exponential.
Especially the tail of the distribution is poorly represented. The method of equivalent non-
linearization gives very accurate results.
When the power spectral density of the response is considered, both methods give very accurate

results when the system is lightly damped and the non-linearity is moderate. Statistical
linearization does however tend to underestimate the peak slightly. For strongly non-linear
systems with high levels of damping, the method of statistical linearization fails to give an
accurate representation of the resonance peak. The method of equivalent non-linearization still
gives reasonable results in this case except for a slight overestimation of the peak.
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