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1. Introduction

Uniform beams on several resilient supports (usually approximated with sets of linear
translational and rotational springs) occur in engineering applications. Several investigators have
derived the frequency equations of special and degenerate cases, a few of which are briefly
described here: Chun [1] — one end spring-hinged and the other end free, Goel [2] — both ends
spring-hinged, Maurizi et al [3] — one end spring-hinged with a translational spring at the other
end. Afolabi [4] — cantilever with resilient root, Lui et al [5] — resilient supports with in-span
particles, Maurizi and Belles [6] — cantilever with translational spring-sliding end. Rao [7] derived
the frequency equation of beams on resilient supports and tabulated the first five frequencies for
several combinations of the four spring stiffness parameters but did not include the frequencies of
any special or degenerate cases. Register [8] added rigid bodies at the ends but presented results
for symmetrical cases. Kang and Kim [9] considered complex stiffness parameters.

Investigators who have used numerical methods and publications include: Venkateswara Rao
and Kanaka Raju [10] — finite element method for spring-hinged at one end, Sundararajan [11] —
one term Galerkin solution for a beam spring-hinged at both ends, MacBain and Genin [12] —
finite difference, Justine and Krishnan [13] — matrix iteration for resilient support at one end,
Karmeswara Rao [14] — Galerkin method, Kim and Dickinson [15] — Rayleigh—Ritz and Abbas
and Irretier [16] — cantilever with resilient root by finite element method.

Wang and Lin [17] and Li [18] discussed solutions based on Fourier series and the rates of
convergence of the solutions.

Bapat and Bapat [19] used the transfer matrix method to tackle a beam with several
translational and rotational springs but the only result listed was the frequencies of a cantilever
with one resilient in-span support. The frequency equation of a clamped—clamped beam with one
in-span translational support, was derived by Karmeswara Rao [20]. Wu and Chou [21]
considered a cantilever carrying oscillators and translational springs.
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The first case considered in the present paper is an uniform Euler—Bernoulli beam on five
resilient supports (including ends). Combinations of ‘general’ and degenerate resilient types of end
supports are classified into 81 types (which included the classical clamped, pinned, sliding and free
boundary conditions). Degenerate in-span supports are not considered. The frequency equation is
expressed as a fourth order determinant equated to zero. A scheme is presented to compute the
elements of the determinant of the frequency equation. A ‘search’ followed by an iterative process
based on linear interpolation is used to obtain the roots of the frequency equation. The first three
frequency parameters for a selected set of the three in-span support locations, sets of the three in-
span spring stiffness parameters and 81 types of end supports are tabulated. Computations were
in Fortran77 in double precision, on a VAX under VMS operating system. Numerical problems
were not encountered. The method was modified to tackle beams on four, three and two resilient
supports and the corresponding first three frequency parameters are tabulated. The method may
be used to calculate the frequency parameters of beams on any number of resilient in-span
supports.

The tables of frequency parameters may be used to judge the quality of frequencies obtained by
numerical methods.

2. Theoretical considerations
2.1. Beam on five resilient supports (including ends)

Fig. 1 shows the uniform Euler—Bernoulli beam O;;0,; of length L, mass per unit length m,
flexural rigidity EI, on resilient supports at the ends O;;, O,; and at three in-span locations Oq»,
Ogo and O»,. The in-span supports are of the ‘general’ resilient type shown in Fig. 2;. The ‘general’
type of resilient support at the ends O;; and/or O»; is shown in Fig. 2;, the classical clamped (c/),
pinned (pn), sliding (s/) or free (fr) in Fig. 2a—d and the ‘degenerate’ resilient supports in Fig. 2e-h.
The beam portions are of length Ry1L, Ri»L, R»,L and R,;L, the support location parameters are
Ry, R1», etc. The dynamics of the portions of the beam between consecutive supports were treated
separately. The co-ordinate systems at O;; and O;, are in the same direction but the systems at
0, and O»; are in contra-direction to the aforementioned systems.
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Fig. 1. The uniform beam on five ‘general’ resilient supports (including ends) and the co-ordinate systems.
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Fig. 2. The classical, degenerate and the ‘general’ type of resilient end supports.

For free vibration at frequency if y(x;) (j = 11, 12, 22, 21) 1s the amplitude at abscissa x; (0 <
< R;L), then based on the Euler-Bernoulli theory of bending, the bending moment M; (xj)
shedrlng force Qx;) and the mode shape differential equations are

d’yi(x) d’yi(x)
Mj(x;) = EI d;; L 0ix) = —EI 7(1;/3 -,
d*v.(x:
EI % — ma’y;(x;) = 0. (1)

J
To write Egs. (1) in dimensionless form, introduce the variables X; (0 < X; < R)) and Y(X)),
operators D} and define the dimensionless bending moment My{(X)), shearmg force Q(X)),
frequency €, frequency parameter « and the translational and rotational spring stiffness K, ; and
K. ; (for use later in the text) as follows:

X % v =22 b~ 0 - % M) = %’;’L
Egs. (1) in d1rnens1onless form are
Mj(X) = DIIYi(X))  Q;(X)) = —Dj[¥;(X;)],
DiY(X))] - 2*Y;(X)) = 0. (3)
The dimensionless mode shape of the beam portions are
Y;(X;) = Cyj sin aX; + Cy; cos aX; + Cj; sinh aX; + Cy; cosh oX; 4)

in which C, ; through to Cy; are the constants of integration.

2.1.1. The mode shape of portion O;;0;,
Consider the ‘general’ type of resilient support shown in Fig. 2i. Compatibility of moments and
forces acting on the beam element at O, shown in Fig. 3a will lead to the following equations in
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Fig. 3. The forces and moments on beam elements at Oq;, O, and Oy.

dimensionless form:
D} Y0 (0] = K. oDu[Yu(0)], D} [Yn(0)] = K12 Y1 (0), (5)
The dimensionless mode shape of the portion 0,0, is
Yiu(X) = C1,11Si1’1 X1 + Cypic08 a Xy + Cg,nsinh aX + C4,11005h aXig. (6)

Eq. (6) must satisfy Egs. (5) which enables two of the constants of integration in Eq. (6) to be
eliminated leading to the mode shape of 01,0,

Yii(Xi) = A1 Un(X1) + BiVin(Xin) (7
in which 4, and B, are constants and U;;(X7;) and V71(X1,1), the ‘modified’ mode shape functions

arc

Ui1(X11) =sin aX + Gy cos aX; + Hy cosh Xy,
Vll(Xll) =sinh O(X11 — H1 COS OCX“ — Gl cosh OCX“ (8)

in which G = 0.5[0’ /K, 11 — K11/ and Hy = 0.5[0? /K, 11 + K11 /] or the alternative form

Ui1(X11) =cos aX) + Gy sin aX; + H; sinh Xy,
V]](X]]):COSh O(X]]-Hz sin OCX]]—Gz sinh OCX]] (9)
in which G2 =0.5 [—OC/K,;]] + K;J]/Oﬁ] and Hz = 0.5[—0(/1(,,’11 — K,,ll/oc3].
For the classical ¢/, pn, sl and fr end supports shown in Fig. 2a—d and the ‘degenerate’ types of

resilient end supports shown in Fig. 2e—i, the functions Uj(X;;) and Vi(X7;) are listed in
Appendix A.

2.1.2. The mode shape of portion O;>0
The dimensionless mode shape of 0,0y is

Y12(X12) = Cy 12 sin aXjy + Cy 12 cos X
+ G312 sinh aX2 + Cy4 12 cosh aXs. (10)
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Continuity of deflection and slope and compatibility of the forces and moments on the beam
element at Op, shown in Fig. 2b results in

Yi1(R) = Y12(0), Dul[Yiu(Ri)] = D[ Y12(0)],
Di[Y11(Ri)] + K 12D11[Y11(R11)] = D},[Y12(0)], (11)
Di[Y11(Ri1)] — K112 Y11(R11) = D,[Y12(0)].

When Egs. (7) and (10) were substituted into the set of Eqgs. (11) and the four constants Cj ;,
through to Cy 1, were eliminated, the following form of the mode shape of the portion O;,00
results:

Yi2(X12) = A1 Una(X12) + B Via(X12), (12)

where 4, and B; are the same constants which appear in Eq. (7) and the functions U;»(X;,) and
Via(X12) are

U12(X12) = Gl,lzsinoch + G2,12COSO(X12 + G3,123inh<xX12 + G4’12008hOCX12,
V12(X12) = Hy 1osinaXo + Hb 1pc080X 12 + Hj3 1asinhaX s + Hyjpcosha Xy (13)

in which the coefficients G, ;> through to Gy > are

:Dll[Ull(Rll)] _ D} U (R — K2 Uni(Ryy)

Gz 2 23 :
Gy Ull(Rll)_D%l[Ull(Rll)]"i‘Kr,lZDll[Ull(Rll)]
2,12 5 oy ,
G 7D11[U11(R11)]_i_D%][Ull(Rll)]_Kt,lell(Rll)
3,12 = 2 203 ’
2
Gip = U11(2R11) n D1 [Uni(Ri)] +21;£,12D11[U11(R11)]' (14)

The coefficients H, 1,—H4 1, are obtained by inserting V in place of U in the above equations.

2.1.3. The mode shapes of portions O,;05, and 03,0
The mode shape of the portion O,;0,, may be expressed in the form

Y21(X21) = A2Usi(X21) + BaVai(X21) (15)
in which 4, and B, are constants and the functions U,;(X>;) and V5(X>;) are obtained by
replacing the subscript 11 with 21 in Egs. (8) and (9). Consideration of continuity of deflection

and slope and compatibility of bending moment and slope at O,, will lead to the mode shape of
02,000

Y22(X22) = A2 Una(X22) + B2 Vo (X22) (16)
in which the functions U,»(X>,) and V»,(X5;) are
Un(X22) = G122 sin aXp + Gy €0s aXp + G32p sinh a Xy, + Gy cosh aXn,
Voa(X22) = Hy 2z sin a X + Ha 2o cos aXay + Hj oy sinh aXo + Hyoo cosh a X, (17)
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where the coefficients G »,—H4 5> were obtained by replacing the subscripts 11 and 12 with 21 and
22, respectively, on the right side of Egs. (14).

2.1.4. The frequency equation
The forces and moments acting on the element at Oy is shown in Fig. 3c. Continuity of
deflection and slope (bearing in mind the contra-directions of X7, and X,,) and compatibility of
moment and shearing forces lead to the following equations in dimensionless form:
Yi2(Ri2) = Y22(R2), Dio[Yi2(Ri2)] = —Daa[Y22(R22)],
D[ Y12(Ri2)] + Koo Dia[ Yi2(R12)] = D3,[ Yoo (Ra2)], (18)
D[ Y12(R12)] — Kol Y12(R12)] = —D3,[ Yoo (Ra2)].
When Egs. (12) and (16) are inserted into Egs. (18), the coefficient matrix of the four equations
which results must be singular. This leads to the frequency equation

U12(R12) Vi2(R12) —Un(Ry) —V2n(Ry)
Dy [Uia(Rin)] D[ Via(Ri2)] Dn[Un(Rxn)]  Dan[Va(Rn)]
D%Z[Ulz(Rlz)] D%z[Vl2(R12)] 2 2 _
+K00D12[Unn(R12)]  +Ki00D12[Vi2(R12)] ~OulUn(Ro)] = PlVnRoa)l) =0 (19)
D3,[U(R D3 [Vi2(R
—12 [oo (112 1(2 (11{2 1)2]) —12 [00 ;/21(2 (11{2 1)2]) DulUnRez)]  DlVa(Rea)]

Without loss of generality one may choose
Rii+Rip+ Ry + Ry = 1. (20)

2.1.5. The system parameters for five support beam

For sample calculations the following system parameters were chosen: support location
parameters: [Ry; Rj» Ry R>1]=[0.20.20.3 0.3], the end support spring stiffness parameters: [K, 1;
K, 11]=[10 20] and [K;>; K,»]=[100 200] and the in-span spring stiffness parameters: [K, >
K, 12]=[K: 00 Kr.00] = [K;22 K, 2] =[10 2]. In Tables 1-4, the boundary conditions are represented
by (B, C) where B and/or C=1, 2, 3,...,9 denote the types of supports shown in Fig. 2a—i,
respectively. For the ‘general’ type of resilient end supports, i.e., (9, 9) all the system parameters
will be used. For the other types of supports, the stiffness parameters are selected from this set as
required. For example, in the case of (5, 7) type, K, ;; and K, ; are not required, (1, 6) type will
not require K; 1, K, 11 and K, »; and so on.

2.1.6. Natural frequency calculations

Account is taken of the type of support at Oy; and O,; in the choice of the functions Uj;(X7;),
V11(X11), Us1(X51) and V51(X5;) from Egs. (8) or (9) for ‘general’ resilient support or for classical
or ‘degenerate’ resilient support from Appendix A. The functions are all transcendental and their
derivatives are obtained by straightforward differentiation. For a trial & = 0.1 (say), U;1(R11),
Vii(R11), Dii[Urni(R11)], Di1[Vi1(R11)], etc., were calculated and inserted into Egs. (14) to get the
coefficients Gy 1o through to Hy 1, followed by Uix(R12), Via(Ri12), Dio[Uia(R12)], Dio[Vi2(R12)],
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etc. from Eq (13) Slmllarly Uzz(Rzz), sz(Rzz), D22[ Uzz(Rzz)], D22[ V22(R22)] were calculated and
hence the elements of the determinant of the frequency equation (19). The determinant was
expanded by inductive development [22]. The trial o was changed in steps of 0.1 and calculations
were repeated till a sign change in the value of the determinant was observed. This gives a ‘range’
in which a root lies. Calculations were repeated in this ‘range’ in steps of 0.01 to narrow the
‘range’. At this stage an iterative procedure based on linear interpolation was invoked to find a
root to a pre-set accuracy. The procedure was repeated from this root to locate the second root
and so on. The first three frequency parameters for the selected set of system parameters are
tabulated in Table 1.

2.2. Beams on four resilient supports (including ends)

For sample calculations the following system parameters were chosen for the beam on two in-
span supports: [Ry; Rz Ryy] = [0.4 0.3 0.3] and [K, 11 K 11], [Ki12 K 12], [Kioo K 00] and [K; o,
K, ] were the same as in Section 2.1.5. The frequency equation was obtained by replacing the
subscript 22 with 21 in Eq. (19). The first three frequency parameters are tabulated in Table 2.

2.3. Beam on three resilient supports (including ends)

For sample calculations the following system parameters were chosen for the beam on one in-
span support: [Ry; Ry;] = [0.70.3] and [K; 11 K,.11], [K/.00 K;.00] and [K; 21 K,.»1] were the same as in
Section 2.1.5. The frequency equation was obtained by replacing the subscript 12 with 11 and 22
with 21 in Eq. (19). The first three frequency parameters are tabulated in Table 3.

2.4. Beam on resilient end supports

Rao [7] tackled a beam on the ‘general’ type of resilient end supports but did not present any
results for the degenerate types of resilient supports. To fill this shortcoming, the first three
frequency parameters of the beam on end supports (spring stiffness parameters [K, ;; K, ;] and
[K,>1 K, 1] are the same as in Section 2.1.5), are tabulated in Table 4. The boundary conditions (9,
9) were considered in Ref. [7], (7, 4) in Ref. [1], (7, 7) in Ref. [2], (7, 6) in Ref. [3], (9, 4) in Ref. [4]
and (5, 4) in Ref. [6].

3. Concluding remarks

Transverse vibrations of uniform Euler—Bernoulli beams on up to five resilient supports
(including ends) were considered in this paper. A total of 81 combinations of classical, degenerate
and ‘general’ types of resilient end supports were considered. Degenerate in-span supports were
not considered. The frequency equation was expressed as a fourth order determinant equated to
zero Schemes to express and calculate the elements of the determinant and then to compute the
roots of the frequency equation are presented. Tables of the first three frequencies for one set of
the system parameters are presented for three, two, one and nil in-span supports.
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The method may be extended to tackle any number of resilient supports provided the in-span
supports are not degenerate. The frequencies tabulated may be used to judge the frequencies
obtained by numerical methods.

Appendix A
The functions U;(X;;) and V;(X7;) are for classical and ‘degenerate’ resilient supports at

O..For the classical ¢/, pn, sl or fr supports at O;; shown in:
Fig. 2a: K11 — o0, K11 — o0 (cl)

Upi1(X11) = sin aX7; — sinh o Xy, V11(X(1) = cos aXj; — cosh aXj;. (A1)
Fig. 2b: K; 11— o0, K11 = 0(pn)
Ui1(X11) = sin aX1y, Vi1(X11) = sinh aX|;. (A.2)
Fig. 2¢: K11 = 0, K,.11 — o0 (s])
Uyi1(X11) = cos aXi1, V11(X11) = cosh aXq;. (A.3)
Fig. 2d: K;11 =0, K11 = 0(fr)
Uyi1(X11) = sin aX7; + sinh Xy, V11(X1) = cos aXj; + cosh aXi;. (A4)

For the ‘degenerate’ resilient supports shown in:
Fig. 2e: K;11#0, K, 11— o©
K,all(sil’l OCX]] — sinh O(Xll)

Ui (X11) = cos aXy +

203 ’
i - (A.5)
K, 11(sin oX7; — sinh oX]
V11(X11) = cosh o Xy + A1l 121053 11)'

Fig. 2f: Kt,ll 750,Kr,11 =0

. o3(cos aX1; + cosh X
U11(X11):Sll’l O(X11+ ( 1 ”)

2K, ’
’ X L h X (A.6)
V“(Xll):Sil’lhocXH_a(COSO( 11 + cosh « ”)‘
2K 11
Fig. 2g: Ky 11—~ 0, K11 #0
A Xy) — cosh aX
Un(Xn) = sin o Xy — 11 (cos o 121 cosh o ”),
K.11(cos aX a—cosh aX11) (A7)
Vi1(X11) = sinh oX}; — =2 121a )
Flg 2h Kl,ll = O’K‘,llséo
in oX}; + sinh oX
Un(X”):COSaXH_oc(smoc 121[;i-sm o “),
r,11 (AS)

o(sin X7y + sinh aX7;)

Vii(Xy) = h aX
11(X11) = cosh a X + 2K, 1
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