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1. Introduction

Computing the hydrodynamic pressures exerted on the upstream face of dams is of chief
interest in designing and evaluating the safety of these structures in seismically active regions.
Since the classical work by Westergaard [1], the question has attracted a considerable amount of
research attention. In parallel with various methods proposed by researchers, ranging from finite
element modelling to boundary integral equations, some simplified formulations were derived for
the need of practicing designers. However, these simplified formulas are generally based on many
restricting assumptions, such as neglecting water compressibility and reservoir bottom absorption.
Numerical studies carried out with models that account for these energy dissipating mechanisms
in the reservoir, have shown that the changes to the hydrodynamic pressure can be considerably
important, and moreover not always on the conservative side [2]. This paper presents an easy-to-
use technique to get a reliable estimate of the earthquake-induced hydrodynamic pressures on
gravity dams, by proposing closed-form formulas for the eigenvalues involved when solving the
fluid–dam interaction problem.

2. A review of the theory

The approach presented herein is based on the procedure derived by Fenves and Chopra in Ref.
[2]. The basic concepts underlying this formulation are reviewed in this paper, and the same
notation as in Ref. [2] is used.

Let us consider a gravity dam with a vertical upstream face, impounding a reservoir of constant
depth, H; and extending to infinity in the upstream direction (Fig. 1). The dam and the reservoir
are supported on a flexible foundation modeled as a viscoelastic half-plane. The following
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assumptions are considered in the formulation of equations:

* The dam, the water and the foundation are assumed to have a linear behavior.
* The dam–reservoir–foundation system is treated as two-dimensional.
* The reservoir is assumed to have regular rectangular boundaries.
* The water in the reservoir is compressible and inviscid, with its motion irrotational and limited

to small amplitudes.
* The exciting ground acceleration is assumed to be harmonic and horizontal.
* Gravity surface waves are neglected.

Under these assumptions, the hydrodynamic pressure p in the reservoir (in addition to the
hydrostatic pressure) obeys the following equations:

@p

@x
¼ �rw

@2u
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; ð1Þ
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where x and y are the Cartesian co-ordinates as illustrated in Fig. 1; u and v are the x and y
components of the displacement of a water particle, respectively; t is the time variable; rw the mass
density of water and C the velocity of sound in water.

For harmonic ground motion, the pressure in the reservoir can be expressed in the frequency
domain as pðx; y; tÞ ¼ %pðx; y;oÞeiot; where o is the exciting frequency and %pðx; y;oÞ the complex-
valued frequency response function for hydrodynamic pressure. Using this transformation into
Eq. (3) yields the classical Helmholtz equation:
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Fig. 1. The dam-reservoir system (adapted from Fenves and Chopra [2]).
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The boundary conditions to be satisfied by Eq. (4) are as follows:

(1) The acceleration boundary condition at the interface of the dam and reservoir

@ %p

@n
ð0; y;oÞ ¼ �rwanð0; y;oÞ ð5Þ

in which n denotes the inward normal direction to a boundary and anðx; y;oÞ the normal
component of boundary acceleration.

(2) The acceleration boundary condition at the reservoir and foundation interface

@ %p

@n
ðx; 0;oÞ ¼ ioq %pðx; 0;oÞ; ð6Þ

where q is the damping coefficient of the reservoir bottom defined as

q ¼
rw

rf Cf

ð7Þ

and where rf and Cf are, respectively, the mass density and the compression-wave velocity of
the foundation. The portion of the wave amplitude reflected back to the reservoir can then be
represented by the wave reflection coefficient a defined by

a ¼
1 � Cq

1 þ Cq
; ð8Þ

where a may vary from 0; for full wave absorption, to 1; for full wave reflection.
(3) The zero pressure condition at the free surface is

%pðx;H;oÞ ¼ 0: ð9Þ

(4) And finally, the radiation condition

lim
x-�N

%pðx; y;oÞ ¼ 0: ð10Þ

To summarize, the pressure field in the rectangular reservoir is governed by the following
boundary conditions:

@ %p

@x
ð0; y;oÞ ¼ �rwanð0; y;oÞ; ð11Þ

@ %p

@y
ðx; 0;oÞ ¼ ioq %pðx; 0;oÞ; ð12Þ

%pðx;H;oÞ ¼ 0; ð13Þ

lim
x-�N

%pðx; y;oÞ ¼ 0: ð14Þ

When the excitation is caused by a harmonic horizontal acceleration eiot; the normal
frequency response acceleration of a point (x ¼ 0; y) belonging to the rigid dam face is
simply

anð0; y;oÞ ¼ 1: ð15Þ
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Using the method of separation of variables, it can be shown that solving Eq. (4) leads to a
Sturm–Liouville problem, with complex-valued frequency dependent eigenvalues lnðoÞ of the
impounded water and orthogonal eigenfunctions Ynðy;oÞ satisfying

e2ilnðoÞH ¼ �
lnðoÞ � oq

lnðoÞ þ oq
for n ¼ 1; 2; 3;y ð16Þ

and

Ynðy;oÞ ¼
1

2lnðoÞ
ðlnðoÞ þ oqÞeilnðoÞy þ ðlnðoÞ � oqÞe�ilnðoÞy
� �

: ð17Þ

Eq. (16) is generally solved for each excitation frequency o in the range of interest by using
iterative solutions such as the Newton–Raphson method implemented in the finite element
program EAGD [3]. The method requires an initial guess for the roots, the evaluation of both a
function and its derivative and converges after a certain number of iterations. Once the
eigenvalues are determined, the complex-valued pressure frequency response functions %pðx; y;oÞ
at point x; y of the reservoir can be found as

%pðx; y;oÞ ¼ � 2rwH
XN
n¼1
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s
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and where N is the number of significant reservoir vibration modes to be included in the analysis
[2].

It is clear that a rigorous solution to the problem depends on the determination of the
eigenvalues ln; which generally requires the use of a specialized software [3] or advanced
programming techniques. In this paper, an alternative strategy based on finding approximate
expressions for the eigenvalues ln is proposed.

3. Approximation of eigenvalues

Introducing zn ¼ lnðoÞ=q; Eq. (16) becomes

e2iznHq ¼ �
zn � o
zn þ o

for n ¼ 1; 2; 3;y: ð22Þ
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Performing derivation with respect to o gives

iHq z0ne
2iznHq ¼

zn � oz0n

ðzn þ oÞ2
for n ¼ 1; 2; 3;y ð23Þ

in which z0n denotes the derivative of zn with respect to o:
Substitution of the expression for e2iznHq from Eq. (22) into Eq. (23) results in

iHq z0n
o� zn

zn þ o
¼

zn � oz0n

ðzn þ oÞ2
for n ¼ 1; 2; 3;y ð24Þ

which after simplification gives the non-linear differential equation

z0n ¼
zn

oþ iHq o2 � z2
n

� � for n ¼ 1; 2; 3;y: ð25Þ

It can be demonstrated and argued through numerical examples that for large values of the
reflection coefficient a; the terms o and o2 are relatively small compared to the other terms in
Eq. (25), and they can be dropped without introducing significant error as will be shown later.
Hence, we can assume that under some conditions that will be shown when assessing the range of
validity of this approximation, Eq. (25) simplifies to

z0n ¼
i

Hqzn

for n ¼ 1; 2; 3;y ð26Þ

or, after separation of variables,

zn dzn ¼
i

Hq
do for n ¼ 1; 2; 3;y: ð27Þ

Finally, integration between 0 and o of Eq. (27) yields

z2
nðoÞ ¼ z2

nð0Þ þ
2io
Hq

for n ¼ 1; 2; 3;y ð28Þ

or, getting back to ln;

l2
nðoÞ ¼ l2

nð0Þ þ i
2oq

H
¼

ð2n � 1Þ2p2

ð2HÞ2
þ i

2oq

H
for n ¼ 1; 2; 3;y; ð29Þ

where lnð0Þ ¼ ð2n � 1Þp=2H are the roots of Eqs. (16) for o ¼ 0:
Hence the coefficients bnðoÞ and knðoÞ can be obtained by using Eq. (29), as

bnðoÞ ¼ H
ð2n � 1Þ2p2

ð2HÞ2
� o2q2

	 

þ 3ioq ð30Þ

and

k2
nðoÞ ¼
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�
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þ i

2oq

H
: ð31Þ
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From expressions (29)–(31) one can also derive recurrence formulas for ln; bn and kn as follows:

l2
nþ1ðoÞ ¼ l2

nðoÞ þ 2n
p2

H2
; ð32Þ

bnþ1ðoÞ ¼ bnðoÞ þ 2n
p2

H
; ð33Þ

k2
nþ1ðoÞ ¼ k2

nðoÞ þ 2n
p2

H2
: ð34Þ

Using Eq. (22) and performing integration, the coefficient I0nðoÞ given by Eq. (19) can be
expressed as

I0nðoÞ ¼
ie�ilnH

lnH

ln

ln þ oq
�

o2q2

lnðln þ oqÞ
þ

oqeilnH

ln

	 

: ð35Þ

Again, it can be justified numerically that the terms o2q2=lnðln þ oqÞ and oqeilnH=ln

can be neglected in the equation without significant loss of accuracy. Eq. (35) simplifies
then to

I0nðoÞ ¼
ie�ilnH

Hðln þ oqÞ
: ð36Þ

4. Pressures at dam face

From this point on, the pressure at dam face (x ¼ 0) will be denoted by %pðy;oÞ: According to
Eqs. (18) and (17), we can write

%pðy;oÞ ¼ � 2rwH
XN

n¼1

l2
nðoÞ

bnðoÞ
I0nðoÞ
knðoÞ

Ynðy;oÞ

¼ � 2rwH
XN

n¼1

Sðn; y;oÞ; ð37Þ

where Sðn; y;oÞ denotes the terms under the summation sign.
Then, the real and imaginary parts of Sðn; y;oÞ can be expressed as
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and

Im Sðn; y;oÞ½ � ¼
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where the Si coefficients can be derived from Eqs. (29)–(31) and (36) through straightforward but
tedious manipulations, yielding

S0 ¼
ð2n � 1Þ2p2

4H2
; S1 ¼ S0 � o2q2; S2 ¼ 4 S0 �

o2

C2

� �
;

S3 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

0 þ 4
o2q2

H2

s
; S4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

2 þ 64
o2q2

H2

s
;

S5 ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 S3 � 4S0ð Þ

p
; S6 ¼

1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 S3 þ 4S0ð Þ

p
;

S7 ¼ 2 S5cosðS6HÞ � S6sinðS6HÞ½ �eS5H ;

S8 ¼ 2 S6cosðS6HÞ þ S5sinðS6HÞ½ �eS5H ;

S9 ¼ S6 þ o qð Þe�S5y þ S6 � o qð ÞeS5y
� �

cosðS6yÞ þ eS5y � e�S5y
� �

S5sinðS6yÞ;

S10 ¼ e�S5y þ eS5y
� �

S5cosðS6yÞ þ S6 þ o qð Þe�S5y � S6 � o qð ÞeS5y
� �

sinðS6yÞ;

S11 ¼
S8S9 � S7S10ð ÞS1H

A2
1H2 þ 9o2q2

þ 3
S7S9 þ S8S10ð Þoq

A2
1H2 þ 9o2q2

;

S12 ¼
S7S9 þ S8S10ð ÞS1H

A2
1H2 þ 9o2q2

� 3
S8S9 � S7S10ð Þoq

A2
1H2 þ 9o2q2

;

S13 ¼ �
S0

2
þ

S3

8
þ S6 þ oqð Þ2:

Summing up the contributions of each impounded water mode, the total pressure at co-ordinate
y at dam face can be finally expressed as

%pðy;oÞ ¼ �2rwH
XN

n¼1

Re Sðn; y;oÞ½ � þ i
XN

n¼1

Im Sðn; y;oÞ½ �

" #
: ð40Þ

5. Illustrative example

To assess the effectiveness and the range of applicability of the proposed computational
method, the 84-m Outardes 3 gravity dam reservoir is considered for analysis in this section. The
dam was subject to extensive dynamic large-scale tests by the Earthquake Engineering and
Structural Dynamics Research Center of the University of Sherbrooke (CRGP) under summer
and harsh winter conditions [4]. The reservoir is assumed to have a rectangular geometry as shown
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in Fig. 1, with a height of H ¼ 70 m and a far end at L ¼ 2H ¼ 140 m: In this example, the water
is assumed compressible, with the following properties : velocity of pressure waves C ¼ 1440 m=s;
and a mass density r ¼ 1000 kg=m3: The hydrodynamic pressure exerted on the dam face was
determined using the simplified formulation proposed in the previous section and the classical
numerical solution developed in Ref. [3]. The pressures were determined for different values of the
frequency ratio o= %o; where %o ¼ pC=ð2HÞ is the natural frequency of the reservoir.

By observing the approximations leading to Eqs. (26) and (36), one can see that the accuracy of the
proposed simplified formulation depends essentially on the wave reflection coefficient a representing
the reservoir bottom absorption. To have a good understanding of the effect of this parameter, several
situations were studied where the wave reflection coefficient is varied over a wide range. Results are
presented in this paper for five different values of a; 0.25, 0.50, 0.75, 0.925. Note that values of a in the
range 0.5–1 are most frequent, and that the value of 0.925 was selected from the numerical correlation
studies carried out with the on-site dynamic investigation at Outardes 3 dam [4].

6. Results

Figs. 2a–d show the variations of hydrodynamic pressure along the dam face at reservoir
resonance (o= %o ¼ 1) and for different values of the wave reflection coefficient a: As can be

0 0.01 0.02 0.03 0.04

0 0.02 0.04 0.06
0

0.2

0.4

0.6

0.8

1

R
es

er
vo

ir 
de

pt
h,

 y
/H

Max. hydrodynamic pressure, P/(ρwgH )

0 0.04 0.08 0.12

0

0.2

0.4

0.6

0.8

1

R
es

er
vo

ir 
de

pt
h,

 y
/H

0 0.01 0.02 0.03

(a) (b)

(c) (d)

Fig. 2. Hydrodynamic pressure distribution on dam face. - - -, present method; — classical solution. (a) a ¼ 0:25; (b)
a ¼ 0:50; (c) a ¼ 0:75; and (d) a ¼ 0:925:
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observed, the agreement of the simplified solution proposed herein with the classical formulation
is excellent for reservoirs with high values of the reflection coefficients. Results for those with
lower values of a also show good agreement with a slight increase in pressure. However, Figs. 2(a)
and (b) reveal that the hydrodynamic pressure at water surface is not equal to zero due to the
simplifications adopted in the formulation.

To illustrate the influence of the frequency ratio o= %o on the accuracy of the proposed method,
Fig. 3 portrays pressure distributions obtained for different frequency ratios and with a moderate
value of the reflection coefficient (a ¼ 0:75). Again, the curves clearly show an excellent agreement
for this type of reservoir bottom absorption condition, and even better correlations are obtained
when a > 0:75: The same correlation can be observed in Fig. 4, which presents a plot of the
frequency response curves of the maximum pressure at the dam heel obtained using both methods
over a frequency range from 0 to 20Hz.

7. Conclusions

The paper has presented a new approximate analytical technique for earthquake-induced
hydrodynamic pressures on rigid gravity dams allowing for water compressibility and wave
absorption at the reservoir bottom. The results obtained are in good agreement with other
classical solutions. In addition to the fact that the method can be easily incorporated in a dam
structural analysis program by using a set of formulas instead of solving the eigenvalue problem
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Fig. 3. Hydrodynamic pressure distribution for different frequency ratios o= %o and for a ¼ 0:75: - - -, present method;

— classical solution.
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through a numerical technique, the procedure proposed transforms the eigenvalue problem to a
differential equation, thus providing an alternative approach to finding the eigenvalues. Also,
other benefits of this method is that it can be extended to situations where the reservoir is
subjected to other boundary conditions, such as the presence of an ice cover or gravity waves.
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