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Abstract

A non-uniform viscoelastic beam traversed by flexural waves was considered. Methods based on
Timoshenko’s model were established for (i) estimation of its state (shear force, transverse velocity, bending
moment and angular velocity) at an arbitrary section on the basis of at least four independent
measurements, and (ii) identification of its complex modulus, parametric as well as non-parametric, on the
basis of at least five independent measurements. From the estimated state, related useful quantities such as
strain, stress and power transmission can be obtained. Experimental tests were carried out with beams
made of polymethyl methacrylate and polypropylene and instrumented with pairs of strain gauges at eight
non-uniformly distributed sections. Estimation of strain at one instrumented section was based on
measured strains at five to seven surrounding sections, while identification of the complex modulus was
based on measured strains at five to eight sections. Generally, the identified complex moduli showed fair
agreement with previous results from tests involving extensional waves, while the estimated strains were in
good accord with measured strains. No significant improvement in the quality of results was achieved when
the number of measured strains was increased to more than five for the identification of the complex
modulus and six for the estimation of state.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Polymeric and other materials with viscoelastic behaviour have important uses in structural
elements of various kinds. In the linear regime, such isotropic materials are characterized by two
independent complex-valued functions of frequency [1]. A common choice of such functions is the
complex modulus and the complex Poisson ratio. The complex modulus is of particular
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importance because of its use in the analyses of structural elements experiencing a uni-axial state
of stress. Such structural elements are, for example, bars subjected to axial and transverse loads.
When a viscoelastic or elastic structure with bar members is subjected to transient loading,

extensional and flexural waves are generated in the bars. Provided that the significant wavelengths
are sufficiently large relative to the transverse dimensions of the bars, these waves may be
accurately represented by the solutions of a second and a fourth order partial differential
equation, respectively [2]. Correspondingly, the state at an arbitrary bar section may be
represented by vectors with two and four elements, respectively. In the case of extensional waves,
these elements may be taken as the Fourier transforms of the normal force and the axial velocity
[3], while in the case of flexural waves they may be chosen as the Fourier transforms of the shear
force, the transverse velocity, the bending moment and the angular velocity [4].
Two significant problems in this context are those of (i) estimation of state at an arbitrary

section and (ii) identification of the complex modulus on the basis of sufficient numbers of
measurements. From the estimated state, related useful quantities such as strain, stress and power
transmission can be obtained. For a bar traversed by extensional waves only (a rod), and with
unknown boundary conditions, the solutions of these problems require a minimum two [5] and
three [6] independent measurements, respectively. For a bar traversed by flexural waves only (a
beam), and with unknown boundary conditions, a minimum of four [4] and five independent
measurements, respectively, are needed. Therefore, if the number of measurements is sufficient to
allow identification of the complex modulus for either kind of waves, it also permits estimation of
state for the same kind of waves. It is convenient to measure strains and accelerations from which
quantities such as normal force and axial velocity, in the case of extensional waves, or bending
moment and transverse velocity, in the case of flexural waves, can be determined at the
instrumented sections.
For elastic extensional waves, Lundberg and Henchoz [5] showed that the state (normal force

and axial velocity) at an arbitrary section of a uniform bar can be estimated from measured axial
strains at two different sections by solving difference equations in the time domain. A similar
method was used by Yanagihara [7] to estimate impact force. Lagerkvist and Lundberg [8],
Lagerkvist and Sundin [9] and Sundin [10] used the method to determine mechanical point
impedance. The method was used also by Karlsson et al. [11] in a study of the interaction of bit
and rock in percussive drilling. It was extended to non-uniform bars by Lundberg et al. [3] and
used for determination of force–displacement relationships for different combinations of drill bits
and rocks by Carlsson et al. [12] and for high-temperature fracture mechanics testing by Bacon
et al. [13,14]. The method was extended to viscoelastic extensional waves by Bacon [15,16], and to
elastic flexural waves by Sundin and (Ahrstr .om [17], who assessed frictional properties and
lubricant performance at an obliquely impacted end of a long uniform beam from acceleration
measurements at two sections. The case of elastic flexural waves in non-uniform bars was
considered by Hillstr .om and Lundberg [4].
Methods of identification of the complex modulus based on the measurement of one

extensional wave at a time have been employed by, for example, Kolsky and Lee [18], Theocaris
and Papadopoulou [19], Blanc [20–22], and Sogabe et al. [23,24]. An advantage of these methods
is that they require only two independent measurements (or one if use is made of a known
boundary condition). Another is their mathematical and computational simplicity. A
disadvantage is that they may require relatively long bar specimens in order to keep waves
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travelling in opposite directions separate from each other at measurement sections. Another is
that they may not be ideal for routine use.
Methods of identification of complex modulus which permit overlap of extensional waves at

instrumented sections have been used by, for example, Buchanan [25], Lundberg and Blanc [26],
.Odeen and Lundberg [6, 27], Hull [28] and Soula et al. [29]. The advantages of these methods are
that they admit the use of relatively short bar specimens and have potential for use in routine
testing. A disadvantage is that they require at least three independent measurements (or two if use
is made of a known boundary condition). Another is that they may be mathematically and
computationally complex. Numerical difficulties, with resulting large errors and irregular results,
commonly occur at certain critical frequencies. One set of critical frequencies corresponds to
conditions such that the distances between the measurement sections become integral multiples of
a half wavelength. The numerical difficulties at these frequencies were alleviated by increasing the
number of independent measurements to more than three, that is, by introducing redundancy, and
by distributing the sections non-uniformly [30–32].
In this paper, a non-uniform beam, made of linearly viscoelastic material and traversed by

flexural waves, is considered. The aim is to develop methods for (i) estimation of state (shear
force, transverse velocity, bending moment and angular velocity) at an arbitrary section on the
basis of at least four independent measurements, and (ii) identification of complex modulus,
parametric as well as non-parametric, on the basis at least five independent measurements.
First, the methods will be developed on the basis of Timoshenko’s beam model. Then,

experimental tests with beams made of polymethyl methacrylate (PMMA) and polypropylene
(PP) will be presented. The identified complex moduli will be compared with previous results from
tests involving extensional waves [32], while the estimated strains will be compared with measured
strains.

2. Theory

2.1. Non-uniform Timoshenko beam

Consider a segment of a non-uniform Timoshenko beam with cross-sectional area AðxÞ;
moment of inertia IðxÞ and radius of inertia RðxÞ ¼ ½IðxÞ=AðxÞ�1=2; where x is a co-ordinate along
the straight centreline of the beam. For a circular cross-section, as in the experimental part,
A ¼ pd2=4; I ¼ pd4=64 and R ¼ d=4; where d is the diameter. Let the material be linearly
viscoelastic with density r; complex modulus EðoÞ ¼ E0ðoÞ þ iE00ðoÞ and complex shear modulus
GðoÞ ¼ G0ðoÞ þ iG00ðoÞ; where o is the angular frequency. The material is assumed to be isotropic,
which implies that these moduli are related to the complex Poisson ratio nðoÞ ¼ n0ðoÞ þ in00ðoÞ
through E=G ¼ 2ð1þ nÞ:
It is assumed that within the beam segment considered there are no external loads, supports,

joints or spots of contact with other bodies. Outside this segment, the beam may be in contact
with supports, structures, loading agencies, etc. with linear or non-linear characteristics. The beam
segment is assumed to be quiescent for time to0; while it is traversed by flexural waves for tX0
due to a load of finite duration outside the segment. This load may be generated, for example,
through impact on the beam itself or on an element of a connected structure.
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At any section x of the beam segment, and for any time t; there are five linear relationships
between the shear force Qðx; tÞ; the deflection of the centreline wðx; tÞ; the bending moment
Mðx; tÞ; the rotation of the cross-section fðx; tÞ and the shear strain on the centreline g0ðx; tÞ: See
Fig. 1, where these quantities are defined. Through elimination of g0 ¼ @w=@x þ f; these five
relationships can be transformed into a system of four first order partial differential equations
which relate the four quantities Q; ’w ¼ @w=@t;M and ’f ¼ @f=@t: These quantities constitute the
elements of the state vector sðx; tÞ ¼ ½Q; ’w;M; ’f�T with the properties sðx; tÞ ¼ 0 for to0; as the
beam segment is initially quiescent, and sðx; tÞ-0 for t-N; as the energy supplied by the load is
dissipated as heat in the viscoelastic material of the beam and normally also in supports,
structures in contact, etc. outside the beam segment.
In terms of the Fourier transform #sðx;oÞ ¼

R
N

�N
sðx; tÞe�iot dt of the state vector sðx; tÞ; the

system of four first order partial differential equations can be transformed into that of four first
order ordinary differential equations

#s
0 ¼ R#s; ð1Þ

where the prime denotes partial differentiation with respect to x and

R ¼

0 iorA 0 0

ioc=EA 0 0 �1

1 0 0 iorI

0 0 io=EI 0

2
6664

3
7775 ð2Þ

is the system matrix. Here, c ¼ 2ð1þ nÞ=k; where k is a dimensionless quantity which depends on
the shape of the cross-section. According to beam theory, this quantity can be determined as
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Fig. 1. Angles f; g0; @w=@x; shear force Q; transverse velocity ’w; bending moment M and angular velocity ’f at a

general section x of the beam.
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k ¼ ½ðA=I2Þ
R
ðS2=W 2Þ dA��1; where the static moment S and, in general, the width W depend on

the vertical co-ordinate z from the centreline. For a circular cross-section, as in the experimental
part, this formula gives k ¼ 0:9:
The first and third of the scalar equations represented by Eq. (1) are the equations of motion in

translation and rotation, respectively. The second and third of these equations, which contain the
constitutive properties of the material, express how the deformations of the beam in shear and
bending, respectively, are related to the transverse force and the bending moment.
In what follows, it will be assumed that the material properties r;E;G and n are independent of

the co-ordinate x: Also, ‘‘the beam segment’’ will normally be referred to more briefly as ‘‘the
beam’’.

2.2. Transition matrix

The state at any section x of the beam is related to that at the fixed section x0 through

#sðx;oÞ ¼ Pðx;x0;oÞ#sðx0;oÞ; ð3Þ

where Pðx; x0;oÞ is the transition matrix. By Eqs. (1) and (3) this matrix can be determined from

P0 ¼ RP; Pðx0; x0;oÞ ¼ I; ð4Þ

where I is the identity matrix.
If the beam has piecewise constant cross-section, any transition matrix can be expressed as a

product of transition matrices for uniform beam segments. For the determination of the latter
transition matrices, the coupled problem (4) for the elements of P can be turned into the
uncoupled problem [4]

PIV þ 2aP00 � bP ¼ 0; Pðx0;x0;oÞ ¼ I; P0ðx0; x0;oÞ ¼ R; ð5a-cÞ

P00ðx0;x0;oÞ ¼ R2; P000ðx0; x0;oÞ ¼ R3; ð5d; eÞ

where

a ¼
ro2

2E
ð1þ cÞ; b ¼

rAo2

EI
1� c

rIo2

EA

� 	
ð6Þ

and use has been made of the independence of x of the matrix R:
Provided that a2 þ ba0; this problem has the solution

Pðx;x0;oÞ ¼ Aeg1ðx�x0Þ þ Beg2ðx�x0Þ þ Ce�g1ðx�x0Þ þDe�g2ðx�x0Þ ð7Þ

with

A ¼
R3 þ g1R

2 � g22R� g1g
2
2I

2g1ðg21 � g22Þ
; B ¼

�R3 � g2R
2 þ g21Rþ g21g2I

2g2ðg21 � g22Þ
; ð8a;bÞ

C ¼
�R3 þ g1R

2 þ g22R� g1g
2
2I

2g1ðg21 � g22Þ
; D ¼

R3 � g2R
2 � g21Rþ g21g2I

2g2ðg21 � g22Þ
: ð8c;dÞ
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Here, the quantities

g1 ¼ ½ðb þ a2Þ1=2 � a�1=2; g2 ¼ i½ðb þ a2Þ1=2 þ a�1=2 ð9Þ

define the two pairs of complex-valued eigenvalues g ¼ 7g1 and g ¼ 7g2 of the system matrix R:
In the two sections which follow, use will be made of equations which relate the states at N

measurement sections 1; 2;y;N to that at section 0. These equations, which are obtained by
substituting x ¼ x1; x ¼ x2;y; x ¼ xN into Eq. (3), can be expressed as

P10#s
0 ¼ #s

1; P20#s
0 ¼ #s

2;y;PN0#s
0 ¼ #s

N : ð10Þ

2.3. Estimation of state

The problem of estimation of state to be considered is: given the cross-sectional area AðxÞ; the
moment of inertia IðxÞ; the complex modulus EðoÞ; the complex Poisson ratio nðoÞ and the
density r; and independent measurements of nX4 state vector elements at sections 1 to N;
estimate the state #s

0 at section 0. It is assumed that at least one element is measured at each of
these sections so that 1pNpn: In particular, the section 0 may coincide with one of the
measurement sections 12N:
As a first step of the solution of this problem, n scalar equations with a measured element as the

right member are singled out from the 4N scalar equations represented by Eq. (10). These
equations can be written in matrix form as

Pc10
e11

Pc10
e12

Pc10
e13

Pc10
e14

Pc20
e21

Pc20
e22

Pc20
e23

Pc20
e24

^ ^ ^ ^

Pcn0
en1

Pcn0
en2

Pcn0
en3

Pcn0
en4

2
666664

3
777775

#s01

#s02

#s03

#s04

2
6664

3
7775 ¼

#sc1
e1

#sc2
e2

^

#scn
en

2
66664

3
77775 ð11Þ

or

M#s
0 ¼ #m; ð12Þ

where

Mjk ¼ P
cj0

ejk
; #mj ¼ #scj

ej
: ð13Þ

Here, M is a matrix with elements Mjk singled out from the transition matrices P10; P20;y;PN0;
and #m is a vector of measured elements #mj at the sections 1 to N of the beam (j ¼ 1; 2;y; n and
k ¼ 1; 2; 3; 4). Subscript ej ¼ 1; 2; 3; 4 defines the type of quantity ( #Q; #’w; #M or #’f; respectively) and
superscript cj ¼ 1; 2;y;N the section associated with #mj:
For n ¼ 4; #s0 can be determined uniquely from Eq. (12) as

#s
0 ¼ M�1 #m ð14Þ

provided that the determinant of M is not zero.
For n > 4; however, there is generally no exact solution of system (12), as the number

of equations is larger than the number of unknown elements of #s
0: In this case, an

approximate solution for #s
0; in the sense of least squares, can be determined by minimizing
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the loss function

eð#s0;E;ojÞ ¼ jjMðE;ojÞ#s
0 � #mðE;ojÞjj ð15Þ

with respect to #s
0; where double bars denote the Euclidean norm, defined by jj#qjj ¼ ð #q1j j2þ?þ

#qnj j2Þ1=2:
For each discrete angular frequency oj; the minimization of eð#s0;E;ojÞ is carried out by taking

#s
0 ¼ #s

0
LSðE;ojÞ ¼ MþðE;ojÞ #mðE;ojÞ; ð16Þ

where Mþ ¼ ðM
MÞ�1M
 is the Moore–Penrose pseudo-inverse matrix and M
 ¼ %M
T
is the

adjoint (conjugate and transpose) matrix of M: Here it has been assumed that the matrix M
M

can be inverted.

2.4. Identification of complex modulus

The problem of identification of complex modulus to be considered is: given the cross-sectional
area AðxÞ; the moment of inertia IðxÞ; the complex Poisson ratio nðoÞ and the density r; and
independent measurements of nX5 state vector elements at sections 1 to N; identify the complex
modulus EðoÞ of the material of the beam. It is assumed that at least one element is measured at
each section so that 2pNpn: Optionally, determine also the state #s

0 at section 0 from the same
measurements. Again, this section may coincide with one of the sections 1 to N: This is a natural
choice if the complex modulus is to be identified but not the state.
First, a non-parametric technique is used, that is, the complex modulus E is determined at each

angular frequency oj of interest for which measurements are available. Eq. (12) is valid, but now
with both #s

0 and E at each angular frequency oj as unknowns. For n ¼ 5; it should be possible, at
least in principle, to solve this non-linear system of equations with desired accuracy for each
frequency oj: For n > 5; however, there is generally no exact solution as the number of equations
is larger than the number of unknowns. In this case, an approximate solution for #s0 and E in the
sense of least squares can be determined by minimizing the loss function jjM#s

0 � #mjj with respect
to #s

0 and E: For each discrete angular frequency oj; this minimization involves two steps, the first
of which is repeated a sufficient number of times while carrying out the second. First,
minimization is carried out with respect to #s

0 for a given E by taking #s
0 as #s0LSðE;ojÞ according to

Eq. (16). Then, the loss function

enpðE;ojÞ ¼ jjMðE;ojÞ#s
0
LSðE;ojÞ � #mðE;ojÞjj ð17Þ

is minimized numerically with respect to E:
Secondly, a parametric technique is used, that is, the complex modulus E is a prescribed

function of angular frequency oj and of a parameter vector h ¼ ½y1; y2;y; ym�T; which is to be
determined. Eq. (12) is valid, but now with #s

0 at each angular frequency oj and h as unknowns. In
this case, an approximate solution for #s0 and h in the sense of least squares can be determined by
numerically minimizing the loss function

epðhÞ ¼
X
oj

jjMðh;ojÞ#s
0
LSðh;ojÞ � #mðh;ojÞjj ð18Þ

with respect to h: Here, the loss function has first been minimized at each angular frequency oj by
letting #s

0 ¼ #s
0
LSðh;ojÞ:
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Notice that if bending moments are derived from measured strains, as in the experimental part,
then #m depends on E and h as indicated in Eqs. (17) and (18), respectively. This makes the
minimization procedure slightly more cumbersome than if #m is independent of E as when, for
example, accelerations are measured.
In the experimental part, a parametric model consisting of two standard linear solids in parallel

was used with complex modulus [33]

EðoÞ ¼
MR

2

1þ iote1
1þ iots1

þ
1þ iote2
1þ iots2

� 	
ð19Þ

and parameter vector

h ¼ ½te1 ; ts1 ; te2 ; ts2 ;MR�T: ð20Þ

It should be noticed that the state at section 0 is obtained as #s0 ¼ #s
0
LS together with E when the

non-parametric identification technique is used and together with h when the parametric
identification technique is used. Once the state #s0 is known at x ¼ x0; the state at other sections x;
can be obtained by use of Eq. (3) as long as this does not lead to numerical difficulties.

3. Experimental tests

3.1. Experimental set-up and tests

Experimental tests were carried out with two beams, both with circular cross-section. One was
made of PMMA with density 1183 kg/m3. It had length 2000mm and diameter 13.0mm in its
central third, and 16.0mm in its two outer thirds. The other beam was made of PP with density
915 kg/m3. It had length 1800mm and constant diameter 16.6mm. See Fig. 2.
In preparatory tests, aimed at determining the complex Poisson ratio, the beams were subjected

to axial impacts at their right ends by a hand-held hammer. The hammer had a steel head with
length 20mm and diameter 10mm. In these tests, the beams were free to glide through the support
at their impacted ends.
In the main tests, aimed at estimation of states and identification of complex moduli, the beams

were subjected to lateral impacts near their left ends by a spherical steel ball. This ball was guided
by a tube and dropped from a height of 500mm as shown. It had diameter 25mm and mass 64 g.
The three supports were realized with a pair of 15mm wide clamps clad with 3mm thick rubber
plates.
Each beam was instrumented with strain gauges at eight sections 1–8 as shown in Fig. 2. The

strain gauges (TML GFLA-6-350-70-1L) were glued (Tokyo Sokki Kenkyujo Co., Ltd., Adhesive
CN) axially in pairs with one on the top and one on the bottom. In addition, the beams were
equipped with a pair of strain gauges of the same type, but directed along the circumference, at the
sides of section 7. Loctite 770 Polyolefin Primer (Cat. No. 77013) was used for PMMA and Aron
Poly Primer (Toagosei Chemical Industry Co., Ltd.) for PP.
In the preparatory axial impact tests, each pair of the strain gauges at section 7 was connected

to a bridge amplifier (Measurement Group 2210) in opposite branches, so that the outputs were
proportional to the sum of the strains of each pair, and therefore to the axial strain ex and the
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circumferential strain ej at the section. In the main lateral impact tests, the axial gauges of each
pair were connected to a bridge amplifier (Measurement Group 2210) in adjacent branches, so
that the output was proportional to the difference between the two strains, and therefore to the
bending moment M at the section. Shunt calibration was used, and the bridge amplifiers were
followed by aliasing filters (DIFA Measuring Systems, PDF) with cut-off frequency 7 kHz. The
filtered signals were recorded during three seconds by two synchronized four-channel digital
oscilloscopes (Nicolet Pro 20 and Pro 40) with sampling rate 20 kHz. At the end of the recording
interval, the signals were at the level of noise.
Ten axial impact tests were carried out for each beam, and the corresponding strain signals

from section 7 were recorded. In these preparatory tests, the temperature was 21.81C for PMMA
and 21.41C for PP. Similarly, two lateral impact tests were carried through for each beam, and the
corresponding strain signals from sections 1 to 8 were recorded. In these main tests, the
temperature was in the range 21.7–21.81C for PMMA and 21.4–21.61C for PP. At the prevailing
temperatures and within the range of frequencies considered, approximately 20Hz to 1 kHz, both
materials tested were anticipated to be in their glassy states.
The recorded strain signals were transferred to a computer where the measured signals were

digitally filtered against aliasing and re-sampled at 2.5 kHz by the function decimate of
MATLAB’s Signal Processing Toolbox, Version 4.1. A time interval of 2048 samples,
corresponding to approximately 0.82 s, was chosen for the analyses. At the beginning of this
interval, the tested beam was quiescent, and at the end, the strain signals had been reduced almost
to the level of noise. Therefore, the signals could be transformed to the frequency domain by the
FFT algorithm without use of window techniques. The frequency resolution was approximately
6.1Hz, and the highest frequency component was 1.25 kHz. The complete frequency spectra were
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Fig. 2. Positions of supports, spots of lateral impact and measurement sections 1–8 on beams made from PMMA

(upper) and PP (lower).
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used in all calculations, although results in the frequency domain were plotted with a resolution of
61Hz and a maximum frequency of 1 kHz. The results in the time domain were plotted with the
full resolution of 0.4ms, but the length of the time interval was restricted to 100ms.

3.2. Data analyses

The complex Poisson ratios nðoÞ for PMMA and PP were estimated by averaging the complex-
valued strain ratios �#ejðoÞ=#exðoÞ at section 7 from the 10 preparatory axial impact tests for each
material.
The data obtained from the two lateral impact tests, labelled 1 and 2, for each beam were

analyzed in three steps with regard to (i) parametric identification of the complex modulus, (ii)
non-parametric identification of complex modulus, and (iii) estimation of strain at section 5. The
four strain gauge configurations considered in these analyses, labelled cases A–D, are defined in
Table 1. They involve five, six, seven and eight sections, respectively.
In the first step, parametric identification of complex modulus, the data from test 1 and the

strain gauge configurations A–D for each beam were used in conjunction with the parametric
complex modulus (19) and the parameter vector (20). The numerical minimization of the loss
function (18) was based on frequencies in the interval 20Hz to 1 kHz. Parameters based on
previous tests with axially impacted rods [30] and the Constant Q model for low-loss solids [33]
were used as start values which are given in Table 2 for PMMA and in Table 3 for PP.
In the second step, non-parametric identification of complex modulus, the data from test 1 for

each beam and the strain gauge configurations A–D were used for minimization of the loss
function (17). Also this minimization was carried out for frequencies in the interval 20Hz to

Table 1

Strain gauge configuration cases

Case No. of strain gauges Sections of strain gauges used

A 5 1 2 — 4 — 6 — 8

B 6 1 2 — 4 — 6 7 8

C 7 1 2 3 4 — 6 7 8

D 8 1 2 3 4 5 6 7 8

Table 2

Parameters representing complex modulus of PMMA

Parameter Start value Result of identification

Case A Case B Case C Case D

te1 (s) 776:2� 10�6 2:595� 10�3 3:982� 10�3 5:123� 10�3 4:396� 10�3

ts1 (s) 609:9� 10�6 1:666� 10�3 2:602� 10�3 3:364� 10�3 2:954� 10�3

te2 (s) 29:86� 10�6 61:55� 10�6 367:8� 10�6 489:4� 10�6 450:9� 10�6

ts2 (s) 25:20� 10�6 46:94� 10�6 304:2� 10�6 392:8� 10�6 365:8� 10�6

MR (Pa) 4:711� 109 4:147� 109 4:017� 109 3:943� 109 4:029� 109
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1 kHz. The corresponding parametric complex modulus determined in the first step was used as
start value at each discrete frequency in this interval.
The minimization of loss functions was carried out with the function fmins of

MATLAB Version 5.2.1. This function is a local minimizer, which uses a Nelder–Meade
simplex search.
With the complex modulus known for the material of each beam, the third step, estimation of

strain at section 5, could be carried out by using Eq. (16). This was done on the basis of the non-
parametric and parametric complex moduli, the data from tests 1 and 2, and the strain gauge
configuration cases A–C. In order to assess and compare the quality of the estimated strains, the
validation functions

Vf ¼

P1 kHz
f¼20 Hz #e

5
estðf Þ � #e5measðf Þ

�� ��P1 kHz
f¼20 Hz #e5measðf Þ

�� �� ; Vt ¼

P0:1 s
t¼0 s e

5
estðtÞ � e5measðtÞ

�� ��P0:1 s
t¼0 s e5measðtÞ

�� �� ð21Þ

were evaluated.

4. Results

The complex Poisson ratios n ¼ n0 þ in00 versus frequency f ¼ o=2p; and the average values of
these ratios with respect to frequency, are shown for PMMA and PP in Fig. 3. In the range of
frequencies considered, the complex Poisson ratios were found to be almost real and constant.
Therefore, with good approximation, they were taken to be the average values of the real parts,
n ¼ 0:34 for PMMA and m ¼ 0:44 for PP.
The parametric and non-parametric complex moduli E ¼ E0 þ iE00 versus frequency f

from test 1 and from axial impact tests of a previous study [32] are shown for PMMA
in Fig. 4 and for PP in Fig. 5. The parameters obtained in cases A–D, and those obtained
previously and used here as start values, are presented in Table 2 for PMMA and in Table 3
for PP.
The estimated and measured strains at beam section 5 for strain gauge configuration cases A

and B are shown in Figs. 6–9. For the estimated strains in Figs. 6 and 7, use was made of the non-
parametric complex moduli of the corresponding cases A and B. For those in Figs. 8 and 9, use

Table 3

Parameters representing complex modulus of PP

Parameter Start value Result of identification

Case A Case B Case C Case D

te1 (s) 370:4� 10�6 2:409� 10�3 1:270� 10�3 1:149� 10�3 765:2� 10�6

ts1 (s) 283:4� 10�6 1:936� 10�3 1:059� 10�3 903:7� 10�6 504:8� 10�6

te2 (s) 39:87� 10�6 370:1� 10�6 424:9� 10�6 327:2� 10�6 95:68� 10�6

ts2 (s) 25:39� 10�6 247:8� 10�6 292:4� 10�6 232:9� 10�6 75:53� 10�6

MR (Pa) 2:389� 109 2:150� 109 2:200� 109 2:194� 109 2:231� 109
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was made of the parametric moduli of the corresponding cases A and B. All estimated strains
shown are based on data from test 1, which means that the complex moduli were identified and
the strains were estimated from the same data.
The condition number condðMÞ versus frequency f and position x0 of the section 0 is shown in

Fig. 10 for case A. The result is based on the parametric complex moduli according to Tables 2
and 3.
The values of the validation functions Vf and Vt are given in Table 4 for PMMA and in Table 5

for PP. The estimated strains used were based on the non-parametric and parametric complex
moduli, cases A–C, and data from tests 1 and 2.
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Fig. 3. The complex Poisson ratio n ¼ n0 þ in00 versus frequency f for PMMA (a) and PP (b) on the basis of 10

preparatory axial impact tests (solid curves) and average values with respect to frequency (thin lines).
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Fig. 4. Complex modulus E ¼ E0 þ iE00 versus frequency f for PMMA. Parametric (smooth curves) and non-

parametric (irregular curves) moduli from test 1 and strain gauge configuration cases A–D (solid curves) and from

axially impacted rod (dotted curves) are represented in Figs. 4(a)–(d), respectively.
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Fig. 6. Strain #ej j and e versus frequency f and time t; respectively, at section 5 of PMMA beam. Comparison of

measured strain (dotted curves) and strain estimated with use of non-parametric complex modulus (solid curves). Data

from the same test 1 and the same strain gauge configuration case A (Figs. 6(a) and (b)) or B (Figs. 6(c) and (d)) for

material identification and state estimation.
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Fig. 7. Strain #ej j and e versus frequency f and time t; respectively, at section 5 of PP beam. Comparison of measured

strain (dotted curves) and strain estimated with use of non-parametric complex modulus (solid curves). Data from the

same test 1 and the same strain gauge configuration case A (Figs. 7(a) and (b)) or B (Figs. 7(c) and (d)) for material

identification and state estimation.
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Fig. 8. Strain #ej j and e versus frequency f and time t; respectively, at section 5 of PMMA beam. Comparison of

measured strain (dotted curves) and strain estimated with use of parametric complex modulus (solid curves). Data from

the same test 1 and the same strain gauge configuration case A (Figs. 8(a) and (b)) or B (Figs. 8(c) and (d)) for material

identification and state estimation.
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5. Discussion

It has been shown how the state vector s at an arbitrary section 0 of an unloaded segment of a
viscoelastic beam can be estimated on the basis of nX4 independent measurements at N beam
sections, 1 to N: Similarly, it has been shown how the complex modulus E of the beam material
can be estimated on the basis of nX5 such measurements. The elements of the state vector are
shear force Q; transverse velocity ’w; bending moment M and angular velocity ’f; and the
measurements concern quantities, such as strains and accelerations, from which such elements can
be obtained at the measurement sections.
In addition to the complex modulus, an isotropic viscoelastic material is characterized also by

the complex Poisson ratio n; which has been considered to be known, both in the estimation of
state and in the identification of complex modulus. Experimentally, the complex Poisson ratios
were estimated from preparatory axial impact tests, and the estimation of state and the
identification of complex moduli were based on strains measured at N ¼ n ¼ 5; 6; 7 and 8 sections,
cases A–D, respectively. As the number of independent measurements is at least five in these cases,
it was possible to estimate state and identify complex modulus on the basis of data from the same
test.
A prerequisite for the validity of the procedures used, and for meaningful definitions of the

complex-valued material functions concerned, is that the materials tested respond linearly as
assumed. In the tests carried out, linearity was anticipated as the maximum levels of strains
measured were lower than those in previous axial impact tests [30], where the two materials were
found to respond linearly. In those tests, close agreement was obtained between the complex
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Fig. 9. Strain #ej j and e versus frequency f and time t; respectively, at section 5 of PP beam. Comparison of measured

strain (dotted curves) and strain estimated with use of parametric complex modulus (solid curves). Data from the same

test 1 and the same strain gauge configuration case A (Figs. 9(a) and (b)) or B (Figs. 9(c) and (d)) for material

identification and state estimation.
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configuration case A for (a) PMMA and (b) PP. Parametric complex moduli according to Tables 2 and 3.

Table 4

Validation functions for beam made of PMMA

Case Identification Validation function Vf Validation function Vt

Test 1 Test 2 Test 1 Test 2

A Non-parametric 0.0768 0.0820 0.154 0.166

B Non-parametric 0.0578 0.0716 0.138 0.152

C Non-parametric 0.0507 0.0709 0.129 0.142

A Parametric 0.0428 0.0633 0.124 0.142

B Parametric 0.0380 0.0487 0.129 0.143

C Parametric 0.0331 0.0500 0.127 0.142
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moduli of each material identified from tests using (i) relatively light pendulum excitation and (ii)
relatively heavy air-gun excitation.
The functions g1ðoÞ and g2ðoÞ defined in Eq. (9) can be interpreted by letting the state vector

have the form #s ¼ #s

 expðgxÞ: Then, substitution into Eq. (1) gives the eigenvalue problem R#s


 ¼
g#s
; which has the solutions g ¼ 7g1 and g ¼ 7g2: Thus, the real and imaginary parts of g1ðoÞ and
g2ðoÞ have the interpretations of damping coefficients and wave numbers, respectively.
For low angular frequencies oj jooo0 ¼ c0j j=R; where c0 ¼ ðE=rÞ1=2 is a complex wave

speed and R ¼ ðI=AÞ1=2 is the radius of inertia of the cross-section, Eq. (9) can be approximated
by g1 ¼ ðo=c0RÞ1=2 and g2 ¼ ig1: These low-frequency approximations correspond to the limiting
case of the Euler–Bernoulli beam. Introducing E ¼ Ej jexpðidÞ; where d ¼ tan�1ðE00=E0Þ is the loss
angle of the viscoelastic material, one obtains g1 ¼ 2pð1=l2 � i=l1Þ and g2 ¼ 2pð1=l1 þ i=l2Þ
with l1 ¼ 2pð c0j jR=oÞ1=2ð4=dÞb2pRð4=dÞ and l2 ¼ 2pð c0j jR=oÞ1=2b2pR: In terms of the
frequency f ¼ o=2p and the diameter D of a beam with circular cross-section, as used in
the experimental part, there are the corresponding relations fj joof0 ¼ c0j j=ðpD=2Þ;
l1 ¼ ð c0j jðpD=2Þ=f Þ1=2ð4=dÞbðpD=2Þð4=dÞ; and l2 ¼ ð c0j jðpD=2Þ=f Þ1=2bpD=2: For a low-loss
material, with d51; it follows that l1bl2: For such a material at the low frequencies considered,
g1 is associated with longer wavelength l1 and higher decay coefficient 2p=l2; whereas g2 is
associated with shorter wavelength l2 and lower decay coefficient 2p=l1: In the elastic limit d-0;
one obtains l1-N: In this limit, g1-2p=l2 is real and represents non-propagating (evanescent)
modes, whereas g2-2pi=l2 is imaginary and represents propagating harmonic waves.
In the experimental tests, the highest frequency considered was f ¼ 1 kHz. For the beam made

of PMMA, this frequency corresponds to the wavelength l2 ¼ 0:207m in the central part with
diameter D ¼ 13:0mm and l2=0.229m in the outer parts with diameter D ¼ 16:0mm. For the
beam made of PP, with constant diameter 16.6mm, it corresponds to the wavelength
l2 ¼ 0:211m. This is in accord with the low-frequency approximations made above, which
means that the experimental tests were carried out in a regime where Euler–Bernoulli theory is
accurate and the complex Poisson ratio has little importance. In terms of the system matrix R

given by Eq. (2), this means that the elements R21 ¼ ioc=EA; related to shear deformation, and
R34 ¼ iorI ; related to rotary inertia, are negligible (in Euler–Bernoulli theory they are zero).
For other combinations of materials, geometrical dimensions, and methods of excitation,

frequencies corresponding to wavelengths comparable to the diameter of the beam may well be

Table 5

Validation functions for beam made of PP

Case Identification Validation function Vf Validation function Vt

Test 1 Test 2 Test 1 Test 2

A Non-parametric 0.1190 0.1310 0.325 0.322

B Non-parametric 0.0644 0.0702 0.194 0.187

C Non-parametric 0.0610 0.0746 0.191 0.185

A Parametric 0.0611 0.0852 0.193 0.200

B Parametric 0.0554 0.0760 0.187 0.194

C Parametric 0.0507 0.0804 0.187 0.196
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excited. Under such conditions, shear deformation and rotary inertia are significant which
necessitates the use of Timoshenko theory. Furthermore, it would be conceivable to identify the
complex modulus and the complex Poisson ratio (or the complex shear modulus) using a similar
procedure as here, that is, to completely identify an isotropic linearly viscoelastic material on the
basis of a lateral impact test alone.
When the condition number of the matrix M is high, the sensitivity of the estimated state and

the identified complex modulus to measurement errors and numerical errors may be high. Such
situations are related to the transition matrices P10;P20;y;PN0; which determine the elements of
M: It can be seen in Fig. 10, for strain gauge configuration A, that the condition number increases
at high frequencies and when the position of the evaluation section is increasingly off-centre. This
is in accord with the previous study [4], which considered the problem of state estimation for an
elastic beam on the basis of independent measurements of strains or accelerations at four
equidistant sections. In that study, high condition numbers were obtained also at discrete
frequencies which made the distance between adjacent measurement sections equal to an integral
multiple of a half wavelength. That problem was alleviated here by distributing the measurement
sections 1 to N non-uniformly, and by making use of a larger number of independent
measurements than necessary, that is, by introducing redundancy (n > 4 for the estimation of state
and n > 5 for the identification of complex modulus). Through the non-uniform distribution of
measurement sections, it is unlikely that several pairs of adjacent sections would be at critical
distances simultaneously within the range of frequencies of interest, and through the redundancy
it may not be serious if one pair of measurement sections would be at a critical distance.
Figs. 4 and 5 show that, for both materials tested and in the frequency range 20Hz to 1 kHz,

there is good agreement between parametric and non-parametric results for the real part E0 and
fair agreement between such results for the imaginary part E00 of the complex modulus E:
Similarly, for both materials tested and in the frequency range 200Hz to 1 kHz, there is good
agreement for the real part E0 and fair agreement for the imaginary part E00 between results
obtained from the lateral impact tests of this study and from the axial impact tests of the previous
study. It is notable, that there are rather small differences between the cases A–D, which means
that there was little benefit in using more than five measurement sections. For cases A–C, this is
supported by the values of validation functions shown in Tables 4 and 5.
The relatively large and irregular variation of the imaginary part E00 of the non-parametric

modulus of each material, identified from the lateral impact tests here as well as from the previous
axial impact tests, appears to be due to the sensitivity of this parameter to the number and
positions of the strain gauges, and also to other factors such as measurement errors. It can be seen
from Figs. 4 and 5 that there are both differences and similarities in the variations of E00 identified
with use of the strain gauge configurations A–D. An explanation of this circumstance is suggested
by Table 1, which shows that while all of these configurations make use of different numbers of
strain gauges, those at sections 1, 2, 4 and 8 are always the same.
The disagreement between the parametric complex moduli from the lateral and the axial impact

tests at the lowest frequencies, 20–200Hz, is due to the fact that they were based on different
frequency intervals, namely, 20Hz to 1 kHz and 0Hz to 10 kHz, respectively. On this basis, the
former results are believed to be the most accurate at low frequencies. One reason why more
useful results were obtained below 1 kHz from the lateral impact tests than from the axial ones
may be the inverse dependence of the wavelength of flexural waves on the square root of
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frequency, which implies that the wavelength increases relatively slowly when the frequency
decreases.
Figs. 6 and 7 show that, in the frequency domain (20Hz–1 kHz) as well as in the time domain

(0–100ms), there is excellent agreement for PMMA and good agreement for PP between (i) the
strain at section 5 estimated using the non-parametric complex modulus and (ii) the strain
measured at the same section. This agreement appears to be slightly better in case B than in case
A. The results of cases C and D are not shown as they differed little from case B. Thus, there was
little benefit in using more than six measurement sections as indicated also by the values of the
validation functions in Tables 4 and 5. It should be noted that data from the same test and the
same cases were used for identification of complex modulus and estimation of state.
Figs. 8 and 9 show that, in the frequency domain (20Hz–1 kHz) as well as in the time

domain (0–100ms), there is excellent agreement for both PMMA and PP between (i) the strain at
section 5 estimated on the basis of the parametric complex modulus and (ii) the strain measured at
the same section. Again, there was little benefit in using more than six measurement sections as
indicated also by the values of the validation functions in Tables 4 and 5. Also here, data from the
same test and the same cases were used for identification of complex modulus and estimation of
state.
The methods of estimation of state and identification of complex modulus of this paper are

based on the use of transition matrices which relate state vectors (with elements Q; ’w; M and ’f) at
the two ends of a beam element. As an alternative, it would be possible to make use of
corresponding dynamic stiffness matrices, which relate generalized forces (Q and M) to
generalized velocities ( ’w and ’f) at the two ends of the same beam element. This approach, which
would result in a system Z#v ¼ #F; where Z is the dynamic stiffness matrix, #v is the vector of
generalized nodal velocities, and #F is the vector of generalized nodal forces, has been discussed in
Ref. [4]. Although the uses of transition matrices and dynamic stiffness matrices are equivalent, an
advantage of the approach used here is that the state vector #s

0; and the vector #m; with the
measured quantities, appear explicitly in the system M#s

0 ¼ #m:
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