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Abstract

The main aim of this study is an analysis of sound radiation of some clamped–free and free–clamped
annular plates. The plates are embedded in some infinite perfectly rigid baffles and vibrate with the free-
field condition satisfied. The Kirchhoff–Love linear theory of a perfectly elastic plate is used to solve the
plates’ equations of motion. The sound pressure at the plates’ surfaces is expressed by its Hankel transform.
The closed-path integral technique known from the literature and the stationary-phase method are used to
find the standardized active and reactive sound power of an individual mode in the form of some high-
frequency asymptotic formulae useful for some highly efficient engineering computations. Their non-
oscillating and oscillating parts have been separated. It is assumed that the vibration and sound radiation
are axisymmetric and time harmonic. Low fluid loading is also assumed. The complex sound power of an
individual mode forms the basis for computing the total sound power of some excited and damped
vibrations in the fluid. The total sound power is not discussed in this study.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of sound radiation of an acoustic system consisting of flat plates embedded in
baffles is very important for several industrial applications, e.g., some reducing device systems in
petroleum industry.
Exact expressions for the sound power were reported only for pistons of different shape

embedded in baffles (cf., Refs. [1–4]). An exact analysis, in case of more complex sound sources
such as plates, is very difficult or even impossible. Therefore, there are few studies dealing with
approximate expressions for the sound power radiated by flat plates embedded in baffles. The
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problem of sound radiation of a circular plate embedded in an infinite or finite baffle was solved
by Ginsberg et al. [5]. A discussion on the vibrations of an elastically supported rectangular plate
together with its directivity pattern were given by Lomas and Hayek [6] and the integral
formulations for the radiation efficiency of the plate were presented by Berry et al. [7]. The
equivalent area method was used to estimate the radiation efficiency of a clamped circular plate by
Czarnecki et al. [8]. A comprehensive approach to find the radiation efficiency of a spinning
annular disk was proposed by Lee and Singh [9]. A closed-path integral technique was
used to derive the radiation efficiency of a clamped circular plate by Levine and Leppington [10].
The technique was applied by Rdzanek to provide some precise estimates of the sound
power of an individual mode valid for the high frequencies [11]. The technique was further
developed by Rdzanek et al. [12] to deal with the magnitude in the case of a simply supported
circular plate and Rdzanek Jr. and Engel [13] for a clamped annular plate. The method of finding
some of the high-frequency asymptotics for the sound power radiated by a clamped–free annular
plate was signalled in Ref. [14]. The authors limited their considerations to the active sound
power.
So far, to the best of the present author’s knowledge, there have been no results reported on the

high-frequency asymptotics of the active sound power of a free–clamped annular plate or on the
reactive sound power in the case of clamped–free and free–clamped annular plates. Moreover, no
comparative analysis of the sound power radiated by the clamped–free or free–clamped plates
with that radiated by a clamped annular plate in the high frequency has been presented.
Therefore, the main aim of this paper is to fill this literature gap by investigating the high-
frequency asymptotics for the complex sound power of an individual in vacuo mode of the two
different annular plates. One plate is clamped on the inside and completely free on the outside,
and the other completely free on the inside and clamped on the outside. Further they will be
referred to as the clamped–free plate and the free–clamped plate, respectively. Low fluid loading is
assumed. A continuation of the closed-path integral technique is presented to deal with the sound
radiation of both plates. First, the magnitudes are expressed using Hankel’s transform to make
possible their further integration. Based on the technique, asymptotic formulations for the active
and reactive sound power radiated by the plates are derived whose non-oscillating and oscillating
parts have been separated. The asymptotics are valid for the high frequencies, and make possible
some fast engineering computations. Since the sound power of an individual mode makes the
main contribution to the total sound power of the excited plate coupled with fluid, it can be used
as a basis to derive the total sound power, not to be discussed herein. The total sound power of a
clamped–clamped annular plate was given in Ref. [15].

2. Analysis assumptions

A thin annular plate is embedded in a perfectly rigid and infinite baffle. Two different
configurations of the plate’s boundaries are considered: (a) the internal edge is clamped and the
external edge is free, (b) the opposite situation, further referred to as the clamped–free
configuration and the free–clamped configuration, respectively. Based on the Kirchhoff–Love
theory of a perfectly elastic plate, a modal analysis of its free vibration is carried out. It is assumed
that all the configurations of the plate are axisymmetric, i.e., the plate’s material is homogeneous,
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the plate’s boundary conditions and the plate’s geometric dimensions do not depend on the angle
variable and the plate is excited by an axisymmetric force. Therefore, all the plate’s magnitudes,
as, e.g., the nth mode shape or a function characterizing the sound radiation associated with the
nth mode, will be dependent on the radial variable only. The Kirchhoff–Love theory describes a
linear model of the plate and therefore, in order to correctly express the plate’s responses to some
band-limited excitations, it will be enough to consider the mono-chromatic wave generated by the
plate. Consequently, most of the magnitudes will be written in the amplitude form. Using the
Kirchhoff–Love linear theory implies that the plate’s thickness h and the amplitude of its
transverse deflection ZðrÞ are small when compared with the remaining geometric dimensions of
the plate such as the radii of its inner and outer edges, rin and rout; respectively. The nth mode
shape can be written in the form of vnðrÞ ¼ �ionZnðrÞ for some time-harmonic and axisymmetric
processes, where vnðr; tÞ ¼ vnðrÞ expð�iotÞ and amplitude ZnðrÞ is the solution of the homogeneous
equation of the plate’s motion written as

ðk�4
n r4

r � 1ÞZnðrÞ ¼ 0: ð1Þ

The following denotations are used: rA½rin; rout� is the distance of the plate’s point from its center,
n ¼ 0; 1; 2;y is the plate’s individual mode number, k2

n ¼ on

ffiffiffiffiffiffiffiffiffiffiffi
Rh=B

p
is the nth structural

wavenumber raised to the second power, on is the nth eigenfrequency, R; E are the density and
the Young’s modulus of the plate, respectively, B ¼ Eh3=½12ð1� n2Þ� is the plate’s bending
stiffness, n is its Poisson’s ratio, r4

r ¼ ð@2=@r2 þ r�1@=@rÞ2: The solution of Eq. (1) is predicted in
the form (cf., Refs. [13,14,16–18])

ZnðrÞ ¼ An½J0ðknrÞ þ BnI0ðknrÞ � CnN0ðknrÞ � DnK0ðknrÞ�; ð2Þ

where An;Bn;Cn;Dn are the constants given in Ref. [19], J0; I0;N0;K0 are the Bessel’s, modified
Bessel’s, Neumann’s and McDonald’s functions of zero order, respectively. The plate’s boundary
configurations imply that the value of solution ZnðrÞ and its first order radial derivative are equal
to zero for the clamped edge, thus

ZnðrcÞ ¼ 0; dZnðrÞ=drjr¼rc
; ð3Þ

where rc ¼ rin or rc ¼ rout for the boundary configurations (a) and (b), respectively. The bending
moment mr and the transversely acting force qr are equal to zero for the free edge

mrðrf Þ ¼ �B
d2ZnðrÞ
dr2

þ ðn=rÞ
dZnðrÞ
dr

� �
r¼rf

¼ 0;

qrðrf Þ ¼ �B
d

dr

1

r

d

dr
r
dZnðrÞ
dr

� �� �� �
r¼rf

¼ 0; ð4a;bÞ

where rf ¼ rout or rf ¼ rin for the boundary configurations (a) and (b), respectively (cf., Refs.
[9,12–14,17,18]).
Inserting Eq. (2) into the boundary conditions (3) and (4) it can be deduced that for some

clamped–free or free–clamped annular plates

Cn ¼
rf Sðknrf Þ þ rcSðknrcÞ � 2nnI1ðknrf ÞJ1ðknrf Þ

rf Tðknrf Þ þ rcTðknrcÞ � 2nnI1ðknrf ÞN1ðknrf Þ
; ð5Þ
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where nn ¼ ð1� nÞ=kn; and

SðxÞ ¼ J1ðxÞI0ðxÞ þ J0ðxÞI1ðxÞ; TðxÞ ¼ N1ðxÞI0ðxÞ þN0ðxÞI1ðxÞ: ð6Þ

Deriving constant Cn together with the frequency equation of the plate and the corresponding
eigenvalues were presented in detail in Ref. [19]. In this paper the nth eigenvalue is denoted by knrc

for some clamped–free plates or by knrf for some free–clamped plates (cf., Refs. [9,13,17–19]).
Constant An can be derived from the standardization condition (cf., Ref. [20])

A�2
n ¼

2

r2f � r2c
r2f G2

0ðknrf Þ � r2cG2
0 � 2nnG1ðknrf Þ rf G0ðknrf Þ þ

n
kn

G1ðknrf Þ
� �� �

; ð7Þ

where G0ðuÞ ¼ J0ðuÞ � CnN0ðuÞ and G1ðuÞ ¼ J1ðuÞ � CnN1ðuÞ:
The values of the constants Bn and Dn are not necessary for the further analysis of the

standardized sound power and they both have been presented in Refs. [14,19].

3. Integral formulae

The impedance approach to derive the plate’s sound power requires that the nth mode
shape vnðrÞ and the sound pressure pnðrÞ of the mode be known. The mode shape defined
by vnðrÞ ¼ �ionZnðrÞ and Eq. (2) is given in the previous section. The sound pressure pnðrÞ has
to be derived to make possible the use of the definition for the sound power of the mode (cf.,
Refs. [21,22])

Pn ¼
1

2

Z
S

pnvnn dS; ð8Þ

where S is a surface that encloses the plate near its surface, vnn ¼ ionZn is the nth conjugate mode
shape and i ¼

ffiffiffiffiffiffiffi
�1

p
:

3.1. Sound radiation

It is not possible to compute the sound power immediately from Eq. (8) using the impedance
approach and therefore it is necessary to express the sound power in its Hankel representation
(cf., Refs. [10,12,13]). For this purpose, the sound pressure at the plate’s surface pnðrÞ associated
with nth mode will first be expressed by the Hankel transform as

pnðrÞ ¼ kR0c
Z þN

0

WnðtÞJ0ðtrÞ
t dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � t2

p ; ð9Þ

where R0 is the density of the surrounding air column, c is the sound velocity in air, k ¼ 2p=l is the
acoustic wavenumber, l is the radiated wavelength and WnðtÞ is a function characterizing sound
radiation associated with the nth mode defined by (cf., Refs. [12,13])

WnðtÞ ¼
Z rf

rc

vnðrÞJ0ðsrÞr dr; ð10Þ

where s is the complex wavenumber (cf., Refs. [23,24]). For some further analysis of the sound
radiation using the impedance approach it is necessary to express integral (10) in its elementary
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form by substituting k sin W for s and by denoting u ¼ k sin W to give

WnðuÞ ¼ ion2AnwnðuÞ; ð11Þ

where

wnðuÞ ¼
k2

n

k4
n � u4

½knrf G1ðknrf ÞJ0ðrf uÞ � rf uG0ðknrf ÞJ1ðrf uÞ

� knrcG1ðknrcÞJ0ðrcuÞ þ rcuG0ðknrcÞJ1ðrcuÞ�

�
1

k2
n þ u2

fknrf G1ðknrf ÞJ0ðrf uÞ � u½rf G0ðknrf Þ � nnG1ðknrf Þ�J1ðrf uÞ�g;

ð12Þ

which is valid for both boundary configurations. Functionals G0ðxÞ ¼ J0ðxÞ � CnN0ðxÞ and
G1ðxÞ ¼ J1ðxÞ � CnN1ðxÞ; for any real xAfknrf ; knrcg; may be convenient for describing vibration
and sound radiation of some planar annular plates (cf., Refs. [13,14,20]).

3.2. The sound power

The sound power of an individual in vacuo mode is analyzed below for some axisymmetric
vibrations. The sound power is defined by (cf., Refs. [10–14])

Pn ¼ pR0ck2

Z p=2�iN

0

Wnðk sin WÞWn

n ðk sin WÞ sin W dW; ð13Þ

where W ¼ W0 þ iW00AC; W0; W00AR: The integration path used in Eq. (13) was shown in Ref. [12].
The reference sound power of the nth mode, obtained for k-N;

PðNÞ
n ¼ ðp=2ÞR0conðr2out � r2inÞ ð14Þ

is used to standardize Eq. (13) as

Pn ¼ Pa;n � iPr;n ¼
Pn

PðNÞ
n

¼ 8A2
n

k2r4in
r2out � r2in

Z p=2�iN

0

w2
nðk sin WÞ sin W dW; ð15Þ

where the symbols Pa;n and Pr;n denote the standardized active and reactive sound power,
respectively.

4. Asymptotics for the high frequencies

A number of acoustic systems are excited by frequencies much lower than their lowest
eigenfrequencies. The values of eigenfrequencies of some planar plates are relatively low (cf.,
Ref. [18]) and the systems can also vibrate within their high frequency ranges (cf., Refs.
[10,12–14]).
By substituting x for sin W0 and 0 for W00; Eq. (12) assumes the form of

wnðkxÞ ¼
d2n

kr2in

xnðxÞ

d4n � x4
�

1

d2n

znðxÞ

d2n þ x2

" #
; ð16Þ
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where dn ¼ kn=k and the following denotations are used:

xnðxÞ ¼ dn½rf G1ðknrf ÞJ0ðkrf xÞ � rcG1ðknrcÞJ0ðkrcxÞ�

� x½rf G0ðknrf ÞJ1ðkrf xÞ � rcG0ðknrcÞJ1ðkrcxÞ�; ð17aÞ

znðxÞ ¼ dnrf G1ðknrf ÞJ0ðkrf xÞ � x½rf G0ðknrf Þ � nnG1ðknrf Þ�J1ðkrf xÞ: ð17bÞ

Integral (15) can be transformed to

Pa;n ¼
8A2

nd
4
n

r2f � r2c

Z 1

0

xnðxÞ

d4n � x4
�

1

d2n

znðxÞ

d2n þ x2

" #2
x dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ð18Þ

for the active sound power, and

Pr;n ¼
8A2

nd
4
n

r2f � r2c

Z
N

1

xnðxÞ

d4n � x4
�

1

d2n

znðxÞ

d2n þ x2

" #2
x dxffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ð19Þ

for the reactive sound power.

4.1. The clamped–free boundary conditions

This subsection focuses on some results obtained from integrals (18) and (19) valid for an
annular plate clamped on the inside and completely free on the outside. The method described in
detail in Ref. [20] has been applied to this situation and after considerable algebraic manipulation
it was found that, for the clamped–free boundary conditions, the non-oscillating active sound
power for an individual in vacuo mode is

%Pa;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2n

q

þ
qn

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2n

q
0
B@

1
CA 1þ a2

nðknrf Þ � 2
K2nðknrf Þ
1� n

� d2
n ½1þ a2

nðknrcÞ�
� �

; ð20Þ

where the following denotations and functionals, in terms of uAR; are introduced:

anðuÞ ¼ G1ðuÞ=G0ðuÞ; dn ¼ rcG0ðknrcÞ=rf G0ðknrf Þ; KnðuÞ ¼ ðð1� nÞ=uÞanðuÞ;

ð21aÞ

q�1
n ¼

2A2
nr2f

r2f � r2c
G2

0ðknrf Þ

" #�1

¼ 1� d2
n � 2Knðknrf Þ 1þ

n
knrf

anðknrf Þ
� �

ð21bÞ
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and the oscillating active sound power is

*Pa;n ¼
2qn

k
ffiffiffiffiffiffi
pk

p d4n
ð1þ d2nÞ

2
ðb2

0 � b21Þ
cos wc

rc

ffiffiffiffi
rc

p þ 2b0b1
sin wc

rc

ffiffiffiffi
rc

p þ ðh20 � h2
1Þ
cos wf

rf
ffiffiffiffi
rf

p
(

þ 2h0h1
sin wf

rf
ffiffiffiffi
rf

p þ
2

ffiffiffi
2

p
ffiffiffiffiffiffiffiffi
rf rc

p ðh1b0 � h0b1Þ
cos wcf ;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf � rc
p � ðh1b1 þ h0b0Þ

sin wcf ;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf � rc

p
"

þ ðh1b1 � h0b0Þ
cos wcf ;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf þ rc

p � ðh1b0 þ h0b1Þ
sin wcf ;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf þ rc

p
#)

; ð22Þ

where

wc ¼ 2krc þ p=4; wf ¼ 2krf þ p=4;

wcf ;� ¼ ðrf � rcÞk þ p=4; wcf ;þ ¼ ðrf þ rcÞk þ p=4; ð23aÞ

b0 ¼
dn

ð1� d2nÞ
; b1 ¼ dnanðknrcÞb0; h0 ¼ d2n

1

ð1� d2nÞ
� Knðknrf Þ

" #
;

h1 ¼
anðknrf Þ

dnð1� d2nÞ
: ð23bÞ

The active sound power is the sum of the two parts together with the approximation error (cf.,
Ref. [12])

Pa;n ¼ %Pa;n þ *Pa;n þ O½d4n=ðkrinÞ
3=2�: ð24Þ

The reactive sound power is computed differently, as described in detail in Ref. [20]. The
method used results in the non-oscillating reactive sound power in the form of

%Pr;n ¼
qn

pk

acf ;1

ð1� d4nÞ
þ

acf ;2 arcsin dn

2dnð1� d2nÞ
3=2

þ
acf ;3 arcsinh dn

2dnð1þ d2nÞ
3=2

" #
; ð25Þ

where

acf ;1 ¼ d2n
a2nðknrf Þ

rf

þ d2
n

a2
nðknrcÞ

rc

� �
þ

1

rf

þ
d2

n

rc

� �
� 2

1� d2n
rf

Knðknrf Þ½1� Knðknrf Þ�; ð26aÞ

acf ;2 ¼
a2

nðknrf Þ
rf

� d2
n

3� 4d2n
rc

a2nðknrcÞ þ
3� 2d2n

rf

� d2
n

1� 2d2n
rc

� 4
1� d2n

rf

Knðknrf Þ; ð26bÞ

acf ;3 ¼ d2
n

3þ 4d2n
rc

a2
nðknrcÞ �

a2
nðknrf Þ

rf

þ
3þ 2d2n

rf

� d2
n

1þ 2d2n
rc

� 4
Knðknrf Þ

rf

½1� Knðknrf Þ þ 1þ d2n�: ð26cÞ
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The oscillating reactive sound power has been computed in an analogous way as in the case of
the oscillating part of the active sound power to give (cf., Ref. [20])

*Pr;n ¼ �
2qn

k
ffiffiffiffiffiffi
pk

p d4n
ð1þ d2nÞ

2
ðb2

0 � b21Þ
sin wc

rc

ffiffiffiffi
rc

p � 2b0b1
cos wc

rc

ffiffiffiffi
rc

p þ ðh20 � h2
1Þ
sin wf

rf
ffiffiffiffi
rf

p
"(

�2h0h1
cos wf

rf
ffiffiffiffi
rf

p
#
þ

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffi
rf rc

p ðh1b0 � h0b1Þ
sin wcf ;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf � rc
p þ ðh1b1 þ h0b0Þ

cos wcf ;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rf � rc

p
"

þðh1b1 � h0b0Þ
sin wcf ;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf þ rc

p þ ðh1b0 þ h0b1Þ
cos wcf ;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rf þ rc

p
#)

: ð27Þ

The reactive sound power is the sum of the two parts together with the approximation error (cf.,
Eq. (24) valid for the active sound power or Ref. [12])

Pr;n ¼ %Pr;n þ *Pr;n þ O½d4n=ðkrinÞ
3=2�: ð28Þ

4.2. The free–clamped boundary conditions

A procedure analogous to that used earlier leads to the following asymptotics for the non-
oscillating active sound power for an individual in vacuo mode of an annular plate completely free
on the inside and clamped on the outside

%Pa;n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2n

q

þ
qn

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2n

q
0
B@

1
CA 1þ a2

nðknrcÞ � d2
n 1þ a2

nðknrf Þ � 2
K2nðknrf Þ
ð1� nÞ

� �� �
ð29Þ

and for the oscillating active sound power

*Pa;n ¼
2qn

k
ffiffiffiffiffiffi
pk

p d4n
ð1þ d2nÞ

2
ðb2

0 � b21Þ
cos wc

rc

ffiffiffiffi
rc

p þ 2b0b1
sin wc

rc

ffiffiffiffi
rc

p þ ðh20 � h2
1Þ
cos wf

rf
ffiffiffiffi
rf

p
(

þ 2h0h1
sin wf

rf
ffiffiffiffi
rf

p �
2

ffiffiffi
2

p
rcrf

ðh1b0 � h0b1Þ
cos wfc;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc � rf
p þ ðh1b1 þ h0b0Þ

sin wfc;�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rc � rf

p
"

� ðh1b1 � h0b0Þ
cos wfc;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc þ rf

p þ ðh1b0 þ h0b1Þ
sin wfc;þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rc þ rf

p
#)

; ð30Þ

where

wc ¼ 2krc þ p=4; wf ¼ 2krf þ p=4;

wcf ;� ¼ ðrc � rf Þk þ p=4; wcf ;þ ¼ ðrc þ rf Þk þ p=4; ð31aÞ
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dn ¼
rf G0ðknrf Þ
rcG0ðknrcÞ

; q�1
n ¼ 1� d2

n 1� 2Knðknrf Þ 1þ
n

knrf

anðknrf Þ
� �� �

; ð31bÞ

b0 ¼
1

1� d2n
; b1 ¼ dnanðknrcÞb0; h0 ¼

dn

d2n

1

ð1� d2nÞ
� Knðknrf Þ

" #
;

h1 ¼
dnanðknrf Þ

dnð1� d2nÞ
: ð31cÞ

Both parts, i.e., non-oscillating and oscillating, are summed using Eq. (24).
The non-oscillating reactive sound power assumes the form of

%Pr;n ¼
qn

pk

afc;1

ð1� d4nÞ
þ

afc;2 arcsin dn

2dnð1� d2nÞ
3=2

þ
afc;3 arcsinh dn

2dnð1þ d2nÞ
3=2

" #
ð32Þ

with denotations

afc;1 ¼ d2n
a2

nðknrcÞ
rc

þ d2
n

a2
nðknrf Þ

rf

� �
þ

1

rc

þ
d2

n

rf

� 2d2
n

1� d2n
rf

Knðknrf Þ½1� Knðknrf Þ�; ð33aÞ
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n
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3þ 4d2n
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n
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�
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n

rf

Knðknrf Þ½2þ d2n � Knðknrf Þ�: ð33cÞ

The oscillating reactive sound power assumes the form of

*Pr;n ¼ �
2qn

k
ffiffiffiffiffiffi
pk

p d4n
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2
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p
#)

: ð34Þ

The non-oscillating and oscillating parts of the reactive sound power should be summed using
Eq. (28).
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4.3. The clamped–clamped boundaries

The asymptotics valid for the clamped–clamped boundaries are quoted below from Ref. [13]
for comparing the three different boundary conditions, i.e., clamped–free, free–clamped
and clamped–clamped. The non-oscillating and oscillating active sound power can be expressed
by

%Pa;n ¼
1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2n

q
0
B@

1
CAþ

qn

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2n

q �
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q
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1
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and
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respectively, where

win ¼ 2krin þ p=4; wout ¼ 2krout þ p=4; wio;� ¼ ðrc � rf Þk þ p=4; ð37aÞ

wio;þ ¼ ðrc þ rf Þk þ p=4; dn ¼
rinG0ðknrinÞ

routG0ðknroutÞ
; q�1

n ¼ 1� d2
n ; ð37bÞ

b0 ¼
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ð1� d2nÞ
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h0 ¼
1

ð1� d2nÞ
; h1 ¼ dnanðknroutÞh0: ð37cÞ

The non-oscillating and oscillating reactive sound power can be expressed by
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qn

pk

acc;1
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�

acc;2 arcsin dn
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3=2
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and
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respectively, where

acc;2 ¼ ð3� 4d2nÞ #a1 þ ð1� 2d2nÞ #a0; acc;3 ¼ ð3þ 4d2nÞ #a1 � ð1þ 2d2nÞ #a0: ð40aÞ

acc;1 ¼ d2n #a1 þ #a0; #a1 ¼
a2nðknroutÞ

rout

þ d2
n

a2nðknrinÞ
rin

; #a0 ¼
1

rout

þ
d2

n
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The integral formulae for the standardized sound power (18) and (19) are valid for the
clamped–clamped boundaries if it is assumed that znðxÞ ¼ 0 instead of Eq. (17b).

4.4. Numerical analysis of the asymptotics

Several curves, illustrating the active and reactive sound power have been plotted to make it
possible to compare the energetic behavior of an individual mode of an annular plate in the case
of the three different boundary conditions, i.e., clamped–free, free–clamped and fully clamped
(cf., Figs. 1–3). All the curves are plotted in terms of the acoustic wavenumber, k; related to the
first structural wavenumber k1; i.e., k=k1; for three different values of the geometric parameter
rout=rin ¼ 1:2; 2; 5: The eigenvalue k1rin was chosen to make it possible to compare the curves valid
for the clamped–free boundaries with those valid for the fully clamped ones, where the zero mode
does not appear (cf., Ref. [13]).
Some strong mechanical interactions that occur between both edges of the plate can be

observed especially for small values of rout=rin; when the edges are located very close to each other
and there is a small difference in the values of terms depending on ðrout=rin � 1Þbþ p=4 and
ðrout=rin þ 1Þbþ p=4: In Figs. 1–3 the integral formulae are represented by the dotted lines and the
asymptotic formulae are represented by the solid lines. The results obtained for the integrals and
for the asymptotics show a good agreement for k=kn being slightly greater than 1, i.e., the
asymptotics are valid for the high frequencies. Consequently, the approximation error,
represented by term O½d4n=ðkrinÞ

3=2� in Eqs. (24) and (28), shows a considerable increase with
decreasing k=kn up to 7N for k=kn ¼ 1:
Several essential differences can be noted in the vibro-radiational behavior of some clamped–

free, free–clamped and fully-clamped plates. Firstly, the reactive part of the standardized
sound power tends to zero much more slowly with an increase in the value of k=kn for all the
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clamped–free and free–clamped plates than for the fully-clamped plates, for all the mode numbers
and values of the geometric parameter rout=rin taken into account. Secondly, the fully-clamped
plates do not have the zero mode. There is no main maximum in the curve representing the active
sound power of the zero mode of the plates with one edge free. The zero mode is particularly
important for the radiational behavior of the clamped–free plate, because in this case the bending
moment is rather weak in the whole plate, especially in its region located close enough to its free
edge, as compared with the fully-clamped plate.
The curve shapes representing the standardized sound power of the nth mode are similar to

one another for the higher modes for all the three boundary configurations under consideration

(a)

(b)

(c)

Fig. 1. The standardized active and reactive sound power of an individual in vacuo mode Pa;n and Pr;n; respectively, for
the geometric parameter rout=rin ¼ 1; 2 and for three different boundary conditions, namely: (a) clamped–free, (b) free–

clamped, (c) clamped–clamped (cf., Ref. [13]). All the dotted curves in this figure are obtained from the integral

formulae (18) and (19), and all the solid curves from the asymptotic formulae (24) and (25).
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(cf., Fig. 1) when rout=rin is considerably small. The number of oscillations observed in the curves
decreases for the increasing value of rout=rin; especially for the free–clamped and fully clamped
plates. An increase in the value of rout=rin results in a significant difference in the energetic
behavior of the three plates (cf., Fig. 3). However, with an increase in the value of rout=rin of an
annular plate its geometric shape, mode shapes and energetic behavior become more similar for
both annular and circular plates, except for the zero mode which does not exist for a clamped
circular plate and the corresponding standardized sound power. Thus, the energetic magnitudes
valid for a clamped circular plate (cf., Refs. [8,10–13]) can be used as a rough approximation
for the corresponding magnitudes valid for a free–clamped annular plate only, described by a
considerably large value of rout=rin:

(a)

(b)

(c)

Fig. 2. The standardized active and reactive sound power of an individual in vacuo mode Pa;n and Pr;n; respectively, for
the geometric parameter rout=rin ¼ 2:0 and for three different boundary conditions, namely: (a) clamped–free, (b) free–

clamped, (c) clamped–clamped (cf., Ref. [13]). All the dotted curves in this figure are obtained from the integral

formulae (18) and (19), and all the solid curves from the asymptotic formulae (24) and (25).
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5. Conclusions

The results obtained in this study illustrate the vibro-radiational behavior of the plates
investigated. Formulations for the standardized active and reactive sound power of an individual
in vacuo mode of an annular plate have been derived. Two different boundary configurations
have been considered, i.e., clamped–free and free–clamped. First, the sound power has been
expressed in the form of the integral formulae, i.e., in its Hankel representation (cf., Eqs. (15), (18)
and (19), and then in the form of the asymptotic formulae of a very small error in the high
frequencies (cf., Eqs. (24) and (28)). However, the integral formulae that are valid in the full
frequency range are considerably time consuming. Therefore, they have only been used to test the

(a)

(b)

(c)

Fig. 3. The standardized active and reactive sound power of an individual in vacuo mode Pa;n and Pr;n; respectively, for
the geometric parameter rout=rin ¼ 5:0 and for three different boundary conditions, namely: (a) clamped–free, (b) free–

clamped, (c) clamped–clamped (cf., Ref. [13]). All the dotted curves in this figure are obtained from the integral

formulae (18) and (19), and all the solid curves from the asymptotic formulae (24) and (25).
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accuracy of the asymptotic formulae. The results obtained from the asymptotic formulae show a
good agreement with those obtained from the integral formulae for frequencies higher than the
successive eigenfrequencies (cf., Figs. 1–3). The asymptotic formulae are easy to express in terms
of some computer code and do not require much processor capacity.
The influence of some three different boundary configurations of the plate on the sound power

radiated has been analysed. Some significant differences in the radiational behavior of clamped–
free, free–clamped and clamped–clamped plates have been found. The results presented in this
study can be used for further computation of the total sound power radiated by plates excited in
an acoustic fluid.
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