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1. Introduction

The infinite element approach is effective in solving unbounded wave problems. It models the
unbounded region in its entirety by using elements of infinite extent, and the non-radiation
condition is therefore readily accommodated. In the past 20 years, a number of infinite element
schemes have appeared, which can roughly fall into mapped element and unmapped element. In
unmapped infinite element [1,2], the shape functions are directly constructed within physical
element. Although the convergence and accuracy of this kind of elements are assured by
interpolation functions, they often involve complex integration procedures in forming the system
matrices because of the infiniteness of real elements. In mapped infinite element [3–10], a geometry
mapping is first introduced, and the field variable is then interpolated within the parent element.
In particular, the mapped wave envelope infinite element enables all the system matrices to be
evaluated by using the standard Gauss quadrature. Another advantage of this envelope element is
that the system matrices can be separated in terms of the power of frequency and therefore can be
easily used to solve transient problems, although the symmetric nature is not preserved in them,
which is the only drawback of this element.

Mapped infinite element has been well developed in the work by Cremers et al. [3], Astley et al.
[4] and others [5–10]. Cremers et al. [3] presented a variable order infinite acoustic wave envelope
element and did many numerical experiments of two dimensions and three dimensions to show the
validity of their element. To demonstrate the effect of a source shift on numerical modelling of an
amplitude decay, a one-dimensional example was investigated in the appendix. Indeed, the exact
solution was finally achieved as the order of infinite element was increased up to seven, but in our
view, this simple test just exposed some problems inherent in their elements.
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2. Basic ideas in Cremers’ element

2.1. Concept of virtual acoustical source

In Cremers et al.’s work [3] the virtual source played an important role in explaining the
geometry mapping

x ¼
2ðxII � xIÞ

1� t
þ ð2xI � xIIÞ: ð1Þ

On letting

x0 ¼ 2xI � xII; ð2Þ

a ¼ xII � xI ¼ xI � x0; ð3Þ

r ¼ x � x0; ð4Þ

Cremers et al. [3] obtained the inverse mapping of Eq. (1) as

t ¼ 1�
2a

r
: ð5Þ

Astley et al. [4] called x0 the location of virtual acoustical source whereas Cremers et al. [3]
briefly referred to it as the location of source. r is therefore the distance to any arbitrary point
in the element from the source at x0. In this article, the notations have the same meaning as
in Ref. [3] except those specially specified.

2.2. Shape functions in Cremers’ element

Cremers et al. selected Lagrangian version of shape functions. The typical first and second
order take the form

N1 ¼
1� t

2
; first order ð6Þ

and

N1 ¼ tðt � 1Þ;

N2 ¼ 1� t2;
second order: ð7Þ

For instance, Eqs. (5) and (6) give

rðt ¼ 0Þ ¼ 2a; ð8aÞ

pðt ¼ 0Þ ¼ 1
2
pðt ¼ �1Þ; ð8bÞ

which means that the pattern of first order can only accurately describe the wave decay in which
case the amplitude at x ¼ xII is half that at x ¼ xI: Indeed, it is true of the case in which the real
source coincides with the virtual source at x ¼ x0 because of

rII ¼ xII � x0 ¼ 2ðxI � x0Þ ¼ 2rI: ð9Þ
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In other words, the virtual source cannot be located at the discretion of the analyst for the
purpose that the first order element could give satisfactory results.

Similarly, for instance, Eqs. (5) and (7) give

rðt ¼ �1
2Þ ¼

4
3a; ð10aÞ

pðt ¼ �1
2
Þ ¼ 3

8
pðt ¼ �1Þ þ 3

4
pðt ¼ 0Þ: ð10bÞ

Due to the fact that Eq. (10a) is compatible with Eq. (10b) for 1/r-type wave only on the
condition that Eq. (8b) holds, they arrive at the same evaluation as Eqs. (8a) and (8b). Of course,
the contradiction between Eqs. (10a) and (10b) will be mitigated through the increase of
independent variables from 1 (single pðt ¼ �1Þ) to 2 (dual pðt ¼ �1Þ and pðt ¼ 0Þ), for example.

Following the above comments, the reasonableness of the virtual source is so far doubtful as its
presence brings about the contradiction between geometry mapping and shape functions within
mapped infinite element for the more general cases. Probably, this is the reason why Cremers et al.
[3] had to adopt up to seventh order infinite element to remedy the deviation caused by moving of
the infinite element only a bit farther (x0 varies from 0 to 1) whereas the exact solution can be
obtained by using first element pattern conversely. As a matter of fact, through looking at the
geometry of infinite element, one cannot find so great a difference between these two cases, and
moreover, the farther the infinite element away from the real source (the origin in the example),
the more accurate mapped infinite element should model the field from the knowledge of infinite
element. Unfortunately, Table A1 of Cremers et al. [3] gave quite unexpected results against our
common sense. In our opinion, this is owing to rather an improper form of shape functions
restricted by the unnecessary concept of virtual source than an improper location of the virtual
source believed by Cremers et al. [3].

3. A scheme to resolve this problem

If the concept of virtual source and the related notations such as x0; a and r are discarded,
Eq. (5) can be rewritten as

t ¼ 1�
2ðxII � xIÞ

x � ð2xI � xIIÞ
: ð11Þ

Eqs. (1) and (11) can achieve a well-posed geometry mapping along an infinite direction from xI

to xII for any values of xII and xI since the following relationships hold:

xð�1Þ ¼ xI; ð12aÞ

dx

dt
¼

2ðxII � xIÞ

ð1� tÞ2
; ð12bÞ

so that the monotonicity of x with t in the interval [�1,1) is ensured. In practice, xII and xI have
the same sign and thereby xIIj j > xIj j as the origin is not the point of interest in mapped infinite
element.
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As previously mentioned, Eqs. (6) and (7) are not the proper versions for the general value of
xII: Based on the fact that the shape function of first order element is non-unique subject to

N1ð�1Þ ¼ 1;

N1ð1Þ ¼ 0 ð13Þ

and noting that

xI

x
¼

1� t

�2t þ að1þ tÞ
; ð14Þ

a more proper form of first order shape function may be

N1ðtÞ ¼
1� t

�2t þ að1þ tÞ
; first order ð15Þ

as proposed by the authors in Ref. [11] where a ¼ xII=xI: This kind of shape function incorporates
the effect of the location of xII and therefore represents the essence of mapped infinite element.

Apparently,

pðtÞ ¼ N1ðtÞpðt ¼ �1Þ3pðxÞ ¼
xI

x
pðxIÞ ð16Þ

arrives at the exact solution

pðxÞ ¼ 1=x ð17Þ

given the prescribed boundary condition as (A2) at x ¼ xI in Ref. [3] wherever xII locates in the
infinite element.

For second order element, following the criterion proposed in Ref. [11] yields

N1ðtÞ ¼ �tS1;

N2ðtÞ ¼ ð1þ tÞS2;
second order; ð18Þ

where S1 and S2 were termed shape factors by the authors and take the form

S1 ¼
1� t

2

2

�2t þ að1þ tÞ

� �2

;

S1 ¼ ð1� tÞ
a

�2t þ að1þ tÞ

� �2

ð19Þ

in terms of local co-ordinate t. Eq. (18) assures virtually the dipole expansion for the second order
element for any value of a.

4. Numerical results and discussion

Cremers et al. [3, Table A1] listed the results when a ¼ 1 and x0 ¼ 1 (xI ¼ 2 and xII ¼ 3), in
which an order one higher than the interpolation order was used in the Gaussian quadrature. For
the purpose of comparison, the authors programmed the Cremers’ theory. The codes have proved
to obtain the same results as listed in Table A1 for the identical case. If a keeps the value of 1 and
the virtual source is moved much farther away from the real source, it is predictable that higher
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than seventh order element is needed to achieve the exact solution for Cremers’ element. This
prediction is immediately verified by the numerical results listed in Table 1. Using up to tenth
order element, Cremers’ element gave results with 2% error at x ¼ 1000 for the case of a ¼ 1 and
x0 ¼ 8: Here, 10-point Gaussian quadrature is used in the procedure of numerical integration.
Due to the instability in, and the need of higher than tenth order mapped infinite element (also in
need of much higher order Gaussian quadrature) to get the satisfactory results, the disadvantage
of Cremers’ element shows up strongly in this simple example.

Another fact showing the drawback of Cremers’ element is that the value of a is within certain
bounds but arbitrarily selected. This can be well accounted for by re-analyzing second order
mapped infinite element.

Assuming that pðxIÞ and pðxIIÞhave been obtained as their analytical solution 1=xI and 1=xII;
based on Eq. (7), the interpolated field variable will be

pðtÞ ¼
ð1� tÞ½ð2� aÞt þ 2�

2axI
: ð20Þ

As is known, pðxÞ should monotonically decrease as t varies within the interval [�1,1). That is
to say, it is always required to preserve

dp

dt
¼

2ð2� aÞt � a
2axI

p0 ð21Þ

for any value of a greater than 1. Unfortunately, for the case in Table 1 where a ¼ 10=9 we have

dp

dt
¼

1

10xI
> 0 ð22Þ

at t ¼ 3=4 ðx ¼ 16xI=9Þ: This is against the decay of wave in infinite element. Careful study
indicates that the choice of a follows:

4
3
pap3; ð23Þ

where the upper bound is obtained using the required dipole expansion. It is hard to obtain such
an equation as Eq. (23) for higher order Cremers’ element. However, this kind of effect can be
clearly seen from the comparison between Table 2 ða ¼ 13

9
E1:44Þ and Table 1 ða ¼ 10

9
E1:11Þ:

Finally, numerical test is performed for the case of ða ¼ 23
9
E2:56Þ to show the feasibility of

selecting a value of a greater than 2 on the condition that x0j j keeps the value of 5. Evidently, the
results listed in Table 3 are better than those in Table 2.

Table 1

Numerical results when a ¼ 1 and x0 ¼ 8 ðxI ¼ 9; xII ¼ 10Þ

x Exact Present Cremers et al. [3]

1st 2nd 1st 2nd 7th 8th 9th 10th

9 0.11111 0.11115 0.11115 0.03518 0.07484 0.11102 0.11109 0.11112 0.11114

10 0.10000 0.10003 0.10006 0.01759 0.05920 0.09998 0.10003 0.09999 0.10003

100 0.01000 0.01000 0.01003 0.00038 0.00175 0.00873 0.00922 0.00956 0.01021

500 0.00200 0.00200 0.00201 0.00007 0.00033 0.00170 0.00181 0.00188 0.00204

1000 0.00100 0.00100 0.00100 0.00004 0.00016 0.00085 0.00090 0.00094 0.00102
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To sum up, the accuracy of Cremers’ element is strongly dependent on the difference of distance
between virtual acoustical source and real source, and, meanwhile, more than fourth order
mapped infinite element is often needed to model even a quite simple example. Besides, close
attention must be paid to the choice of a value to prevent uncertainties as in Table 1. To our
excitement, the improvement suggested by the authors displays good performance in many
respects. This idea has been successfully applied to solve the two-dimensional problems [11] and
can be extended to three dimensions.
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