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Abstract

It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect
depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a
structure, classical optimization technique was adopted by previous researchers. That technique overcame
the difficulty of finding the intersection point of the superposed contours that correspond to the
eigenfrequency caused by the crack presence. However, it is hard to select the trial solution initially for
optimization because the defined objective function has heavily local minima. A method is presented in this
paper which uses a continuous evolutionary algorithm (CEA), which is suitable for solving inverse
problems and implemented on PC clusters to shorten calculation time. With finite element model of the
structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization
format. CEAs are used to identify the crack location and depth minimizing the difference from the
measured frequencies. We have tried this new idea on beam structures and the results are promising with
high parallel efficiency over about 91%.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Techniques to detect cracks and defects hidden in structure and to evaluate their residual life
span are very important to assure the structural integrity of operating plants and structures. Many
researchers have investigated the potential of system identification to determine the properties of a
structure. A state of damage could be detected by a reduction in stiffness. A crack, which occurs in
a structural element, causes some local variations in its stiffness which affects the dynamics of the
whole structure to a considerable degree. An analysis of the changes is tried to identify the crack.
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Most of the studies on crack identification problem have adopted the modal parameter or the
dynamic response to identify the global stiffness and mass matrices of a structure.
A crack in a structure introduces a local flexibility, which is a function of the crack depth. This

flexibility changes the stiffness and the dynamic behavior of the structure. Chondros and
Dimarogonas [1,2] considered the crack as a local elasticity, which effects the elasticity of the
whole cracked structure under consideration and related the crack depth with the frequency
decrease. Gounaris and Dimarogonas [3] have constructed a special cracked beam finite element
and Papadopoulos and Dimarogonas [4] used a 6� 6 compliance matrix, including off-diagonal
terms, to simulate a cracked shaft and to study its dynamic behavior.
A number of papers deal with the problem of crack location and size identification in order to

propose new, efficient and more precise methods. Inagai et al. [5] used a procedure with
eigenfrequency measurements to find the crack size and location. Leung [6] and Anifantis et al. [7]
proposed crack identification methods through measurements of the dynamic behavior in
bending. Dimarogonas and Massouros [8] investigated the dynamic behavior of a circumferen-
tially cracked shaft in torsion and proposed nomographs for finding the crack depth and location.
Nikolakopoulos et al. [9] presented the dependency of the structural eigenfrequencies on crack
depth and location in contour graph form. To identify the location and depth of a crack, they
determined the intersection points of the superposed contours that correspond to the measured
eigenfrequency variations caused by the crack presence. However, the intersecting points of the
superposed contours are not only difficult to find but also incorrect to evaluate since the
procedure mainly depends on men’s eye. Suh et al. [10] adopted classical optimization technique
to overcome the difficulty of finding the intersection point of the superposed contours that
correspond to the eigenfrequency caused by the crack presence. However, it is also hard to select
the trial solution initially for optimization because the defined objective function has heavily local
minima.
To identify the location and depth of a crack in a structure with only eigenfrequency

information efficiently, a method is presented in this paper which uses a continuous evolutionary
algorithm (CEA) [11], which is implemented on PC clusters to shorten calculation time. With
finite element model of a structure to calculate eigenfrequencies, it is possible to formulate the
inverse problem in optimization format. CEAs, which are efficient in real parameter identification
problem and are suitable for solving inverse problems, are used to identify the crack location and
depth minimizing the difference from the measured frequencies.

2. Inverse analysis method

The inverse analysis is generally defined as identifying the parameter set x�AX when measured,
or reference data y�AY and direct mapping c : X-Y are known. Problems with the non-linear
direct mapping c are termed non-linear inverse problems. In practice, deterministic models
describe reality only in an idealized sense, and thus we may express the input–output relation as
follows:

y ¼ cðxÞ þ e; ð1Þ
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where e ¼ e1 þ e2; and e1 and e2 are errors in the measurement of y and those in the model
equations, respectively.
In the analysis of field quantities shown in Fig. 1, the model equations in general take the form:

LðkÞf ¼ q; ð2Þ

where L; k;f; q are the differential operator, material property, field quantity and a source term,
respectively.
Inverse problems for Eq. (2) can be classified in terms of the parameter set to be identified: (a)

domain O; (b) governing equations, (c) boundary conditions, (d) force or source q applying in O;
and (e) material properties k defined in O and involved in the governing equations [13]. In these
problems, the input and output vectors reside in the continuous space. There are two main
strategies for solving inverse problems. One is to solve a set of equations and the other is to
directly find the minimum or maximum of a certain function. However, the former is worth noting
the following difficulty: the inverse problem can always be defined as an abstract theoretical
concept. In general, inverse function is a subset of original input, in fact such a subset could even
be empty, so that the usual concept of ‘‘function’’ as a ‘‘one-to-one’’ injection breaks down.
Generally, it is reasonable to solve the latter. Out of them, minimizing a least-squares criterion has
been most widely used for identification.
In this approach, optimization techniques are used to find the input by adjusting them until the

measured, or reference data match the corresponding data computed from parameter set in the
least-squares fashion, i.e.,

min f ðxÞ ð3aÞ

with the cost functional

f ðxÞ ¼
Xm

i¼1

kiðy�
i �CiðxÞÞ

2; ð3bÞ

where ki is a weighting factor. Various calculus-based optimization techniques have been
intensively used to solve this optimization problem. These techniques can, however, fail if errors
contained in the model equations and in the measurement cause the objective function to be
complex. In such cases, the solution may result in a local minimum, unless some regularization
method is incorporated. The present study uses evolutionay algorithms, which are significantly
promising for complex optimization.

Fig. 1. Problems of field quantities.
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3. Structure analysis

In the finite element model of the damaged structure, the effect of the crack on the
behavior of the structure can be simulated through the introduction of the transfer matrices which
are method for finding the stiffness matrix. A planar frame structure can be modelled using
two-dimensional beam elements having 3 d.o.f. ðdx; dy; yzÞ per node, i.e., with extension and
bending, in Fig. 2.
The corresponding stiffness and consistent mass local matrices [14] are

½Ke	 ¼
EIzz

L3

bL2 0 0 �bL2 0 0

0 12 6L 0 �12 6L

0 6L 4L2 0 �6L 2L2

�bL2 0 0 bL2 0 0

0 �12 �6L 0 12 �6L

0 6L 2L2 0 �6L 4L2

2
6666666664

3
7777777775
; ð4Þ

½Me	 ¼
rAL

420

140 0 0 70 0 0

0 156 22L 0 54 �13L

0 22L 4L2 0 13L �3L2

70 0 0 140 0 0

0 54 13L 0 156 �22L

0 �13L �3L2 0 �22L 4L2

2
6666666664

3
7777777775
; ð5Þ

where b ¼ A=Izz; L is the length of element e and A is the cross-section area. E and r are the
modulus of elasticity and mass density, respectively, and Izz is the second moment of inertia about
the local z-axis.
From the Euler–Bernoulli theory for the above-mentioned degrees of freedom, the transfer

matrix [14] which transfers the state variables (displacement, force) from one node to the other

Fig. 2. A beam finite element with extension and bending.
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node is

½Te	 ¼

1 0 0
�L

AE
0 0

0 1 L 0
L3

6EIzz

�
L2

6EIzz

0 0 1 0
L2

2EIzz

L

EIzz

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 L �1

2
666666666666664

3
777777777777775

: ð6Þ

A beam finite element of length Le; containig a crack of depth a at distance L1e from its left end,
is depicted in Fig. 3.
The crack introduces a local compliance in the structure. The state vectors at positions

i;CL;CR; and; j are

fzig ¼ f dxi dyi yzi Fxi Fyi Mzi g
T; ð7aÞ

fzLg ¼ f dxL dyL yzL FxL FyL MzL gT; ð7bÞ

fzRg ¼ f dxR dyR yzR FxR FyR MzR gT; ð7cÞ

fzjg ¼ f dxj dyj yzj Fxj Fyj Mzj g
T: ð7dÞ

If no force is acting between nodes i and j; then it can be derived from simple beam theory, where
the four state vectors are related as follows:

fzLg ¼ ½T1	fzig; ð8aÞ

fzRg ¼ ½TC 	fzLg; ð8bÞ

fzjg ¼ ½T2	fzRg; ð8cÞ

Fig. 3. A cracked beam finite element.
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where ½T1	 and ½T2	 are the transfer matrices of the subelements CL � i and CR � j; respectively,
and ½TC	 is the point transfer matrix due to the crack. Matrix ½TC 	; which relates the state vectors
on the left and right of the crack is

½TC 	 ¼

1 0 0 c11 0 c13

0 1 0 0 c22 0

0 0 1 c31 0 c33

0 0 0 �1 0 0

0 0 0 0 �1 0

0 0 0 0 0 �1

2
6666666664

3
7777777775
; ð9Þ

where subscripts 1, 2 and 3 correspond to tension, shear and bending, respectively. Terms c13 and
c31; responsible for the coupling of tension and bending [3], are not considered here, whereas the
rest are known as follows [12]:

c11 ¼
2F1ð1� n2Þ

Eb
; c22 ¼

2k2F3ð1� n2Þ
Eb

; c33 ¼
72F2ð1� n2Þ

Ebh2
; ð10a2cÞ

where n is the Poisson ratio, k is a constant which for rectangular cross-sections is known to be 1.5
and Fi are functions of the non-dimensional crack depth a=h [13]. These functions, which are
presented in Fig. 4, are integrals of the empirical formulas used by Tada [13] for computation of
stress intensity factors KI in single edge notch specimens under pure tension, bending and shear.
From Eq. (8a–c) the following is obtained:

fzjg ¼ ½TC
e 	fzig: ð11Þ

Fig. 4. Fi versus a=h for single edge notch specimen under pure tension, bending and shear.
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The transfer matrix ½TC
e 	 of the cracked element is written in the form

½TC
e 	 ¼ ½T2	½TC 	½T1	 ¼

A1 A2

A3 A4

" #
; ð12Þ

where ½Ai	 are 3� 3 submatrices. Eq. (12) leads to the stiffness matrix of the crack element

½KC
e 	 ¼

�½A2	�1½A1	 ½A2	�1

½A3	 � ½A4	½A2	�1½A1	 ½A4	½A2	�1

" #
: ð13Þ

The equation of motion in matrix form is known to be

ð�o2½M	 þ ½K 	Þfxg ¼ f0g; ð14Þ

where o is eigenfrequency, x is a displacement vector. The above analysis serves to identify the
location and depth of a crack in a frame structure, just by measuring the eigenfrequency
variations.

4. Parallel evolutionary algorithms (EAs) for crack identification

The cracked structure in this study is discretized into a set of elements and the crack is assumed
to be located within one of the elements. For estimating the location and size of a crack CEAs are
utilized, which is suitable for solving inverse problems and implemented on PC clusters to shorten
calculation time. With finite element model of the structure to calculate eigenfrequencies, it is
possible to formulate the inverse problem in optimization format. CEAs are used to identify the
crack location and depth minimizing the difference from the measured frequencies.

4.1. Evolutionary algorithms

4.1.1. Fundamental algorithms

EAs are probabilistic optimization algorithm based on the model of natural evolution and the
algorithm has clearly demonstrated its capability to create good approximate solutions in complex
optimization problems. The popularity of the algorithms is due to the following characteristics:

(i) Less possibility to converge to a local minimum as the search starts from a number of points.
(ii) Compatibility with the parallel computer.
(iii) Robustness since only objective function information is required.
(iv) Capability to find a solution in broad search space effectively through probabilistic

operations.

Fig. 5 shows the fundamental structure of EAs. First, a population of individuals, each
represented by a vector, is initially (generation k ¼ 0) generated at random, i.e.,

Pk ¼ fuk
1 ;y; uk

lgAðIÞl; ð15Þ

where I represents the space of individual and l is the population size of parental individuals. The
population then evolves towards better regions of the search space by means of randomized
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processes of recombination, mutation and selection though either the recombination or mutation
is not implemented in some algorithms. In the recombination, parental individuals breed offspring
individuals by combining part of the information from the parental individuals. The mutation
then forms new individuals by making large alterations with small possibility to the offspring
individuals regardless of their inherent information. With the evaluation of fitness for all the
individuals, the selection operator favorably selects individuals of higher fitness to produce more
often than those of lower fitness. These reproductive operations form one generation of the
evolutionary process, which corresponds to one iteration in the algorithm, and the iteration is
repeated until a given terminal criterion is satisfied.

4.1.2. Genetic algorithms (GAs)
In GAs [15], the individual is given by a binary string uk

i AI ¼ f0; 1gl as if it represents a
chromosome of genes in genetics. Recombination of the genetics is conducted by the cross-over.
In the case of one-point cross-over, two randomly selected individuals are renewed by two
offspring individuals:

uk
a ¼ fuk

a1;y; uk
am; u

k
bðmþ1Þ;y; uk

blg;

uk
b ¼ fuk

b1;y; uk
bm; u

k
aðmþ1Þ;y; uk

alg:
ð16Þ

Each gene is then mutated with small possibility by

uk
ij ¼ 1� uk

ij: ð17Þ

Due to the binary representation, conversion of binary information to continuous search space
is necessary

c : uk
i -xk

i : ð18Þ

The evaluation of the fitness can be conducted with a linear scaling, where the fitness of each
individual is calculated as the worst individual of the population subtracted from its objective
function value

Fðxk
i Þ ¼ maxff ðxkÞjxkAPkg � f ðxkÞ 8iA 1;y; lf g: ð19Þ

Fig. 5. Fundamental structure of EAs.
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Fðxk
i ÞX0 is thus satisfied by this equation. Proportional selection, which is the most popular

selection operation, can be directly used. In this selection, the reproduction probabilities of
individuals are given by their relative fitness

psðxk
i Þ ¼

Fðxk
i ÞPl

j¼1 Fðx
k
j Þ
X0: ð20Þ

Optionally, ranking selection can be implemented in this algorithm. These reproductive
operations form one generation of the evolutionary process, which corresponds to one iteration
in the algorithm, and the iteration is repeated until a given terminal criterion is satisfied.

4.1.3. Continuous evolutionary algorithms (CEAs)

CEAs [11] are one of EAs, which is specifically formulated for the optimization with continuous
search space. The reproductive operations of CEAs are intended to be similar to those of GAs
such that it can take the advantage of probabilistic features in GAs. The major difference of CEAs
from GAs is that a search point itself, i.e., a real continuous vector ðxk

i AI ¼ RnÞ; gives the
representation of the individual. This formulation was made with an assumption that the direct
use of the search point may search more efficiently than the representation decoded into a binary
string as used in GAs. This representation makes us grasp the concept of the individual not as
genetic information but phenomenological information.
The definition of the recombination and mutation becomes the probabilistic distribution of the

phenomenological measures accordingly. The recombination operation is therefore defined as
[18,19]

xkþ1
a ¼ ð1� mk

aÞx
k
a þ mk

bx
k
b;

xkþ1
b ¼ mk

ax
k
a þ ð1� mk

bÞx
k
b;

ð21Þ

where xk
a and xk

b are parental individuals at generation k and parameter mk
i ; 8iAfa; bg may be

defined by the normal distribution with mean 0 and standard deviation s

mk
i ¼ Nð0; s2Þ: ð22Þ

The standard deviation can adopt a self-adaptive strategy (variable with respect to k) or be simply
constant. The self-adaptive strategy makes the convergence rate required for each generation
faster at the expense of the computation time and vice versa.
In many studies [16,17], the same m is used regardless of each parental individual, i.e., the

symmetric recombination. Symmetric distribution sometimes leads to good convergence for just
unimodal, simple problem, while asymmetric one improves robustness of the algorithm in
multiobjective optimization.
Fig. 6 illustrates the difference of the recombination methods, respectively. The parental point

is marked with ‘o’ and the offspring point that is possible is marked with ‘*’. The cross-over
operator in GAs uses variables coded using binary strings of size 7, respectively, and the cross-
over point is changed from 1 to 20 bit. The symmetric and asymmetric recombination uses the
normal distribution and the offspring point is selected randomly. From the above figure, we find
the fact that asymmetric one is more effective because the offspring point is born suitably inside
and outside the parental point, that is, both local search and global search are possible.
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The mutation can also be achieved simply by implementing

xkþ1 ¼ randðxmin;xmaxÞ: ð23Þ

Note that the mutation may not be necessary since it can allow individuals to alter largely with
small possibility, when the coefficient mk

i is large.
The same evaluation of the fitness and selection as GAs can be conducted.

4.1.4. Comparison of GAs with CEAs

Func: I f1 xð Þ ¼
Pn

i¼1 x2
i ; xARn; n ¼ 30;

�5:12pxip5:12;x� ¼ ½0;y; 0	T; f1ðx�Þ ¼ 0

Func: II f2ðxÞ ¼ 6n þ
Pn

i¼1½xi	; xARn; n ¼ 5;

�5:12pxip5:12;x� ¼ ½�5:12;y;�5	T; f2ðx�Þ ¼ 0

Func: III f3ðxÞ ¼ 10n þ
Pn

i¼1 x2
i � 10 cos ð2pxiÞ;xARn; n ¼ 20;

�5:12pxip5:12;x� ¼ ½0;y; 0	T; f3ðx�Þ ¼ 0;

Func: IV f4ðxÞ ¼ 10n þ
Pn

i¼1 x2
i � 10 cos pxi=2

� �
;xARn; n ¼ 20;

�5:12pxip5:12;x� ¼ ½0;y; 0	T; f3ðx�Þ ¼ 0:

ð24Þ

As it is impossible to predict the behavior of the algorithms by theoretical considerations, a set
of test functions having continuous search space were prepared to demonstrate the capability of
both the Simple GA (SGA) and CEA. The mathematical characteristics of the test functions are
unimodal/multimodal, quadratic/non-quadratic, convex/non-convex and continuous/discontin-
uous. The test functions are as Eq. (24). Three-dimensional graphical representations of these
functions are shown in Fig. 7.

Fig. 6. Comparison of symmetric, asymmetric and genetic cross-over.
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Internal parameters selected for both the algorithms are listed in Table 1. The cross-over and
mutation rates in SGAs, 0.6 and 0.001, are typically used in many publications. The standard
deviation of CEAs is set to be constant 0.5. The iteration is repeated until the number of
generation reaches 250 or the difference of average objective function and minimum objective
function is less than 0.0001.
The results of the search performance of both the algorithms are shown in Fig. 8. In Fig. 8, real

lines indicate the outcome from CEAs, whereas the results by SGAs are indicated by the broken
lines. The result of the first test clearly reflects the superiority of CEAs on the unimodal function
optimization. The second result then indicates that CEAs is almost similar to SGAs when the

Fig. 7. 3-D representation of the test functions.

Table 1

Internal parameters for both the algorithms

SGAs CEAs

Population size 50 50

Bit length 7 per variable —

Crossover rate 0.6 —

Mutation rate 0.001 0.001

Standard deviation — 0.5
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function is partially discontinuous. CEAs have a better performance of Funcs. III and IV than
SGAs. SGAs are nearly in the state of premature convergences, having a slow convergence rate
before reaching the global optimum, for the tests.

4.2. Parallel EAs

While EAs have proven effective for global optimization, this capability is purchased at a high
computation cost. The basic motivation behind many studies of parallel EAs was to reduce the
processing time needed to reach an acceptable solution. This was accomplished implementing EAs
on different parallel architectures.
It is recognized that there are different ways to parallel EAs. The first approach in parallelizing

EAs is to do a global parallelization [20,21]. In this class of parallel EAs, the evaluation of
individuals and the application of evolutionary operators are explicitly parallelized. Every
individual has a chance to mate with all the rest. Therefore, the semantics of the operators remain
unchanged. This method is relatively easy to implement and a speed-up proportional to the
number of processors can be expected.
The second approach in parallelizing EAs uses coarse-grained parallelism [22–24]. The

population is divided into a few subpopulations keeping them relatively isolated from each other.

Fig. 8. Comparison of generation history of CEAs with that of SGAs.
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This model of parallelization introduces a migration operator that is used to send some
individuals from one subpopulation to another. Two models for population structures are used in
different implementations of coarse-grained EAs: the island model and the stepping stone model.
The population in the island model is partitioned into small subpopulations by geographic
isolation and individuals can migrate to any other subpopulation. In the stepping model, the
population is partitioned in the same way, but migration is restricted to neighboring
subpopulations. Sometimes coarse-grained parallel EAs are known as distributed EAs since they
are usually implemented in distributed memory MIMD computers.
The third approach in parallelizing EAs uses fine-grained parallelism [25,26]. Fine-grained

parallel EAs partition the population into a large number of very small subpopulations. The ideal
case is to have just one individual for every processing element available. This model calls for
massively parallel computers.
In this study, global parallelization is used because the evaluation is the most time consuming

and it is easy to implement and a speed-up proportional to the number of processors can be
expected. In global parallelization, the evaluation can be parallelized assigning a subset of
individuals to each of the processors available. There is no communication between the processors
during the evaluation because the fitness of each individual is independent from all the others.
Communication only occurs at the start and at the end of the evaluation phase. The evaluation
process of the parallel computation system, which is based on PC-based cluster and is organized
following the master–worker paradigm, is shown in Fig. 9. On a parallel implementation based on
the master–worker paradigm, the master computes the evolutionary operations and the slaves
compute the object function values. Therefore, the amount of communication is rather small.
Hence, a parallel implementation based on the master–worker prototype can be efficient. The
specification of the adopted PC cluster systems is summarized in Table 2.

4.3. Parallel EAs for crack identification

For the crack identification, it is known that crack parameters such as the location and depth of
a crack can be determined from the measured eigenfrequencies of structure. This can be classified

Fig. 9. Implementation of evaluation process on PC-based cluster.
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as the inverse problem. In this study, parallel evolutionary technique is adopted to identify the
crack parameters in a structure.
The parameters which identify the crack are estimated by parallel CEAs described in Sections

4.1–4.2 using the computational structure analysis which is presented in Section 3. Crack
identification problem can be constructed in terms of optimization with CEAs. The optimization
problem to be formulated is defined as follows:

min
a;L1

F ða;L1Þ ¼
X3
i¼1

wiðfi � f �
i Þ

2;

alowerpapaupper;Llower
1 pL1pL

upper
1 ; ð25Þ

where a; L1 is the depth and location of a crack, wi is a weighting factor and fi is the
eigenfrequency, which is functions of a and L1; and f �

i is the measured or reference
eigenfrequency.

5. Numerical simulation

5.1. Example problem 1: clamped-free beam

The clamped-free beam of Fig. 10 has a length of L ¼ 3 m; rectangular cross-section B�H ¼
0:2 m� 0:2 m and contains a crack of depth a at a distance L1 from the clamped end. The material

Table 2

Cluster systems

Intel cluster Alpha cluster

CPU Pentium III (700MHz)� 16 DEC Alpha (533MHz)� 24

Memory 256MB/PE 768MB/PE

OS Linux2.2.14 Linux2.2.16

Network FastEthernet TCP/IP FastEthernet TCP/IP

Communication library MPICH-1.2.1 MPICH-1.2.1

Fig. 10. Model of the cracked clamped-free beam.
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properties are E ¼ 2:07� 1011 Nm�2; n ¼ 0:3; and r ¼ 7700 kgm�3: The beam is discretized into
12 two-node finite elements.
CEAs for this study is set-up: population size, N ¼ 100; standard deviation, s ¼ 0:5;

mutation rate, M ¼ 0:001: Also, proportional selection method is adopted for the selection
process.
Two cases are considered. (a) A crack of depth a of 0.03m exists at L1 of 1.1m. The first three

eigenfrequencies are obtained computationally based on the theory described in Section 3: f �
1 ¼

115:78 rad=s; f �
2 ¼ 725:60 rad=s; f �

3 ¼ 2027:36 rad=s: (b) A crack of depth a of 0.07m exists at L1

of 2.4m. The first three eigenfrequencies are obtained computationally based on the theory
described in Section 3: f �

1 ¼ 116:60 rad=s; f �
2 ¼ 717:94 rad=s; f �

3 ¼ 1901:00 rad=s:
Parallel CEAs have been applied to this example problem. The performance of the parallel

CEA is measured by both the speed-up ratio and the parallel efficiency. The speed-up ratio Sn and
the parallel efficiency En are defined as follows:

Sn ¼
T1

Tn

;

En ¼
Sn

n
¼

T1

nTn

; ð26Þ

where T1;Tn are total times for solving the problem using one processor and n processors. Fig. 11
shows the results obtained by both Intel cluster and Alpha cluster.
Parallel CEAs have a near-linear speed-up with both Intel cluster and Alpha cluster. The

parallel efficiency is about 91.6% in Intel cluster and about 93.6% in Alpha cluster. This is due to
the fact that the communication cost between processes is relatively small compared with the
computation cost.
Figs. 12 and 13 illustrate convergence history of the objective function for case (a) and case (b),

respectively. We can know that the result of crack identification is acceptable irrespective of the

Fig. 11. Speed-up of the parallel algorithm.
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Fig. 12. Generation history in Case (a).

Fig. 13. Generation history in Case (b).

Table 3

Crack identification result: clamped-free beam

Case (a) Case (b)

Reference value Result value Relative error (%) Reference value Result value Relative error (%)

a 0.03 0.029 3.3 0.07 0.068 2.9

L1 1.1 1.09 0.9 2.4 2.38 0.8

f1 115.78 115.981 0.2 116.60 116.866 0.2

f2 725.60 726.258 0.1 717.94 717.333 0.1

f3 2027.36 2027.489 0.01 1901.00 1901.631 0.03
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number of processor elements and an initial population of individual. The result of Table 3
shows that the location and depth of a crack are estimated by parallel CEAs within 3.3%
error. Also, the corresponding eigenfrequencies are very close to the reference values within 0.2%
error.

5.2. Example problem 2: clamped–clamped plane frame

A crack in the clamped–clamped plane frame, shown in Fig. 14 is identified using the
methodology of this study. The frame has the following basic dimensions; b�h ¼ 0:16 m� 0:2 m
and B�H ¼ 0:008m� 0:016 m: The frame is discretized into 28 two-node finite
elements. Since there is a vertical axis of symmetry, the crack location for the half of the frame
is considered.
The application of parallel CEAs is set-up: population size, N ¼ 100; standard deviation,

s ¼ 0:5; mutation rate, M ¼ 0:001; proportional selection method.
Two different cases are considered. (a) A crack of depth a of 0.003m exists at L1 of 0.15m. The

first three eigenfrequencies are obtained computationally based on the theory described in Section
3: f �

1 ¼ 267:31Hz; f �
2 ¼ 1150:46 Hz; f �

3 ¼ 1798:93 Hz: (b) A crack of depth a of 0.006m exists at
L1 of 0.24m. The first three eigenfrequencies are obtained computationally based on the theory
described in Section 3: f �

1 ¼ 266:96Hz; f�2 ¼ 1151:18 Hz; f �
3 ¼ 1828:79Hz:

Fig. 15 shows the speed-up obtained by both Intel cluster and Alpha cluster. The parallel
efficiency is about 94.4% in Intel cluster and about 96.0% in Alpha cluster.
Figs. 16 and 17 illustrate convergence history of the objective function for case (a) and case (b),

respectively. The result of Table 4 shows that the location and depth of a crack are estimated by
parallel CEAs within 3.1% error. Also, the corresponding eigenfrequencies are very close to the
reference values within 0.001% error.

Fig. 14. Clamped–clamped plane frame.
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6. Conclusions

A methodology of parallel CEAs for the crack identification from the eigenfrequencies is
proposed based on the fact that a crack has an important effect on the dynamic behavior of a
structure. To estimate the crack parameters CEAs are adopted in parallel computing
environmemnt.
The effectiveness of this technique is confirmed by two example problems. The crack

parameters of the clamped-free beam problem are estimated within 3.3% error. In the case of the
clamped–clamped plane frame problem the estimation has shown agreement within 3.1% error. It
can be concluded that good agreements are obtained between the depth and location of the

Fig. 15. Speed-up of the parallel algorithm.

Fig. 16. Generation history in Case (a).
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estimated crack and those of the reference one and the results are promising with high parallel
efficiency over about 91%.
Parallel CEAs can be applied to crack identification problems as a viable and generic problem-

solving technique.
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