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1. Introduction

The analysis of the dynamical behavior of a circular cylinder has attracted the attention of
many researchers due to both its important practical application and relative simplicity [1–4]. It
should be noted that a construction of the exact solution to the problem is possible but
unfortunately it yields complicated transcendental equations, and serious difficulties occur while
studying their roots (frequencies). Therefore, many various approximate techniques are applied
yielding the solutions in an explicit form. However, the existing approximate approaches are only
applicable for the defined wavelengths.
On the other hand, two limiting cases can be strictly distinguished while analyzing cylinder

oscillations. The first one corresponds to long-wave oscillations well described by classical theory
(with Raleigh’s first correction). The second one governs disc oscillations. Therefore, a naturally
motivated idea to match both limiting cases occurs. In Ref. [5] numerical matching has been
illustrated. In this Letter, we apply a two-point Pad!e approximation method which yields the
required approximate analytical solution.

2. Method

We introduce a parameter e describing the ratio of the cylinder, radius R; over the oscillation
wavelength l ðe ¼ R=lÞ: The first limiting case corresponds to long-wave oscillations correspond-
ing to e51: A zero order approximation ðe-0Þ is defined by the frequency of classical bar
oscillations o ¼ 2pl�1r1=2E�1=2; where E is Young’s modulus and r denotes material density. The
next approximation (i.e., the next term in the sought series relating to e) is defined by Rayleigh’s
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formula [1,3], which reads as

on ¼ ðo=
ffiffiffiffiffiffiffiffiffi
r=E

p
Þ � ð2p=lÞð1� p2n2e2Þ; ð1Þ

where n denotes the Poisson ratio.
The second limiting case corresponds to waves with very small length ðeb1Þ; which for the disc

obtained from the cylinder serves as a zero order approximation to the analyzed oscillations. The
frequency oscillations are defined via the following transcendental equation [3–5]:

onleJ0ðonleÞ � J1ðonleÞ ¼ 0; ð2Þ

where l ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=G � 1

p
; G is the shear modulus of the cylinder material, and J0;J1 are the Bessel’s

functions.
The first root of Eq. (2) may be written as [5]:

on ¼ 2:40483l�1e�1: ð3Þ

In Fig. 1 the exact solution (curve 1) found numerically [3], as well as solutions (2) and (3) are
shown (curves 2 and 3, correspondingly, for o ¼ on

ffiffiffiffiffiffiffiffiffiffi
E=G

p
; n ¼ 0:29).

It can be concluded that formula (2) approximates reasonably well the exact solution for e-0;
whereas formula (3) for e-N: The problem reduces to that of matching of both mentioned
solutions and a construction in the average zone ðeB1Þ: To solve the stated problem we apply the
two-point Pad!e approximants. We briefly describe its idea [6]. Let

f ðeÞB
XN

i¼0

aiei for e-0; ð4Þ

f ðeÞB
XN

i¼0

biei for e-N: ð5Þ

Fig. 1. Solutions obtained using different methods (see text).
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Then the two-point Pad!e approximant is governed by the expression

jðeÞ ¼
P

N

i¼0 aiei

P
N

i¼0 biei
: ð6Þ

The coefficients ðai; biÞ are chosen in a way that the series of j for e-0 and e-N coincide with
series (4) and (5), correspondingly.
Matching of solutions (1) and (3) can be carried out using formula (6). The matching result is

shown in Fig. 1 (curve 4). It is seen that a smooth approximation curve is obtained close to the
exact solution.
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