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Abstract

Flexible pipes conveying fluid are often subjected to parametric excitation due to time-periodic flow
fluctuations. Such systems are known to exhibit complex instability phenomena such as divergence and
coupled-mode flutter. Investigators have typically used weighted residual techniques, to reduce the
continuous system model into a discrete model, based on approximation functions with global support, for
carrying out stability analysis. While this approach is useful for straight pipes, modelling based on FEM is
needed for the study of complicated piping systems, where the approximation functions used are local in
support. However, the size of the problem is now significantly larger and for computationally efficient
stability analysis, model reduction is necessary. In this paper, model reduction techniques are developed for
the analysis of parametric instability in flexible pipes conveying fluids under a mean pressure. It is shown
that only those linear transformations which leave the original eigenvalues of the linear time invariant
system unchanged are admissible. The numerical technique developed by Friedmann and Hammond (Int. J.
Numer. Methods Eng. Efficient 11 (1997) 1117) is used for the stability analysis. One of the key research
issues is to establish criteria for deciding the basis vectors essential for an accurate stability analysis. This
paper examines this issue in detail and proposes new guidelines for their selection.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well established that under steady flow condition, pipes conveying fluids can undergo
divergence and flutter type of instabilities. This usually happens at high flow velocities and is a
function of the support conditions. In the case of pulsating fluids, parametric instability can occur
at lower flow velocities depending on the amplitude and frequency of the velocity fluctuation. In
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the present study, the pulsation of the fluid is assumed to be harmonic about a mean flow velocity.
Detailed investigations have been conducted by Pa.ıdoussis and Issid [1], Ginsberg [2], Chen [3]
and Pa.ıdoussis and Sundararajan [4]. They have studied parametric instability of simple pipe
structures using global approximations in a weighted residual procedure. In the review paper by
Pa.ıdoussis and Li [5] a detailed description of almost all types of problems related to pipes
conveying fluid is discussed. In the recent book by Pa.ıdoussis [6], greater insight into the physics of
the problem is provided.
Most of the theoretical work on the dynamic stability of pipes has been concerned with

linearized analytical models. Zhang et al. [7] presented a finite element model, based on Sanders’
non-linear theory of thin shells and the classical potential theory for vibration of initially
tensioned thin-walled orthotropic cylindrical tubes conveying fluid. They used a hydrodynamic
pressure formulation derived from the velocity potential, a dynamic coupling condition at the
fluid–structure interface, a non-linear strain–displacement relationship for the geometric stiffness
matrix due to initial stresses and hydrostatic pressures, and two-noded frustrum elements to
model the system. Hansson and Sandberg [8] developed a finite element model by combining an
axi-symmetric shell element and a one-dimensional fluid element taking into consideration the
interaction between the shell and the fluid. Weaver and Unny [9] used the Fl .ugge–Kempner
equation in conjunction with classical potential theory to model shells conveying fluids. Pa.ıdoussis
et al. [10] presented an analytical model for the dynamics and stability of coaxial cylindrical shells
conveying incompressible or compressible fluid in the inner shell and the annulus between the two
shells. They used Fl .ugge’s thin-shell theory to model the shell and linearized potential flow theory
for the fluid. Chang and Chiou [11] derived the equations of motion using Hamilton’s principle
and exploiting superposition, the natural frequencies corresponding to each flow velocity were
found. Selman and Lakis [12] presented a theory for the determination of the effects of a flowing
fluid on the vibration characteristics of an open, anisotropic cylindrical shell submerged and
subjected simultaneously to an internal and external flow. Olson and Jamaison [13] compared the
theoretical and finite element results for four test cases: a simplified cantilever pipe, a fixed–fixed
pipe (clamped at both ends), a cantilever pipe and a spring supported cantilever pipe. Kock and
Olson [14], Nitikitpaibon and Bathe [15] and Olson and Bathe [16] have developed finite element
models to solve fluid–structure interaction problems. Jayaraman and Narayanan [17] investigated
the chaotic motions of a simply supported non-linear pipe conveying fluid with harmonic velocity
fluctuations. They observed both period doubling sequence and a sudden transition to chaos of an
asymmetric period 2 motion near critical velocity for divergence. Pa.ıdoussis and Moon [18] have
investigated theoretically and experimentally the chaotic behavior of a cantilevered pipe
conveying fluid where the non-linearity is induced by motion limiting constraints.
Model reduction to analyze large systems has been reported by Bazoune et al. [19]. They

overcame the problem of large dimensionality resulting from the finite element discretization by
transforming from the space of nodal co-ordinates to the space of modal co-ordinates. This is
used to find out the dynamic response of spinning tapered Timoshenko beams. Accuracy of the
reduced model is demonstrated by comparing with the full model. Zhang et al. [20] developed a
viscoelastic finite element model for the dynamic analysis of viscoelastic tubes conveying fluid,
including the transverse shear and rotary inertia effects. For both viscoelastic and elastic models,
they conducted modal and damping analysis for various initial axial tensions and fluid flow
velocities. While these researchers have used the modal reduction technique for finding vibration
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response, use of this technique to find the stability of large size problems is not found in the
literature. Also Ritz and Lanczos vectors have been extensively used as a reduced basis for finding
forced response of structures, but the suitability of these vectors for stability analysis has not been
examined.
Most investigators have studied parametric instability of simple structures, using a one mode or

two-mode global Galerkin approximation. In the present paper a coupled semi-analytical finite
element formulation for the shell conveying fluid is presented. Thick shell theory is used to
formulate the finite element equation of the structure while the fluid part is modelled by the
Laplace equation. The fluid part is modelled using a velocity potential formulation and the
dynamic pressure acting on the walls is derived from the Bernoulli’s equation. Impermeability and
dynamic condition are imposed on the fluid–structure interface. In the case of pulsating flow,
some of the matrices become time dependent. To perform a stability analysis without numerical
difficulties, modal reduction is carried out using the time invariant matrices of the time varying
system. The coupled fluid–structure mode shapes are used for this purpose, which preserves the
stability information. It is shown that only those linear transformations which preserve the
eigenvalues are allowed for stability analysis. The reduced system stability analysis is carried out
using Floquet–Liapunov theory and is shown to be computationally efficient.

2. Finite element formulation

2.1. Structure

A coupled semi-analytical finite element formulation for fluid–structure interaction is developed
in this section. The general shell finite element formulation developed by Ramasamy and Ganesan
[21] for viscoelastic shells, based on the displacement field proposed by Wilkins et al. [22], is used.
Fig. 1 shows the schematic of the viscoelastic shell structure, consisting of a core viscoelastic layer
sandwiched between two facing layers. For the core layer the displacement relations are assumed
to be

uc ¼ u0 þ zcs; vc ¼ v0 þ zcy; wc ¼ w0; ð1Þ

where uc; vc and wc are the total displacements in the s; y; and z directions and are defined in
terms of the middle surface displacements u0; v0 and w0 and the angles of rotations normal to the
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Fig. 1. Viscoelastic structure schematic.
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middle surface in the meridional and circumferential directions. For the core these angles are
denoted by cs;cy while for the facings the angles are denoted by fs;fy: For outer and inner
facing, respectively, the displacements are related to the angles as

u fo; u fi ¼ u07hcs þ ðz7hÞfs; v fo; v fi ¼ v07hcy þ ðz7hÞfy; w fo;w fi ¼ w0: ð2Þ

Here ‘z’ denotes the distance from the middle surface of the shell, ‘h’ is half the core thickness. The
strain displacement relations for the core becomes with k1 ¼ 1=ð1þ z=RfÞ and Rf being the
radius of curvature:
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For the inner and outer facings, strain displacement relations are used as given in Ref. [21]. It is
clear from the above relations that the degrees of freedom (d.o.f.) are u0; v0;w0;cs;cy;fs and fy:
In the semi-analytical formulation, the circumferential variation of the seven variables (along y) is
expressed as a Fourier series,
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where ½%y� is defined as

½%y� ¼

c

s

c

c

s

s

c

2
666666666664

3
777777777775
; ð7Þ

where c ¼ cos ny; s ¼ sin ny; and where ‘n’ is the circumferential mode number, Ni are the shape
functions used in finite element formulation given by N1 ¼ ðx2 � xÞ=2; N2 ¼ 1� x2; N3 ¼
ðx2 þ xÞ=2; where x ¼ s=l is the iso-parametric axial co-ordinate and l is the length of the element.
Now one can write the displacement vector as fug ¼ ½N�fueg; where fug

T ¼ fuc vc wcg for the core
and fugT ¼ fu fo=fi v fo=fi w fo=fig for the facings. The strain vectors can be represented as feg ¼
fess eyy gsy gyz gszg ¼ ½B�fueg; where ½B� is the strain displacement matrix. The elemental stiffness
½Ke� and mass ½me� matrices are then obtained from the following:

½Ke� ¼
Z

v

½B�T½D�½B� dv; ½me� ¼ r
Z

v

½N�T½N� dv; ð8Þ

½D� ¼

%Q11 %Q12 %Q16 0 0

%Q22 %Q26 0 0

%Q66 0 0

Sym: %Q44

%Q55

2
6666664

3
7777775
; %Q ¼ ½T�T½Q�½T�; ð9Þ

where ½Q� is the elasticity matrix in the material co-ordinates, ½ %Q� is the transformed elasticity
matrix in global co-ordinates and ½T� is the standard transformation matrix. The elements of ½Q�
are given by Q11 ¼ EL=ð1� gLTgTLÞ; Q12 ¼ gTLQ11; Q22 ¼ ET=ð1� gLTgTLÞ; Q66 ¼ GLT ; Q44 ¼
GTZ; and Q55 ¼ GLZ: Numerical integration using Gauss quadrature scheme is carried out for
Eq. (8). If the same material is used for all the three layers, the above formulation will reduce to
first order shear deformation theory and if curvature is only in one direction, the shell becomes a
cylinder.

2.2. Fluid domain

A semi-analytical, eight noded, annular, isoparametric element is used for modelling the fluid
domain. The governing differential equation for the fluid region is the Laplace equation. Its finite
element form has velocity potential as the nodal d.o.f. The pressure in excess of hydrostatic
pressure, p; is associated with the motion of the fluid. This pressure is given by the Bernoulli’s
equation. Fig. 2 shows a typical discretization of the structure and fluid. The following
assumptions were made in deriving the equations: (1) the fluid flow is potential, (2) small
deformations for the structure, (3) flow is inviscid, irrotational and isentropic and fluid pressure is
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normal to the shell wall, (4) fluid is incompressible and (5) no flow separation or cavitation. The
mean pressure %p will be taken as a load acting normal to the inside shell surface. Further, the
velocity potential should satisfy the Laplace equation (in cylindrical co-ordinates):
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where f is the velocity potential and the boundary conditions. The weak form of Eq. (10) is used
to formulate the finite element matrices.

2.3. Coupled fluid–structure system

The radial velocity of the fluid must be equal to the instantaneous velocity of the shell. This will
satisfy the impermeability or dynamic boundary conditions, which ensures contact between the
shell and the fluid. This implies that the radial velocity of the fluid and structure are the same at
the interface:
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The dynamic pressure acting on the shell surface is given by Bernoulli’s equation for unsteady
flow,
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: ð12Þ

The weak form of the Laplace equation is used to formulate the finite element matrices. Making
use of Eq. (11) at the fluid–structure interface one obtainsZ
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where %N is the w component of the shell shape function and #n is the unit normal component of the
velocity potential to the structure. Similarly from Eq. (9), the pressure acting on the fluid–
structure interface can be converted to the finite element equationsZ
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Fig. 2. Typical discretization of structure (3 nodes) and fluid (8 nodes).
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Now the complete fluid–structure finite element equation is

Muu 0

0 0

" #
.u

.f

( )
þ

0 Cuf

�Cfu 0

" #
’u

’f

( )
þ

Kuu UxK
uf

�UxK
fu Hff

" #
u

f

( )
¼

0

0

( )
: ð15Þ

The second row of Eq. (15) yields the relation

ffg ¼ ½Hff��1½Cfu�f ’ug þ Ux½Hff��1½Kfu�fug: ð16Þ

The time derivative of potential is given by

f ’fg ¼ ½Hff��1½Cfu�f .ug þ Ux½Hff��1½Kfu�f ’ug þ ’Ux½Hff��1½Kfu�fug: ð17Þ

Substituting f and ’f in the structural equation, we get

½Muu þ CufHff�1

Cfu�f .ug þ Ux½CufHff�1

Kfu þ KufHff�1

Cfu�f ’ug

þ ½Kuu þ U2
xK

ufHff�1

Kfu þ ’UxK
ufHff�1

Kfu�fug ¼ 0: ð18Þ

The above equation can be written compactly as

½Mn�f .ug þ Ux½C
n�f ’ug þ ½½Kn� þ U2

x ½ *K� þ ’Ux½ *K��fug ¼ 0; ð19Þ

where ½ *K� ¼ ½KufHff�1Kfu�: The elemental structural mass matrix is me ¼ r
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global matrix on assembly being Muu elemental fluid–structure coupling matrices are Cuf
e ¼

rf

R
S

%NTNf dS and Cfu
e ¼

R
S
NT

f
%N dS; the elemental Coriolis fluid energy matrix normalized with

respect to mean flow velocity is Cff
e ¼ 2=c2

R
V
NT

f ð@Nf =@xÞ dV ; the structural stiffness matrix
Kuu

e ¼
R

V
BTDB dV : The elemental stiffness coupling matrices due to flow are Kuf

e ¼
rf

R
S

%NTð@Nf =@xÞ dS and Kfu
e ¼

R
S
NT

f ð@ %N=@xÞ dS and the matrix representing the kinetic energy
in a fluid element is Hff
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f rNf dV : In this case, an added mass term, an added damping
term due to potential formulation (Coriolis effect) and an added stiffness term due to stiffening by
the pressure acting on the walls (centrifugal force) is present. In the case of pulsating flow, the
velocity of flow is given as Ux ¼ U0ð1þ m cosOtÞ: Substituting this into Eq. (19), one gets
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2.4. Stability analysis

Friedmann and Hammond [23], had proposed an improved numerical integration scheme for
obtaining the transition matrix for large size problems. The transition or monodromy matrix is
calculated using a fourth order Runge–Kutta scheme with Gill coefficients. Eq. (20) can be written
as an equation of motion having time-dependent coefficients,

½M�f .xg þ ½CðtÞ�f ’xg þ ½KðtÞ�fxg ¼ 0: ð21Þ

The reduced equation is written in the state space form as

f’vg ¼ ½AðtÞ�fvg ¼ ff ðt; vÞg; ð22Þ
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where

½AðtÞ� ¼
0 I

�½M��1½KðtÞ� �½M��1½CðtÞ�

" #
and fvg ¼

x
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( )
:

The Floquet–Liapunov theory states that knowledge of the state transition matrix over one period
is sufficient in order to determine the stability of a periodic system, Eq. (22), where ½AðtÞ� ¼
½Aðt þ TÞ� is the periodic matrix. The Floquet–Liapunov theorem provides extremely valuable
information about the form and properties of the solution, even though it does not yield a
solution. The knowledge of the transition matrix over one period determines the solution to the
homogeneous system. The stability criteria for the system is derived from the real parts of
eigenvalues of the transition matrix. If the magnitude of the eigenvalues is less than 1 the system is
stable, else the system is not stable.
The fourth order Runge–Kutta method with Gill coefficients has been used by Friedmann and

Hammond [23] to generate the monodromy or transition matrix based on integration over one
time period T :
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3. Model reduction

The stability analysis of the shell conveying pulsating fluid could not be carried out on the full
model, irrespective of the mesh size and time step used because of the numerical overflow
problem. The method suggested by Friedmann and Hammond [23] for stability analysis involves a
large number of multiplications and therefore numerical problems such as overflow errors occur.
This problem could not be overcome even with lesser number of elements and larger number of
time steps. However, to ensure a reasonable accuracy of results for complex structures, coarse
discretization may not be sufficient. It is clear that in order to study the stability of a pipe
conveying pulsating fluid discretized using the finite element method, a full model cannot be used.
Therefore, there exists a need to reduce the size of the problem. To achieve this goal a co-ordinate
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transformation to the modal domain is made using the first few eigenvectors of the time invariant
system. This reduces the number of d.o.f. of the system, without losing the stability information.
In the present case, the free vibration mode shape of the steady flow case (linear time invariant
part of Eq. (20)) is chosen for transforming the system to the modal co-ordinates. The finite
element equation of the steady flow pipe without considering damping is

½Mn�f .ug þ Kn þ U2
0 1þ

m2

2

� �
*K

� �
fug ¼ f0g: ð28Þ

Using the LAPACK [24] routine DSYGV, the eigenvectors ½c� of Eq. (28) are found. These
eigenvectors are orthogonal with respect to ½Mn� and ½Kn þ U2

0 ð1þ m2=2ÞF�: Using the
transformation u ¼ ½c�fxg in the full Eq. (20) and pre-multiplying by ½cT� the resulting matrix
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m
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Here the matrix ½Mr� is the identity matrix, but ½CrðtÞ� and ½KrðtÞ� are not diagonal matrices.
However, the matrices are now considerably smaller when compared to the original problem. Due
to these reasons the numerical computation should not pose any difficulties. Further during the
normalization process, the stiffness coefficients become much smaller (from Oð109Þ to Oð103Þ and
mass coefficients increase from Oð10�3Þ to Oð1Þ:

4. Validation

Chen’s [3] book on flow-induced vibration presented a detailed investigation of the flow-
induced vibration of cylindrical structures, while Pa.ıdoussis [6] presented the static and dynamic
instabilities of pipes conveying fluids. Both assume an incompressible, inviscid, isentropic plug
flow. Their formulation for the structure is based on Euler beam theory. In the present shell
formulation, the degrees of freedom in the radial and circumferential directions are decoupled by
the use of the semi-analytical technique. Hence the results for the circumferential mode n ¼ 1
which corresponds to the beam mode, is validated with those of Pa.ıdoussis [6] which is also
referenced in Refs. [3,5,25]. These results are for two different values of non-dimensional
parameter b with the clamped–clamped boundary condition. The parameter b represents the ratio
of the fluid mass to the sum of structural and the fluid masses. Using the shell formulation, results
are generated for the clamped–clamped boundary condition and for the same b values (b ¼ 0:1
and b ¼ 0:8). These are shown in Figs. 3 and 4. These figures show the dimensionless flow velocity
u versus the dimensionless frequency o=o0; where o is the frequency of the structure in rad=s; o0

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=ðm þ mf ÞL4Þ

p
and u is Ux=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=mf L2Þ

p
where Ux is the flow velocity in m=s; m is mass per

unit length of pipe ðkg=mÞ; mf is the mass per unit length of fluid ðkg=mÞ and L is the length of
pipe in meters. For b ¼ 0:1; the divergence occurs first when the flow velocity reaches 6.28 and if
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the flow velocity is increased further the second mode divergence occurs at flow velocity of 8.99.
Upon further increasing the flow velocity the first and second mode frequencies increases together
and joins with the third mode. Coupled mode flutter occurs here. The first mode then decreases to
zero and the second and third move together to the fourth mode. In the case of b ¼ 0:8; there is a
stability region between u ¼ 8:99 and 9.6. From both the figures, it is clear that the present
formulation provides excellent agreement with the results of Pa.ıdoussis [6]. It must be pointed out
that not only do the curves match well but the various physical phenomena that occur in these
results have been correctly predicted by the current shell formulation. This then validates the use
of the shell formulation.
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Ginsberg [2] derived the differential equation for pipes conveying pulsating fluid. He used a
two-mode Galerkin approximation considering the pipe as a beam. In the present study, the
effects of the axial acceleration as discussed in Ref. [1] are not considered. The comparison of
stability results with those of Ginsberg [2] is shown in Fig. 5. The scattered points which look like
thick vertical lines corresponds to the present formulation while the dotted lines show Ginsberg’s
results. The present formulation predicts the almost the same instability regions as in Ref. [2].
Deviations in the results can be attributed to the fact that the mode shapes used to reduce the
problem size in the present formulation includes the fluid–structure interaction effects, while
Ginsberg’s model is based only on the structural mode shape. One can state that the present result
is more realistic.

5. Stability—eigenvector relationship

The influence of an eigenvector on the instability of the original system when it is reduced to a
single-degree-of-freedom (s.d.o.f.) system based on that eigenvector is examined. The first
five eigenvectors are selected for this and the results of these s.d.o.f. simulations are shown in
Figs. 6–11, respectively. It is clear that the primary parametric instability is almost completely
predicted by the first mode. The second and third modes show instability regions around O ¼ 8:
Of course, this is very strong for mode 2. Mode 3 exhibits strong instability around O ¼ 16:
Fig. 11 shows the instability of the system when these results are simply combined in one graph.
Comparing Figs. 6–11 it is clear that they are almost the same. This implies that instability can be
studied through several s.d.o.f. models for this system.
Figs. 12 and 13 show the instability region for the first mode for a value of m ¼ 0:8: It is

observed as expected that the instability region widens with a larger amplitude of fluctuation. One
can use the finite element method to model the structure and the first few mode shapes (number
depending on the excitation frequency) can be used for the co-ordinate transformation, which will
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Fig. 5. Comparison of the results of Ginsberg with the present results for stability of the first mode: ’; present; - - -,
Ginsberg [2].
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make the problem size very small. In the modal domain also, the first degree of freedom
corresponds to the first instability mode, the second degree of freedom for the second and so on. It
is seen from Fig. 14 that the coupling effect is very weak in the case of m ¼ 0:8 also.

6. Other transformations

Instead of eigenvectors, Ritz vectors and Lanczos vectors are used for the transformation to
reduce the size of the matrix. These are carried out believing that the information of more than
one mode will be present in the transformed matrix with lesser number of Ritz/Lanczos vectors.
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Fig. 7. Stability boundaries for the second mode approximation with m ¼ 0:4:

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6

7

8

u

Ω
/ω

1

Fig. 6. Stability boundaries for the first mode approximation with m ¼ 0:4:
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However, the eigenvalues of the resulting matrix are not preserved with these types of
transformations. Therefore, the instability boundaries, which depend on the eigenvalues also, are
inaccurate. When the loading pattern for the Ritz vector corresponds to the first mode shape of
the system, the subsequent Ritz vectors generated also correspond to the subsequent eigenvalues
of the system. Hence the instability is predicted correctly. It is concluded from this study that only
those transformations, which preserve the eigenvalues are useful for the stability analysis. In order
to further verify this a linear combination of the eigenvectors is used for the transformation. The
first two eigenvectors are combined as 0:5c1 þ 0:5c2 and used to transform the matrix, where c1

and c2 are the eigenvectors corresponding to the first two eigenvalues. In this case, the results
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Fig. 8. Stability boundaries for the third mode approximation with m ¼ 0:4:
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Fig. 9. Stability boundaries for the fourth mode approximation with m ¼ 0:4:

J. Kochupillai et al. / Journal of Sound and Vibration 262 (2003) 633–649 645



converge to fictitious eigenvalues, which do not represent the eigenvalues of the real system.
Hence they cannot provide the correct instability boundaries.

7. Conclusions

A new efficient technique for the parametric instability analysis of complex shell structures
conveying pulsating fluid is developed. The model is based on an elastic finite element formulation
which has been validated with the published results. The reduced order model obtained using
modal reduction has been successfully applied to the prediction of stability in a pipe conveying
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Fig. 10. Stability boundaries for the fifth mode approximation with m ¼ 0:4:
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Fig. 11. Stability boundaries for the 5-d.o.f. reduced system with m ¼ 0:4:
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pulsating fluid. The few retained modes preserve the exact stability information of the pipe
conveying pulsating fluid. Based on the results of simulation, it can be concluded that modal
reduction can be used to alleviate the problem of large dimensionality resulting from the finite
element discretization of complex structures. Other transformations for model reduction are
looked into. It is understood that only the transformation, which preserves the eigenvalues, is
useful for stability analysis. Another inference is that each of the decoupled s.d.o.f equations can
be used for stability analysis corresponding to that particular eigenvalue. In the case of fluid–
structure interaction problems, complex modal reduction would be expected to produce results
that are more accurate and will be a useful extension to the present work. In complex modal
reduction, the effect of the damping term, which represents the Coriolis effect of the fluid, is also
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Fig. 12. Instability region for first mode with m ¼ 0:8:
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Fig. 13. Instability region for second mode with m ¼ 0:8:
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included in the eigenvalues problem. Therefore, it may be a more accurate representation of the
real problem.
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