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1. Introduction

Milling is a complex dynamic process that includes periodic impacts of the cutting teeth with
the workpiece, corresponding vibrations of the cutter and workpiece that define the machined
surface, and overcutting of the surface left by previous teeth by the current tooth. The removal of
the undulating surface produced by the preceding tooth with the current tooth is referred to as
regeneration of waviness and is a primary source of instability in milling [1]. Regeneration of
waviness leads to a variable chip thickness and, therefore, variable cutting force which causes, in
turn, vibrations of the tool and workpiece. This closed-loop feedback of force and vibration
provides the mechanism for self-excited vibration, or chatter. Depending on the selected chip
width (for a particular dynamic system, cutter geometry, and workpiece material), the subsequent
vibrations of the cutter can diminish for stable cutting, or increase to some bounded limit for
chatter. A schematic representation of a 50% radial immersion down-milling operation is shown
in Fig. 1.

Because the variable cutting force can become large and the machined surface quality is poor, it
is desirable to avoid unstable milling conditions. An important analytic tool that has been
developed to aid in the selection of stable cutting parameters is the stability lobe diagram [2–6].
These diagrams allow the user to select appropriate combinations of the control parameters, chip
width and spindle speed, by separating stable from unstable regions with the analytic ‘lobes’; see
Fig. 2. The construction of these diagrams requires pre-process knowledge including the tool
point frequency response function, expected radial immersion, and specific cutting energy
coefficients that depend on the workpiece material, tool geometry, and cut parameters.

In many instances, the calculation of optimum milling conditions using stability lobes diagrams
for each tool/holder/spindle/machine/material combination on the shop floor is not possible due
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to inadequate engineering support. In these situations, the need to rapidly identify stability
behavior using methods that do not require an extensive background in vibration theory
increases. One available pre-process option is the Harmonizert system [7] that calculates the fast
fourier transform (FFT) of the time-based audio signal collected during unstable milling.1 The
resulting spectrum is comb filtered to remove the tooth passing frequency and higher harmonics.
The dominant chatter frequency, fc (in Hz), can then be identified from the filtered spectrum and
the most stable spindle speeds selected according to Eq. (1), where Oj is the spindle speed (in
revolutions/min or r.p.m.) corresponding to the jth lobe, j is the integer lobe number, and Nf is the
number of flutes on the cutter:

Oj ¼
60fc

jNf

; j ¼ 1; 2; 3y : ð1Þ

Although the in-process method described here does not offer the diagnostic capability of
identifying alternate stable spindle speeds without additional signal processing, it does sense
chatter using a much less computationally intensive procedure, i.e., a simple statistical
interrogation of the time-based signal versus the frequency-domain FFT and subsequent filtering,
and operates on a much smaller data set. Specifically, only one sample per spindle revolution is
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Fig. 1. Fifty per cent radial immersion milling schematic; cutter rotation is clockwise.
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Fig. 2. Example stability lobe diagram showing separation between stable and unstable cutting conditions as a function

of allowable chip width and spindle speed.

1Commercial equipment is identified in order to adequately specify certain procedures. In no case does such

identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does

it imply that the equipment identified is necessarily the best available for the purpose.
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required versus the tens of kiloHertz sampling rates necessary to avoid aliasing in the FFT
analysis. Additionally, it is not necessary to analyze the entire frequency spectrum within the
selected bandwidth to search for and identify any offending chatter frequencies; it is only required
that a single scalar quantity, the variance in the synchronously sampled cutting data, be
considered. These benefits make it a prime candidate for real-time, remote condition-based
monitoring of milling process stability. Other efforts in the general area of condition-based
monitoring of machines and structures include both time and frequency domain techniques.
Example references are included for further reading [8–16].

2. Theory

The notion of a statistical evaluation of the once-per-revolution milling audio signal to detect
chatter is based on Poincar!e mapping techniques, where a local description of transient behavior
is constructed from the Poincar!e map and the system stability may be established [17]. For milling,
the stability can be evaluated by plotting the x direction versus y direction tool motions and
identifying the once-per-revolution sampled data points [18]. For stable cutting, the
synchronously sampled points approach a fixed point for the Poincar!e map after some initial
transients and, thus, provide a tight distribution. Physically, this means that, although the tool is
vibrating in the two orthogonal directions, the motions are synchronous with spindle rotation and
the tool is returning to approximately the same position in each revolution under steady state
conditions. In contrast, tool motions during regenerative chatter are not synchronous with spindle
rotation; instead, they occur near the natural frequency corresponding to the most flexible system
mode due to the nature of self-excited vibrations. For these unstable cuts, the tool does not return
to the same position each revolution. Rather, the once-per-revolution sampled distribution can
tend toward an elliptical shape due to the quasi-periodic nature of chatter. The two cases are
shown in Figs. 3 and 4. In both instances, simulated x and y direction tool motions, as well as the
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Fig. 3. Fifty per cent radial immersion stable cutting example.
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synchronously sampled data pairs, are plotted for a 50% radial immersion down-milling
operation. In Fig. 3, the axial depth of cut (i.e., the chip width or cutting depth along the tool axis
for end milling) is below the critical limit and stable cutting is observed. In Fig. 4, however, the
axial depth is above the critical limit and chatter occurs. Figs. 5 and 6 show histograms for the
synchronously sampled y direction tool motions in Figs. 3 and 4, respectively. It is clear that the
two distributions differ dramatically with the stable cut showing a tight distribution and the
unstable cut a wider spread.

Given the different distributions for the synchronously sampled data, it is possible to
distinguish between stable and unstable cutting conditions using only a once-per-revolution
process signal with adequate signal-to-noise ratio and some performance metric. In this study, the
selected metric was the variance in the synchronously recorded milling audio signal [19]. Variance
was selected because it provides a measure of the spread in a sample distribution. The variance, s2,
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Fig. 4. Fifty per cent radial immersion unstable cutting example.
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Fig. 5. Histogram of once-per-revolution points for stable 50% radial immersion cut.
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of the sample distributions consisting of N values, xi, was calculated according to Eq. (2), where
xm is the mean or arithmetic average of the samples [20]:

s2 ¼
PN

i¼1ðxi � x2
mÞ

N � 1
; where xm ¼

PN
i¼1 xi

N
: ð2Þ

The decision to use the milling audio signal, obtained by placing a unidirectional microphone in
the machine tool enclosure during machining was based on several considerations [21]. First, it is
possible to place the sensor in reasonable proximity to the process. This limits the filtering effects
of components between the process and sensor (e.g., distortion of the cutting signal by the
machine tool structure before it reaches a remotely placed vibration sensor). Second, only one
sensor is required to fully diagnose the process stability. Third, improved sensitivity to chatter in
situations of low force or radial immersion compared to force-based sensors has been
demonstrated [21].

3. Experimental results

In this section, a description of the experiment set-up and cutting tests parameters is provided.
This is followed by the analysis methods applied to the milling audio signal. The methods include
recording the once-per-revolution audio signal using: (1) an infrared emitter/detector pair, (2) the
actual spindle speed, and (3) the commanded spindle speed. The latter two were explored in an
effort to simplify the test set-up.

3.1. Set-up

The experimental set-up for implementation of the audio signal variance condition-based
monitoring for milling process stability is shown in Fig. 7. The required hardware, which was
mounted on a high-speed, horizontal spindle (20 000 r.p.m./20 kW) machining center, included
a unidirectional microphone (Optimus 33-30231) mounted inside the machine enclosure,
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Fig. 6. Histogram of once-per-revolution points for unstable 50% radial immersion cut.
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microphone amplifier (PCB 482A171), once-per-revolution signal generator comprised of an
infrared emitter/detector pair and reflective tool mark, and a digital oscilloscope for collection of
the time-based audio and once-per-revolution signals.

A preferred set-up for industrial applications would include use of the microphone and access
to the spindle encoder’s once-per-revolution signal to trigger audio data collection, employing
available data acquisition channels in the machine tool controller or a data acquisition card in a
local computer with network connections. This once-per-revolution data could then be
represented in a local and/or remote real-time display that includes the instantaneous variance
value and a continuously updated histogram, similar to the frequency-based LED output seen in
various stereo equalizers [22], to indicate the process stability. The identification of chatter using
data represented in this manner would require no knowledge of the machine dynamics, specific
cutting energy coefficients, process parameters, or vibration theory and could potentially provide
condition-based monitoring capabilities for stability of milling processes.

The 50% radial immersion down-milling cutting tests were performed using a 12.7mm
diameter, two flute, helical carbide end mill with a 44mm overhang. The workpiece material was
selected as 6061-T6 aluminum, although other materials could also be chosen. Twenty-five cutting
tests were performed covering spindle speeds from 14 000 to 18 000 r.p.m. (1000 r.p.m. steps) and
axial depths from 2.03 to 5.08mm (0.76mm steps). In all cases, a constant feed per tooth of
102 mm was maintained. The microphone and once-per-revolution data were obtained using the
set-up shown in Fig. 7. The microphone signal was analog low-pass filtered at 7 kHz and both the
microphone and once-per-revolution signals were collected using a sampling frequency of 50 kHz.

3.2. Analysis

The first analysis method applied to the audio milling signal was to calculate the variance in the
once-per-revolution values obtained using the infrared emitter/detector pair. The variance value
in mV2 for each cutting test (i.e., each spindle speed/axial depth combination) is shown in Fig. 8.
A dramatic increase in variance of 48 to 709mV2 is seen for the transition from 2.79 to 3.56mm
axial depth at 15 000 r.p.m. Larger depths of 4.32 and 5.08mm also show increasing variance

Fig. 7. Set-up for cutting tests showing microphone and infrared emitter/detector pair.
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values. These large values indicate an increase in the spread of the data and identify unstable
cutting conditions (the unstable cuts are denoted by the heavy grid lines in Fig. 8). All other
spindle speed/axial depth combinations are stable, exhibiting small variance values. These results
agree with independent evaluations of the process stability including surface finish measurements
of the machined workpiece using a scanning white-light interferometer and FFT-based analyses of
the milling audio signal (descriptions of the FFT analysis method are provided in Refs. [23–25]).

In condition-based monitoring applications, it is generally preferred to simplify the architecture
of the sensor(s) and required hardware as much as possible to improve the monitoring system
robustness [26]. Toward that end, the next analysis technique applied was to calculate the variance
in the once-per-revolution values obtained using the actual spindle speed to generate an artificial
once-per-revolution trigger, rather than the infrared emitter/detector pair. For this situation, the
only hardware required is the microphone; however, the actual spindle speed must also be
determined by some method, most likely using the spindle encoder signal.

For our purposes, the actual spindle speed was determined using the infrared emitter/detector
signal. The FFT of the emitter/detector signal was calculated and the frequencies of the
fundamental and first five harmonics (the impulsive once-per-revolution signal generates multiple
harmonics with significant amplitudes) were recorded. The actual spindle speed was calculated
from the average speed predicted by the six frequencies in order to reduce the effect of sampling
errors (e.g., leakage):

nr ¼
60

O
fs: ð3Þ

The time-based microphone data were then analyzed by calculating the number of samples per
spindle revolution, nr, from the actual spindle speed in r.p.m. and the digital sampling frequency,
fs, of 50 kHz (Eq. (3)) and using this value to periodically sample the vector of sound pressure
amplitudes previously recorded by the unidirectional microphone. Because nr was not, in general,
an integer value, it was necessary to linearly interpolate between adjacent samples. For example, a

Fig. 8. Variance values in mV2 for cutting tests using emitter/detector pair once-per-revolution trigger.
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spindle speed of 16 000 r.p.m. sampled at 50 kHz gives 187.5 samples/revolution. This would
require sampling the microphone signal at index values of 187.5, 375, 562.5, 750, etc., or some
similar combination. Since it is not possible to record index number 187.5, an approximate value
was obtained by interpolating between values number 187 and 188. The variance values for the 25
cutting tests are shown in Fig. 9. Similar results to those shown in Fig. 8 are seen.

The final procedure employed to analyze the microphone signal was to use the nominal spindle
speed directly to provide the synchronous sampling. Again, linear interpolation was applied when
the number of samples per revolution was not an integer value. The resulting variance is shown in
Fig. 10. It is seen that the values are somewhat higher due to the slightly asynchronous trigger, but
the large relative increases in variance are still available to indicate the transition from stable to
unstable cutting. This particular implementation requires only the unidirectional microphone, a
single channel of data acquisition, simple data processing to calculate the variance based on the
nominal spindle speed, and a real-time display to provide condition-based monitoring of the
milling stability.

4. Conclusions

A chatter detection technique for condition-based monitoring of milling process stability, based
on the statistical variance in the once-per-revolution milling audio signal, is described. This
method uses the synchronous and asynchronous nature of stable and unstable cuts, respectively,
to identify regenerative chatter. Specifically, it relies on the fact that stable cuts generate content
synchronous with spindle rotation and, therefore, the once-per-revolution milling signal is
characterized by a tightly spaced cluster of values with a corresponding low variance. Unstable
cuts caused by regenerative chatter, however, demonstrate asynchronous motion and give a more
distributed set of once-per-revolution values with a subsequently larger variance. A comparison of

Fig. 9. Variance values in mV2 for cutting tests using synthetic actual spindle speed once-per-revolution trigger.
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variance values for a number of stable and unstable cuts was completed for various strategies in
obtaining the once-per-revolution trigger, which included: (1) obtaining the once-per-revolution
signal using a locally derived trigger; (2) generating a synthetic once-per-revolution sampling
trigger using the actual spindle speed; and (3) producing the once-per-revolution signal from the
nominal (commanded) spindle speed. In all cases, the calculated variance values detected the
transition from stable to unstable cutting.
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