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Abstract

The dynamic behaviors of the rotational machine with a hexagonal centrifugal governor which is
subjected to external disturbance are studied in the paper. The Lyapunov direct method is applied to obtain
conditions of stability of the equilibrium points of system. By applying numerical results, phase diagrams,
power spectrum, Poincar!e maps, and Lyapunov exponents are presented to observe periodic and chaotic
motions. The effect of the parameter changes in the system can be found in the bifurcation and parametric
diagrams. Finally, eight methods are used to control chaos effectively.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

During the past two decades, a large number of studies have shown that chaotic phenomena are
observed in many physical systems that possess non-linearity [1–3]. The centrifugal governor is a
device that automatically controls the speed of an engine and prevents the damage caused by a
sudden change of load torque. It plays an important role in many rotational machines such as
diesel engine, steam engine and so on. When an engine system is subjected to external
disturbances, the speed of the engine will vary. In order to diminish the change of engine speed,
and avoid the chaotic motion emerging in the operational process of the engine, in this paper the
regular and chaotic dynamics of a rotational machine with centrifugal governor that is assumed to
have the periodic external disturbance is studied in detail.
The aim of this paper is to present the detailed dynamics of this mechanical system. A lot of

modern techniques are used in analyzing the deterministic non-linear system behavior. Both
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analytical and computational methods such as phase diagrams, power spectrum, Poincar!e maps,
Lyapunov exponents, bifurcation diagram and parametric diagram are employed to obtain the
characteristics of the non-linear system. Finally, attention is shifted to the control chaos. For this
purpose, several methods, i.e., the addition of constant motor torque, the addition of periodic torque,
using periodic impulse input as a control torque, the delayed feedback control, external force
feedback control, bang–bang control, optimal control and adaptive control algorithm are used.

2. Equations of motion

The rotational machine with centrifugal governor is depicted in Fig. 1. Some basic assumptions
for the system are:

1. neglecting the mass of the rods and the sleeve;
2. viscous damping in rod bearing of the fly-ball is represented by damping constant c:

From Fig. 1, the kinetic and potential energies of the system are written as follows:

T ¼ 2� 1
2

m ðr þ l sin fÞ2Z2 þ l2 ’f2
� �� �

¼ mZ2ðr þ l sin fÞ2 þ ml2 ’f2;

V ¼ 2kl2ð1� cos fÞ2 þ 2mglð1� cos fÞ;

where l; m; r and f represent the length of the rod, the mass of fly ball, the distance between the
rotational axis and the suspension joint, and the angle between the rotational axis and the rod. It
is easy to obtain the Lagrangian

L ¼T � V ¼ mZ2ðr þ l sin fÞ2 þ ml2 ’f2 � 2kl2ð1� cosfÞ2 � 2mglð1� cosfÞ:

Then using Lagrange equation, the equation of motion for the governor can be derived as follows:

2½ml2 .f� mrlZ2cosf� ð2k þ mZ2Þl2sin f cosfþ ð2kl þ mgÞl sin f� ¼ �c ’f; ð2:1Þ

where c is the damping coefficient.

Fig. 1. Physical model of the system.
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For the rotational machine the net torque is the difference between the torque Q produced by
the engine and the load torque QL; which is available for angular acceleration, that is,

J
do
dt

¼ Q � QL; ð2:2Þ

where J is the moment of inertia of the machine. As the angle f varies, the position of
control valve which admits the fuel is also varied. The dynamical Eq. (2.2) can be written in
the form

J ’o ¼ g cos f� b; ð2:3Þ

where g > 0 is a proportionally constant and b is an equivalent torque of the load. Eq. (2.3) is the
second differential equation of motion for the system.
Usually, the governor is geared directly to the output shaft such that its speed of rotation is

proportional to the engine speed, i.e., Z ¼ no: The operation of the fly-ball governor can be briefly
described as follows. At first, set the speed of engine at o0: If the speed of engine drops down, the
centrifugal force acting on the fly-ball would decrease, thus the control valve of fuel will open
wider. When more fuel is supplied, the speed of the engine increases until equilibrium is again
reached. Similarly, if the speed rises up, the fuel supply is reduced and the speed decreases until o0

is recovered.
Change time scale t ¼ Ont; Eqs. (2.1) and (2.3) can be written in non-dimensional form

’f ¼ j;
’f ¼ do2 cos fþ ðe þ po2Þ sin f cos f� sin f� bj;

’o ¼ q cos f� F ;

ð2:4Þ

where

q ¼
g

JOn

; F ¼
b

JOn

; d ¼
n2mr

2kl þ mg
; e ¼

2kl

2kl þ mg
;

p ¼
n2ml

2kl þ mg
; b ¼

c

2ml2On

; On ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kl þ mg

ml

r
;

and the dot presented the derivative with respect to t; j is df=dt: Hence, the dynamics of the
system of rotational machine with fly-ball governor is described by a three-dimensional
autonomous system.

3. Stability analysis by Lyapunov direct method

Find the equilibrium points of the system and determine the stability of them. These
equilibrium points can be found from Eq. (2.4) as pe ¼ ðf0; 0; o0Þ with

cos f0 ¼
F

q
; o2

0 ¼
ðq � eF Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2

p
Fðdq þ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2Þ

p :
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Add slight disturbances x; y; z to the equilibrium point ðf0; 0, o0)

f ¼ f0 þ x; j ¼ y; o ¼ o0 þ z: ð3:1Þ

Substituting Eq. (3.1) into Eq. (2.4), and expanding to Taylor series, it becomes

’x ¼ y;

’y ¼ �Ax � By þ Cz þ?;

’z ¼ �Dx þ?;

ð3:2Þ

where

A ¼ fo2
0 ½dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2

p
� pð2F2 � q2Þ� þ qF � eð2F2 � q2Þg=q2;

B ¼ b;

C ¼ 2o0F ðdq þ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2

p
Þ=q;

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2

p
:

and the terms higher than one degree have not been written down. Let q > F > 0; then A > 0;
B > 0; C > 0 and D > 0:
First, asymptotical stability of the origin of Eq. (3.2) can be studied by using Lyapunov direct

method. Construct the quadratic Lyapunov function candidate in the form

V ðx; y; zÞ ¼ A11x
2 þ A22y

2 þ A33z
2 þ 2A12xy þ 2A13xz � 2yz:

Let pi (i ¼ 1; 2; 3) be the principal minor determinants of the characteristic matrix of the quadratic
form, then

p1 ¼ A11;

p2 ¼ A11A22 � A2
12;

p3 ¼ A11A22A33 � 2A12A13 � A11 � A22A
2
13 � A33A

2
12:

By Sylvester’s criterion [4], V is positive definite if and only if that all pi are positivee:

A11 > 0;

A11A22 � A2
12 > 0;

A11A22A33 � 2A12A13 � A11 � A22A
2
13 � A33A

2
12 > 0:

The derivative of V with respect to t is given by

’V ¼ � 2ðAA12 þ DA13Þx2 þ ð2A12 � 2CA22Þy2 � 2Bz2 þ ð2A11 � 2AA22 � 2CA12 þ 2DÞxy

þ ð2A þ 2BA12 � 2DA33Þxz þ ð2C þ 2A13 þ 2BA22Þyz þy :

Z.-M. Ge, C.-I. Lee / Journal of Sound and Vibration 262 (2003) 845–864848



Now, it is necessary to choose A11; A22; A33; A12 and A13 such that V and � ’V are positive
definite. Let

A11 ¼
AC þ A2C þ B2C þ BC2D þ B3D þ CD2

AB � CD
;

A22 ¼
C þ AC þ BD

AB � CD
;

A33 ¼
A2B þ BC2 � ACD þ C3D þ B2CD

ABD � CD2
;

A12 ¼
BC þ B2D þ C2D

AB � CD
;

A13 ¼
C2þAB2 AC2

CD � AB
:

Then

’Vðx; y; zÞ ¼ �Bðx2 þ y2 þ z2Þ þ?

is negative definite. By Sylvester’s theorem, the sufficient condition for V to be positive definite is
founded:

AB > CD;

i.e.,

b >
2qF ½d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2

p
þ pðq2 � F2Þ�

o0½d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � F2

p
� pð2F2 � q2Þ� þ qF � eð2F2 � Q2Þ

: ð3:3Þ

From the Lyapunov asymptotic stability theorem, we conclude that the origin is asymptotically
stable. Furthermore. The result is the same as analysis by a linearized system.
For the given range for disturbance e; we can find the allowable range for the initial

disturbances O by the Lyapunov function. Let

R2 ¼ x2 þ y2 þ z2:

Using the method of Lagrange’s multiplier, we form Lagrange’s function L ¼ R2 þ lV : From

@L

@x
¼ 0;

@L

@y
¼ 0;

@L

@z
¼ 0;
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we have

l1 ¼
�u2

3u3
�

ffiffiffi
2

3
p

ð�u22 þ 3u1u3Þ

ð�2u32 þ 9u1u2u3 � 27u23 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�u22 þ 3u1u3Þ

3 þ ð�2u32 þ 9u1u2u3 � 27u23Þ
2

q
Þ1=3

þ
ð�2u32 þ 9u1u2u3 � 27u23 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�u22 þ 3u1u3Þ

3 þ ð�2u32 þ 9u1u2u3 � 27u23Þ
2

q
Þ1=3

3�
ffiffiffiffiffiffiffi
2u3

3
p ;

l2;3 ¼
�u2

3u3
þ

ð17
ffiffiffi
3

p
iÞð�u22 þ 3u1u3Þ

ð�2u32 þ 9u1u2u3 � 27u23 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�u22 þ 3u1u3Þ

3 þ ð�2u32 þ 9u1u2u3 � 27u23Þ
2

q
Þ1=3

�
ð18

ffiffiffi
3

p
iÞð�2u32 þ 9u1u2u3 � 27u23 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�u22 þ 3u1u3Þ

3 þ ð�2u32 þ 9u1u2u3 � 27u23Þ
2

q
Þ1=3

6�
ffiffiffi
2

3
p

u3
;

where

u1 ¼ A11 þ A22 þ A33;

u2 ¼ �1þ A11A22 þ A11A33 þ A22A33 � A2
12 � A2

13;

u3 ¼ �A11 þ A11A22A33 � A33A
2
12 � 2A12A13 � A22A

2
13:

When l ¼ l1; we have

x ¼ x; y ¼ z ¼ 0:

Putting these in V ¼ c; we have x ¼ xðcÞ ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffi
c=A11

p
: Similarly, for l2;3 we have x ¼ xðcÞ; y ¼

yðcÞ; z ¼ zðcÞ: Putting all these solutions in R2; we obtain R2
xðcÞ; R2

yðcÞ; R2
zðcÞ; of which the

minimum is

R2
minðcÞ ¼ minfR2

xðcÞ;R
2
yðcÞ;R

2
zðcÞg:

Taking e ¼ R2
minðcÞ; we have the inverse function c ¼ R2�1

minðeÞ: Let O ¼ Rmin=
ffiffiffi
3

p
; then V ¼ c is

inside of the hypersurface maxfx; y; zg ¼ O: So we have, for given e;

O ¼
Rminffiffiffi

3
p :

Next, the stability of the fixed point ðf0; 0;�o0Þ is studied. The differential equations for
disturbances are

’x ¼ y;

’y ¼ �Ax � By � Cz þ?;

’z ¼ �Dx þ?;

ð3:4Þ

where A;B;C;D are the same as above.
In order to determine the instability of the origin of Eq. (3.4), the quadratic Lyapunov function

candidate is assumed in the form

Vðx; y; zÞ ¼ �ðA þ DÞx2 � y2 þ
A

D
z2 � ðB þ CÞxy � yz:
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The derivative V with respect to t along the trajectories of system is given by

V ¼ 2ðBD þ CDÞx2 þ 2Cy2 þ 2Bz2 þ?

which is positive definite. There exists the region V ðx; y; zÞ > 0 in the neighborhood of the origin of
Eq. (2.2.8). Its boundaries in the y–z plane are

y ¼
�D þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AD þ D2

p
D

z or y ¼
�D �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AD þ D2

p
D

z;

in the x–z plane are

x ¼
�ðB þ CÞD þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB þ CÞ2D2 þ ADðA þ DÞ

q
DðA þ DÞ

z

or

x ¼
�ðB þ CÞD �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðB þ CÞ2D2 þ ADðA þ DÞ

q
DðA þ DÞ

z:

So, by Lyapunov instability theorem, the origin is unstable.

4. Regular and chaotic dynamics of non-autonomous system

In previous sections, the load torque is assumed to be constant for the system. Another
condition can be considered. The load torque is now not constant but is represented by a constant
term and a harmonic term F þ a sin %ot; where F ; a;o are constants. Denoting f ¼ x; ’f ¼
y;o ¼ z; Eq. (2.4) is rewritten in the form

’x ¼ y;

’y ¼ dz2 cosx þ 1
2
ðe þ pz2Þsin2x � sinx � by;

’z ¼ q cosx � F � a sin %ot;

ð4:1Þ

where d ¼ 0:08; e ¼ 0:8; p ¼ 0:04; F ¼ 1:942; a ¼ 0:6; b ¼ 0:4; o ¼ 1:0:

4.1. Phase portraits, Poincar!e map and power spectrum

The phase portrait is the evolution of a set of trajectories emanating from various initial
conditions in the state space. When the solution reaches a steady state, the transient behavior
disappears. The idea of transforming the study of continuous systems into the study of an
associated discrete system was presented by Henri Poincar!e. One of the many advantages of the
Poincar!e map is to reduce dimensions of the dynamical system. The solution of period-1T in the
phase will become one point in the Poincar!e map. By using the fourth order Runge–Kutta
numerical integration method, the phase plane and Poincar!e map of the system, Eq. (4.1), is
plotted in Figs. 2(a) and 2(b) for q=2.07 and 2.14, respectively. Clearly, the motion is periodic.
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But Figs. 2(c) and (d) for q=2.21 show the chaotic states. Because the Poincar!e map is neither a
finite set of points nor a closed orbit, the motion may be chaotic.
A valuable technique for the identification and characterization of the system is the power spectrum.

This representation is useful for dynamical analysis. The periodic motion of the non-autonomous
system is observed by the portraits of power spectrum in Fig. 3(a) for q=2.07. The solution of the
system, is period-1T, and the power spectrum exhibits a strong peak at the forcing frequency together
with super-harmonic frequencies. As the q increase, the period-1T changes to period-2T and the peak
arises at one-half forcing frequency, twice of principal period in the power spectrum.
Apparently, the spectrum of the period motion only consists of discrete frequencies. As q=2.21

chaos occurs, the points of Poincar!e map become obviously irregular. The spectrum is a broad
band and the peak is still presented at the fundamental frequency shown in Fig. 3(b). The noise-
like spectrum is the characteristic of a chaotic dynamical system.

4.2. Bifurcation diagram and parametric diagram

In the previous section, the information about the dynamics of the non-linear system for specific
values of the parameters is provided. The dynamics may be viewed more completely over a range of
parameter value. As the parameter is changed, the equilibrium points can be created or destroyed, or
their stability can be lost. The phenomenon of a sudden change in the motion as a parameter is varied
is called bifurcation, and the parameter values at which they occur are called bifurcation points.
The bifurcation diagram of the non-linear system of Eq. (4.1) is depicted in Fig. 4. It is

calculated by the fourth order Runge–Kutta numerical integration and plotted against the
q A[2.07,2.21] with the incremental value of q as 0.0002. At each q, the points of the Poincar!e map

Fig. 2. (a) Phase portrait and Poincar!e map for q=2.07, (b) q=2.14, (c) phase portrait for q=2.21, (d) Poincar!e map

for q=2.21.
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in the transient state of motion are discarded. The period-doubling bifurcation first appears for
qE2:095: In this model, a sequence of period-doubling bifurcations occurs and leads to chaos as
the system parameter is varied.
Further, the parameter values, damping coefficient and forcing frequency will also be varied to

observe the behaviors of bifurcation of the system. By varying simultaneously any two of the three

Fig. 4. Bifurcation diagram of q versus x.

Fig. 3. Power spectrum for (a) q=2.07, (b) q=2.21.
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parameters, amplitude of the external torque, damping coefficient, and forcing frequency, the
parametric diagrams are described and shown as Figs. 5(a) and (b). The enriched information of
the behaviors of the system can be obtained from the diagrams.

4.3. Lyapunov exponent and Lyapunov dimension

The Lyapunov exponent may be used to measure the sensitive dependence upon initial
conditions. It is an index for chaotic behavior. Different solutions of a dynamical system, such as

Fig. 5. Parametric diagram of (a) q versus b, (b) q versus %o:
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fixed points, periodic motions, quasiperiodic motion, and chaotic motion, can be distinguished by
it. If two chaotic trajectories start close to one another in phase space, they will move
exponentially away from each other for small times on the average. Thus, if d0 is a measure
of the initial distance between the two starting points, the distance is dðtÞ ¼ d02

lt: The symbol l is
called Lyapunov exponent. The divergence of chaotic orbits can only be locally exponential,
because if the system is bounded, dðtÞ cannot grow to infinity. A measure of this divergence of
orbits is that the exponential growth at many points along a trajectory has to be averaged. When
dðtÞ is too large, a new ‘nearby’ trajectory d0ðtÞ is defined. The Lyapunov exponent can be
expressed as

l ¼
1

tN ¼ t0

XN

k¼1

log2
dðtkÞ

d0ðtk�1Þ
:

The signs of the Lyapunov exponents provide a qualitative picture of a system dynamics. The
criterion is

l > 0 ðchaoticÞ;

lp0 ðregular motionÞ:

The periodic and chaotic motions can be distinguished by the bifurcation diagram, while the
quasiperiodic motion and chaotic motion may be confused. However, they can be distinguished
by the Lyapunov exponent method. The Lyapunov exponents of the solutions of the non-linear
dynamical system, Eq. (3.1), are plotted in Fig. 3.4 as q ranges form 2.07 to 2.21. For the
system studied the sum of the four Lyapunov exponent is equivalent to the negative
damping coefficient -0.4. If the value of the Lyapunov exponent is greater than zero, it is
chaos, otherwise periodic solution. Observably, the chaotic motion can be found in Fig. 6 for q
close to 2.2.
There are a number of different fractional-dimension-like quantities, including the infor-

mation dimension, Lyapunov dimension, and the correlation exponent, etc., the difference
between them is often small. The Lyapunov dimension is a measure of the complexity of the
attractor. It has been developed by Kalpana and Yorke that the Lyapunov dimension dL is
introduced as

dL ¼ j þ
Pj

i¼1 li

ljþ1
�� �� ;

where j is defined by the condition that

Xj

i¼1

li > 0 and
Xjþ1
i¼1

lio0:

The Lyapunov dimension for a strange attractor is a non-integer number. The Lyapunov
dimension and the Lyapunov exponent of the non-linear system are listed in Table 1 for the
different value of q.
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5. Controlling chaos

Several interesting non-linear dynamic behaviors of the system have been discussed in previous
sections. It has been shown that the forced system exhibited both regular and chaotic motion.
Usually chaos is unwanted or undesirable.
In order to improve the performance of a dynamic system or to avoid the chaotic phenomena,

we need to control a chaotic motion to become a periodic motion which is beneficial for working
with a particular condition. It is thus of great practical importance to develop suitable control
methods. Very recently much interest has been focused on this type of problem—controlling
chaos [5,6]. For this purpose, open-loop strategies and close-loop feedback methods are used to
control our system from chaos to order.

5.1. Controlling chaos by addition of constant motor torque

Interestingly, one can even add just a constant term to control or quench the chaotic attractor
to a desired periodic one in a typical non-linear non-autonomous system. In practice, An external

Table 1

Lyapunov exponent and Lyapunov dimensions of the system for different q

q l1 l2 l3 l4
P

li dL

2.07 �0.0431 0 �0.0437 �0.3132 �0.4 1 Period-1

2.14 �0.0407 0 �0.0553 �0.304 �0.4 1 Period-2

2.185 �0.0506 0 �0.0764 �0.273 �0.4 1 Period-4

2.21 0.0351 0 �0.1206 �0.3145 �0.4 2.291 Chaos

Fig. 6. The largest Lyapunov exponent for q between 2.07 and 2.21.

Z.-M. Ge, C.-I. Lee / Journal of Sound and Vibration 262 (2003) 845–864856



input u is a torque on the axis of rotational machine. Eq. (4.1) can be rewritten as

’x ¼ y;

’y ¼ dz2 cos x þ 1
2 ðe þ pz2Þsin 2x � sin x � by;

’z ¼ q cos x � F � a sin %ot þ u:

ð5:1Þ

It ensures effective control in a very simple way. In order to understand this simple controlling
approach in a better way, this method is applied to system (5.1) numerically. We add the constant
motor torque u ¼ T into the third equation of Eq. (5.1).
In the absence of the constant motor torque, the system exhibits chaotic behavior under the

parameter condition, q=2.21.
If one considers the effect of the constant motor torque T by increasing it from zero

upwards, the chaotic behavior is then altered. In Fig. 7, the bifurcation diagram is shown. It is
clear that the system returns to regular motion, when the constant motor torque T is great t
han 0.03.

5.2. Controlling chaos by the addition of periodic force

One can control system dynamics by addition of external periodic force in the chaotic state. For
our purpose, the added periodic force, u ¼ n sin *ot; is given, the system can then be investigated
by a numerical solution, with the remaining parameter fixed. We examine the change in the
dynamics of the system as a function of n for fixed *o ¼ 2: The bifurcation diagram is shown in
Fig. 8. It presents the return of the chaotic behavior to periodic motion while the value of n
increases from zero upward.

5.3. Controlling chaos by the addition of periodic impulse input

Following the sense of previous sections, another open-loop control method is given.
A technique for suppressing chaos is to apply a periodic impulse input to the system [6]. Consider
the system of the form (5.1) and assume that the system is controlled by a periodic impulse
input

u ¼ r
XN
i¼0

d ðt� iTdÞ; ð5:2Þ

Fig. 7. Bifurcation diagram of T versus x.
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where r is a constant impulse intensity, Td is the period between two consecutive impulses, and d
is the standard delta function. With different values of r and Td the controlled system can be
stabilized at different periodic orbits. For example, if we fix the parameter Td ¼ 0:01 and adjust
impulse intensity r; the chaotic behaviour disappears. The bifurcation diagram is shown in Fig. 9.

5.4. Controlling chaos by delayed feedback control

Let us consider a dynamic system which can be simulated by ordinary differential equations.
We imagine that the equations are unknown, but some scalar variable can be measured as a
system output. The idea of this method is that the difference DðtÞ between the delayed output
signal yðt � tÞ and the output signal yðtÞ is used as a control signal. In other words, we adapt a
perturbation of the form [5].

uðtÞ ¼ K½yðt � tÞ � yðtÞ� ¼ KDðtÞ: ð5:3Þ

Here t is a delay time. Coosing an appropriate weight K and t of the feedback, one can achieve the
periodic state. We can control the chaotic motion to any assigned periodic motion rapidly by this
method. The dependence of the bifurcation diagram on K for period-1 time delay is shown in
Fig. 10.
This control is achieved by the use of the output signal, which is fed in a special form into the

system. The difference between the delayed output signal and the output signal itself is used as a
control signal. Only a simple delay line is required for this feedback control. To achieve the
periodic motion of the system, two parameters, namely, the time of delay t and the weight K of the
feedback, should be adjusted. Compared to the simulation process, this method is more effective
and applicable for the control of chaos to the rotational machine.

Fig. 8. Bifurcation diagram of n versus x.
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5.5. Controlling chaos by adaptive control algorithm (ACA)

Recently, a simple and effective adaptive control algorithm is suggested [7], which utilizes an
error signal proportional to the difference between the goal output and actual output of the

Fig. 10. Bifurcation diagram of K versus x.

Fig. 9. Bifurcation diagram of r versus x.
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system. The error signal governs the change of parameters of the system, which readjusts so
as to reduce the error to zero. This method can be explained briefly. The system motion is set back
to a desired state Xs by adding dynamics on the control parameter P through the evolution
equation,

’P ¼ eGðX � XsÞ; ð5:4Þ

where the function G depends on the difference between Xs and the actual output X ; and e
indicates the stiffness of the control. The function G could be either linear or non-linear. In order
to convert the dynamics of system (4.1) from chaotic motion to the desired periodic motion Xs, the
chosen parameter q is perturbed as

’q ¼ eðX � XSÞ ð5:5Þ

if e=0.2, the system can reach the period-1 and period-2 easily shown as Figs. 11 and 12. It is clear
that the desired periodic motion can be reached by adaptive control algorithm.

5.6. Controlling chaos by bang–bang control

Define error function as follows:

eðtÞ ¼ X ðtÞ � X ðt � TÞ; ð5:6Þ

where T is the external torque frequency. Define V ðtÞ ¼ eðtÞ2 which is always positive or
zero,

’V ¼ 2 � eðtÞ � ’eðtÞ:

Fig. 11. (a) Parameter converge to q=2.07 from chaotic motion q=2.21. (b) Phase portrait and Poincar!e map of

controlled system.
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if ’Vo0 then V will approach zero, i.e., eðtÞ-0: It means that xðtÞ approaches xðt � TiÞ and the
periodic behavior is achieved. The control law can be determined as follows:

’x ¼ F1ðx; y; z; tÞ;

’y ¼ F2ðx; y; z; tÞ;

’z ¼ F3ðx; y; z; tÞ þ u

ð5:7Þ

if eðtÞj jpd; uðtÞ ¼ 0 else if eðtÞj j > d then

uðtÞ ¼
�K1 F3ðx; y; z; tÞ � ’zðt � TÞj j when eðtÞ > 0;

K1 F3ðx; y; z; tÞ � ’zðt � TÞj j when eðtÞo0:

(

When the trajectory is close to our periodic orbit, the control signal approaches zero. Fig. 13
shows the phase portrait and Poincar!e map for K1=0.03.

5.7. Controlling chaos by external force control

A feedback control with a periodic external force of a special form is used in this method [5]. It
is assumed that the input signal uðtÞ disturbs only the third equation in Eq. (5.1) and

uðtÞ ¼ K2½yiðtÞ � yðtÞ� ¼ K2DðtÞ:

Here, yðtÞ is the chaotic output signal, and yiðtÞ is the periodic motion of system. The difference
D(t) between the signal yiðtÞ and yðtÞ is used as a control signal. Here K2 is an adjustable weight of
feedback. By selecting the weight K2, we can convert chaotic behavior to periodic motion; the
bifurcation diagram is shown in Fig. 14. We can control the chaotic behavior to period-1 motion

Fig. 12. (a) Parameter converge to q=2.14 from chaotic motion q=2.21. (b) Phase portrait and Poincar!e map of

controlled system.

Z.-M. Ge, C.-I. Lee / Journal of Sound and Vibration 262 (2003) 845–864 861



by choosing K2=0.9. We also can convert the chaotic motion to period-2 and period-4 for a
suitable K2.

5.8. Controlling chaos by optimal control

Optimal control is a well-established engineering control strategy, and is useful for both linear
and non-linear system with linear or non-linear controllers [6]. Now, we use a typical optimal
control for a chaos control. We consider Eq. (5.7) with a controller u and define the Hamilton

Fig. 13. (a) Phase portrait and Poincar!e map of controlled system, (b) the error signal.

Fig. 14. Bifurcation diagram of K1 versus x.
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function:

Hðx; y; z; u; pÞ ¼ PTFðx; y; z; u; tÞ;PT ¼ ½p1p2p3�:

Following the variation principle of optimal control, we can obtain

p1y þ p2 ½dz2 cos x þ 1
2
ðe þ pz2Þsin 2x � sin x � by� ¼ 0; ð5:8Þ

�p2ð2dz cos x þ pz sin 2xÞ ¼ 0: ð5:9Þ

This yields a non-trivial solution for ðp1; p2Þ if and only if

2dz cos x þ pz sin 2x ¼ 0: ð5:10Þ

It gives an optimal surface singularly in the state space. This type of control assumes values on
the two allowable boundaries (5.8) alternatively according to a switching surface. Locating system
trajectories on the surface, a typical feedback control in the form

u ¼ �kb sgn½2dz cos x þ pz sin 2x�

can be used. By adjusting the value of kb in the above controller with the signum function

sign½n� ¼

1 if v > 0;

0 if v ¼ 0;

�1 if vo0;

8><
>:

the chaotic motion can be controlled to periodic motion which we desired by the bifurcation
diagram as shown in Fig. 15.

6. Conclusions

The dynamic system of the rotational machine with centrifugal governor exhibits a rich variety
of non-linear behaviors as certain parameters varied. Due to the effect of non-linearity, regular or

Fig. 15. Bifurcation diagram of K2 versus x.
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chaotic motions may occur. In this paper, both analytical and computational methods have been
employed to study the dynamical behaviors of the non-linear system.
The conditions of stability and instability of fixed points have been determined by using the

Lyapunov direct method. The periodic and chaotic motions of the non-autonomous system are
obtained by the numerical methods such as power spectrum, Poincar!e map and Lyapunov
exponents. All these phenomena have been displayed in bifurcation diagrams. More information
on the behaviors of the periodic and the chaotic motion can be found in parametric diagrams. The
changes of parameters play a major role for the nonlinear system. Chaotic motion is the motion
which has a sensitive dependence on initial condition in deterministic physical systems. The
chaotic motion has been detected by using the Lyapunov exponents and Lyapunov dimensions. In
spite of the fact that these methods are different, the results obtained matches each other.
The presence of chaotic behavior is generic for suitable non-linearities, ranges of parameters

and external force, where one wishes to avoid or control so as to improve the performance of a
dynamical system. Eight methods are used to control chaos effectively. Especially, we can control
the chaotic motion to any assigned periodic motion by addition of period force, periodic impulse
control, the delayed feedback control, external force feedback control, optimal control and
adaptive control algorithm. For our system, the delayed feedback control is the best method
compared with the others.
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