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Abstract

This paper considers the problem of the transverse vibrations of a beam induced by a mobile heat source.
The formulation of the problem is based on the differential equations of heat conduction and transverse
vibrations of the beam, which are complemented by suitable initial and boundary conditions. The effect of
internal and external damping on the vibrations of the beam is considered. The solution to the problem in
analytical form is obtained by using the properties of the Green functions. A time partitioning method has
been used to avoid the difficulties associated with the slow convergence of the series occurring in the
solution to the heat conduction problem. The numerical results of the thermally induced vibration of the
beam are presented.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Changes in the temperature of a beam produce thermal stresses, which cause displacements of
the beam. Cyclic changes in the temperature of the beam induce transverse vibrations. The
problem of thermally induced vibrations of beams has been considered by Yu [1], Boley [2,3],
Manolis and Beskos [4] and Kidawa-Kukla [5].

Yu [1] extensively explored the problem of thermal flutter of a spacecraft boom. In that paper,
the author studied the effect of viscoelastic damping and a viscous fluid damper on the stability of
the boom’s motion. The vibrations of a simply supported, rectangular beam, subjected to a
suddenly applied heat input distributed along its span, were analyzed by Boley [3]. Manolis and
Beskos [4] examined thermally induced vibrations of structures composed of beams, exposed to
rapid surface heating. The authors have also studied the effects of damping and of axial loads on
the structural response. Kidawa-Kukla [5] presented a solution to the problem of thermally
induced vibration of a simply supported beam. In that paper the temperature of the beam changes
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as a result of heating by a laser beam. The analytical form of the solution was obtained by using
the properties of the Green functions. The application of the Green function method for heat
conduction problems is presented by Beck et al. [6]. A time partitioning method is introduced to
improve the evaluation of the Green function solutions. The thermally induced displacement and
stresses of a rod are investigated by Al-Huniti et al. [7]. The problem is solved by using the
Laplace transformation technique.

In this paper the problem of transverse vibrations of a beam induced by a mobile heat source is
considered. The effects of internal as well as external damping on the vibrations have been taken
into account. The problem is solved by using the properties of the Green functions. The
temperature distribution in the beam is obtained by applying time partitioning to the Green
function method.

2. Problem formulation

Consider a uniform beam of length L, with a rectangular cross-section of width » and height /4
as shown in Fig. 1. The differential equation of thermally induced lateral vibration of the beam
with internal and external damping may be written in the form

o*v v v ot
El|l>—+f——| 4+ co—+ p— = t 1
[ax‘* +f aﬂaj izt pga = 2D, D
where EI is the bending rigidity, p is the mass per unit length of the beam, v is the lateral beam
deflection, f is the internal damping coefficient of the beam material, ¢; is the external damping
coefficient, x is the distance along the length of the beam and ¢ denotes time. The transverse
vibrations of the beam are induced by the thermal load

h h 62
O(x, 1) = abE /0 <y - 5) Té%y’l)dy, )

(] Laser beam

2¢

\l/h

Xo PR

X(t) = X+ A sin ¢t
L

Fig. 1. The beam model considered.
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where o is the coefficient of thermal expansion, E is Young’s modulus, 7'(x, y, t) is the temperature
distribution in the beam. Eq. (1) is complemented by the zero-value initial conditions

0
o(x,0) = S(x,0) = 0 (3)
ot
and the boundary conditions corresponding to the simply supported beam
v v
U(Oa l) = U(La l) = Oa ﬁ(oa t) = ﬁ(lﬂ l) = 0. (4)

The temperature distribution in the beam is described by the differential equation of heat
conduction, which takes into account the activity of the heat source
1 10T
V2T +—g(x, p, 1) = ——, 5
9y =—— (%)
where V2 = (8%/0x?) + (8%/0y?) is the Laplace’s operator, / is the thermal conductivity, « is the
thermal diffusivity. The term g(x, y, t) represents the volume energy generation

%5()/) for x(1) — e<x<Xx(t) + ¢,

g(x,y,1) = (6)

0, otherwise,

where 0 characterizes the stream of heat, J() is the Dirac delta function and 2¢ is the width of the
element on the surface of the beam heated by the heat source.

The heat source moves harmonically over a fixed point on the beam and always remains within
the length of the beam. The function X(¢) describes the movement of the heat source

X(t) = xo + A sin ¢t, (7)

where 4 +e<xo<L — A —¢.
The temperature distribution in the beam is obtained as a solution to Eq. (5) with the following
initial and boundary conditions:

T(x,,0) =T, 8)
TO,y,0)=T(L,y,1) =0, )
)uaT(x, 0,7) = —a[Ty — T(x,0, )], (10)
oy
za—T(x, h,ty = &[T, — T(x,h,1)], (11)
oy

where dy, d; are the heat transfer coefficients, 7; is the initial temperature, Ty and 7T are the
temperatures of the surrounding medium.
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3. Solution to the problem
3.1. Temperature distribution in the beam

The solution to the problem is obtained by using the properties of the Green functions. The
Green function of the heat conduction problem G describes the temperature distribution induced
by the temporary, local energy impulse. The function is a solution to the differential equation

KV2Gr + aaGT = —8(x — E(y — n)d(t — 7). (12)

It is assumed that the Green function satisfies the same boundary conditions as the temperature
function (Egs. (9)—(11)).
The temperature distribution 7'(x, y, t) is expressed by the Green function Gz as follows:

X()+e é=L n=L
ren =g [ [ Grweogacsrn [ [ G eno
t)—e ¢

T=It+¢
+ K/ dr/ dé ,uOTOGT(x »,4E0,7) 4+ T1Gr(x, p,t, &, h, t)] (13)

where py, = do/A, u; = d/A.

The integrals in Eq. (13) are then expressed by infinite series. To avoid the difficulties associated
with the slow convergence of these series the time partitioning method has been used [6]. In this
method, the time interval (0, ¢) is divided into two intervals: (0,7 — Af) and (¢ — At, t), where
0<Ar<t. The Green functions of the heat conduction problem for a small-time G$ and for a
large-time G% are distinguished. For clarity, the method will be presented below using as an
example the first integral occurring on the right-hand of Eq. (13).

The function 7" may be written in the form

T(x,y,0) = Ts(x,y,0) + Tr(x,»,1), (14)
where
X(t)+e
Ts(x,y.1) = / / Gy, £,0.1 — 1) dé de, (15)
2¢/ t—At Jx(t)—¢
X(v)+e .
Ti(x,y,1) = 2(02/ /( N Gr(x,»,£,0,t —1)dé dr. (16)

The function G% reads [8]

4 0 o0
Gr(x,y, &t — 1) = —LZZ L0 00 SiD 2 EV ) a0 XD~ — D), (17)

m=1 n=1

where

(o + ) (o + ﬁi)
h d+p)°

Om = I’}’ITC/L, Ymn = K[Oti + ﬁi]a 6],% = M% =+ ﬁi =+

Y,(y) = p,cos B,y + pysinf,y for mn=172,...
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and f, are roots of the equation
= B+ (o + 1B, ctg b = 0. (18)

Substituting the Green function (17) into Eq. (16) gives

80K p, sin Aint .
Ti(x,y,0 = ,; Z ) s Ea) Sin e, (19)
where
1 t—At
DZr;n = 5/ exp[_ymn(t - T)] sin [O‘m(xo + A sin (/)T)] dr. (20)
0

Integral (20) is evaluated by using the following relationships [9]:

cos(rsinu) =2 Z %:iJ2:(¥) cos 2iu, (21)
i=0
o0
sin(rsinu) = 2) Ty (r)sin(2i + Du, (22)

i=0

where 3, =0.5, y;=1fori=1, 2, ... and J,(-) denotes the Bessel function of the first kind of
order v. Finally, Eq. (20) can be written in the form

1
mn(l) =sin UmX0 Z XzJQl(Aam)m lmn(t)

1
+ COS o,X Joiv1(Aay, W”fm t 23
0120: 2i+1(A0p,) 2 it g (), (23)
where
mm(t) = [2i¢ sin 2i(t — At)p + y,,, cos 2i(t — At)ple” Tl _ V€ (24)

mm(t) [V SIN (21 + 1)(t — At)p — (2i + 1) cos (2i + 1)(t — At)q)]e_“"m"m
+ (2i 4+ 1)peIm!. (25)

The Green function G5 for the small time may be written in the form [6]
G;"(xz Y, é’ n, r— T) ~ G‘iv](xa 69 r— T)G§3(y’ n, r— T)) (26)

where

2
Gl (x, ¢ t—1)= (x—é))] exp[ (+é))} exp[—u}}(ﬂ)

1
2l = 1) T){eXp[ 41(1 4i(1 41(1 — 1)
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and

2 2
G, =) o= )] rexp|- LI o[- o 1]

1
~2,/7m(t_r){ex [ 4k(t — 4k(t — 1) 4k(t — 1)
Z O +mdo | Tyr(t — 1) + Z
—%exp[ )Lﬂ ao—i-%K 5 T]erfc{ yrc(t’ir)—k% K(l—r)}
h—y—ma Bt — h
- Hexp| FL= A I f{2 .2 K(l—r)} 28)

Substituting the Green functions (27-28) into Egs. (26) and (15), the function Ts(x, y, f) is
expressed as

0 ! ,
Tseon0 =55 || G0 =9 K(x. 0 dr 29)

where

X(t)+e — X
K(x,t,r):[()‘ Gil(x,é,t—r)dé:%{erf[% N

of x—Xx(t)—¢
2kt —1) |

B x+Xx(t)+e fx—i—)'c(r)—e
24/K(t — 1) 24/Kk(t — 1)
B 2L —x — X(t) + ¢ fZL—x—X(r)—a (30)
2+/k(t — 1) 24/K(t — 1) '

The integral in Eq. (29) is then calculated numerically.
3.2. Transverse vibrations of the beam

The problem of vibrations of the beam is solved by using the Green function Gy, which is a
solution to the equation

[84G G, ] 6G 62G

+f | e P == 3(x — &)d(t — 1) (31)

and satisfies initial and boundary conditions analogous to the displacement function
(Egs. (3)—(4)). If function Gy is known, then function v(x, ) may be written in the form

t pL
v(x, t):/O/O 0(&,1)Gy(x, &t — 1) dE dr. (32)

Function Q(¢,7) is found by substituting the function given by Eq. (13) into Eq. (2), where

Gr(x,p,t,&,1,7) = GF(x, »,&,1,1 — 7).
The Green function G may be written in the form of a sine series [5]

2 & mnx
Gu(x, 1; =— E m(Z, T) sin —— si
o(x, 8¢, 7) me:1W (2, 7) sin 7 sin

mmné

I )
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where functions w,,(z, ) are obtained as solutions to the equation
Wy 4+ (y + a),znf)wm + a)mwm o(t — 7).
Finally, the Green function has the form [10]

2 - . . .
Gy(x,¢ét—1)= p—LH(t —1) E Y,u(t — 1)e "9 sin o,,x sin @, &,
m=1

where

1
——si Qm s A < O:
0 S u

m

Y, (u) =< u, A=0,

1 _
o sinh Q,,u, A>0

m

871

(34)

(35)

(36)

dndA_4(C _w)Qm_\/wz_Cm’- = C _wZ Cm_%(v_}'wrznf)vwm:\/mazm’v:

cq/p, H(-) denotes the Heaviside function.
On the basis of Eq. (32), the deflection of the beam is expressed as

 8Ehux0 &
ve ) = l;z ;;BD (t)—SIHOCmssmocmx
where
h h 1oh
Bn:(gz ﬁ;)sinﬁnh[l‘g +1+(2 1>cosﬁnh],
(t) - / Dmn(T)Y (t—1)e” Gnlt=1) 47
= sin o, Z Jai(Ao, ); ()
- moio}(i 2 y2 + 4i2¢? Uinn
1
T COS %X Jl Au O zmn
0; 2i+1( /2 it 12 mn(0)
and

t
lmn([) - / lmn(T) Ym(t - T)e_Lm(t ?) dT

zmn(t) = / Imn(T) Ym(t - ’L')e Lnlt=7) dr.

(37)

(38)

(39)

(40)

(41)

The integrals in Egs. (40) and (41) are evaluated for three cases depending on the form of function

Y,, given by Eq. (36). Functions U}, (f) and W}, (t) are given in the appendix.

In the case of the system without internal and external damping (v = f = 0), the integrals in
Eqgs. (40) and (41) assume a particular form. Namely, if {,, = 0 and w,, = 2i¢ for any natural
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numbers ‘I and ‘w’, then the function U! (¢) is given as follows:

imn
: ! t :
Ul;m(t) = / Uzz;m(‘t) Yi(t —1)dr = B |:COS WOyl — Lo sin wmt:|
0 D
1

2 2
Ve -
77’;214 ol [an COS Wyt — 7’””2 2sin Wyt — Vn exp(—ymnt)] . (42)

Wm

Similarly, if {,,, = 0 and w,, = (2i + 1)¢ for any numbers /" and ‘m’, then the function W}, () has
the form

t t )
VVil))nn(Z) = / Vsz;m(T) Y, (t —1) dr = — 2_ [M COS Wyl + Sin COmt:|
0 Wiy

o
1 V(P2 + 302) . }
—— | —cosw,,t + i "2sin w,,t + exp(—y,, 1) |. 43

It follows that functions U}, () and W} (¢) include terms whose amplitude of oscillations
increases with time ¢. This means that one member of series (37) has increasing oscillations. Hence,
it results that in the case of the system without damping, the amplitude of beam vibration may
increase with time ¢. It follows that resonance may occur in the system.

4. Numerical examples

A uniform, simply supported rectangular beam and a heat source which changes its position
over point xo = 0.5L, according to Eq.(7) are considered. The numerical calculations are
performed for both a steel and an aluminum beam. The following numerical data was assumed:

e for the steel beam: E =2 x 10'" (N/m?), p = 3.12 (kg/m), ¢ = 510 (J/(kgK)), 1 = 51.4 (W/
(mK)), o = 1.25x1077 (1/K);

e for the aluminum beam: E = 7x10° (N/m?), p = 1.08 (kg/m), ¢ = 896 (J/(kgK)), 2 = 229 (W/
(m K)), o = 2.37 x 1077 (1/K).

Moreover, for both beams it was assumed that: L = 1.0 (m), b =/ = 0.02 (m), A = 0.3 (m),
£ =0.001 (m), @ = @ = 100 (W/(m?K)), 6§ = 50,000 (W/m), Ty = T} = 0°C.

The numerical investigations of the effect of internal damping on the displacement of the beam
for short- and long-time periods for both the steel and the aluminum beam (without external
damping) were done by assuming ¢ = 0.5, w; = 0.5(71/L)2\ /EI /p. In this case, condition ; = 2¢
is satisfied and for f = 0 Eqgs. (37)—(39) and (42) are used to calculate the displacement. This
means, that the amplitude of the vibrations increases with time (resonance case). In Figs. 2 and 3
the time histories of the displacements of the mid-point of the beam without internal damping
(solid line) and with internal damping (dashed line) are shown. The numerical calculations
demonstrate the inconspicuous influence of the internal damping on the vibration amplitude of
the beam at the beginning of the process. The effect of the internal damping on the amplitude of
the beam vibration is significant in the resonance case as a considerable decrease in the beam
vibration amplitude is observed.
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Fig. 2. Time histories of the displacements of the mid-point of the steel beam for ¢ = 0.5w, without damping (solid
line) and with internal damping, / = 107> (s) (dashed line); (a) displacement at the beginning of the process and
(b) displacement after 10s.
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2E-4 N
r 1E-3 -
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Fig. 3. Time histories of the displacements of the mid-point of the aluminum beam for ¢ = 0.5w,; without damping
(solid line) and with internal damping, f = 10~* (s) (dashed line); (a) displacement at the beginning of the process and
(b) displacement after 10s.

In Fig. 4, the displacement of the mid-point of the beam for ¢ = 0.27 is presented (vibration of
the beam without internal damping). In this case, the mobile heat source induced periodic
vibrations of the beam. The calculations are performed for the external damping coefficient v = 0
(solid line) and v = 5x10* (kg/(m s)) (dashed line). Fig. 4a shows the displacement for a short-
time period and Fig. 4b shows the displacement for a long-time period. The vibration of the beam
reaches a steady state soon after the beginning of the process. It is seen from the results that the
external damping causes a significant decrease in the vibration amplitude of the aluminum beam,
but only a slight decrease in the vibration amplitude of the steel beam.

5. Conclusions

The problem of thermally induced vibration of a beam has been considered. The temperature
distribution and transverse vibration of the beam in analytical form are obtained by using the
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Fig. 4. Time histories of the displacements of the mid-point of the beam for ¢ = 0.2n without damping (solid line) and
with external damping v = 5 x 10* (kg/ms) (dashed line), 1—the steel beam, 2—the aluminum beam; (a) displacement
at the beginning of the process and (b) displacement after 1000s.

properties of the Green functions. The solution to the problem is expressed by infinite series. The
time partitioning method has been used to avoid the difficulties associated with the slow
convergence of the series. The Green functions of the heat conduction problem are distinguished
for a small time and a large time.

The presented formulation and solution of the vibration problem take into consideration the
external damping and internal damping of the beam material. It follows from the solution of the
problem that the amplitude of the beam vibration may increase with time. Such a situation
happens in the case of vibration without damping, if one eigenfrequency of the beam is a multiple
of the harmonic motion frequency of the heat source.

Numerical calculations performed for the steel and aluminum beams show that the vibration
amplitude of the aluminum beam is significantly greater than the vibration amplitude of the steel
beam. The effect of the internal damping on the vibration amplitude at the beginning of the
process is inconspicuous. In the resonance case the internal damping of the material significantly
decreases the amplitude of the steady state vibration. The external damping causes a significant
decrease in the vibration amplitude of the aluminum beam, but only a slight decrease in the
vibration amplitude of the steel beam.

Appendix

The integrals in Egs. (40) and (41) may be evaluated for three different cases depending on the
sign of expression 4 = 4({,271 — w?). The results below concern these three cases except the one
given in Section 3 of this paper.

Case 1: A<0, Y,(t — 1) = 1/Q),8in Q,,,(t — 7)

t
Ulfﬂn(t) = / Uiz;m('t) Ym([ — T)efz:m(fff) dT
0
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1 .
= ﬁ[Al cos 2ipt + Aj sin 2ipt]
1

Qip)” + 72,
MM,

t_ Vmn

Vil
e n
M, ’

in Q,,t
[A3 cosQ,,t + A4sm z ]e_ém

m

unn(t) = / lmn(T) Y, (t— ’L')e {n(t=1) dr

M [31 cos (2i + 1)t + B, sin(2i + 1)pt]

2i+ Do

M]Mz

i+ Do
T M,

Q.tl
|:B3 cos Qut + By sin 2y, } g ot

m

— t
e Vmn ,

Case 2: A =0 (v, =(p), Yt —1)=1t—1

u; ()= —[Al cos 2ipt + A, sin 2ipt] + M(A + Agt)e ! — yﬂe_}"""’,

MM, M>

w1 = i [31 cos(2i + 1)pt + By sin(2i 4 1)t]

(21 + Do -~ i+ Do
L TBs + Byfle ' — 1
+ WM, [Bs + Batle YA

Case 3: 4>0, Y,,(t — r) = 1/Q,, sinh Q,,(t — 1)

e Vil .

zmn(l) [AICOS 2l(Pf + A, sin 21(/9[]

(21<p) + 72 sinh Q,,1] _. Vo
A hQ. . t+ A Cml __ £mn =7l
+ MM, 3 cosh €2,,,t + Ay - € ) e ,
Wit =—= [81 cos(2i + 1)t + By sin(2i + 1)of]
(21 + Do sinh Q,,¢] _, Qi+ Do _
_ B hQn t B Cml __ Ymnt
T MM, 3COShESml 7 Ba m © M, ©

where
Al = Vmn® m (an + 2Cm)(2l(,0) A2 = 2l§0[60i1 + 2ymnCm - (21@)2],

875

(A.1)

(A.2)

(A.3)

(A4)

(A.5)

(A.6)

A3 = an(2l(p)2 - (ymn - 2Cm)w;2n’ A4 = 0)31[(21(/))2 - wizﬂ + Cm(zém - an)] - (ZiQD)ZanCm,

Bl = (2l + 1)90[(21 + 1)2(702 - w; - 2ymnCin]’ B2 Pmn @ (2l + l)z@z(ymn + 2Cm)

By = [2i + 1)*@” + 12,1200 — 200) — Qi+ 1207 + 2],
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By = [Qi + 10”4+ 15, N0 — Gl Qi + 107 + 203, — 1 + 200, = 513,

M, =[Qip)* — o, + 201 + 4w, — 5
My =[Qi+ 19> — w;, + 201 + 4wy, — 5

MZ = (gm - yn1n)2 =+ wizﬂ - Crzn
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