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Abstract

Particular effort has been spent in the field of identification of multi-degree-of-freedom non-linear
systems. The newly developed methods permit the structural analyst to consider increasingly complex
systems. The aim of this paper and a companion paper is to study, by means of two methods, a continuous
non-linear system consisting of an experimental cantilever beam with a geometrical non-linearity. In this
paper (Part I), the ability of the conditioned reverse path method, which is a frequency domain technique,
to identify the behaviour of this structure is assessed. The companion paper (Part II) is devoted to the
application of proper orthogonal decomposition, which is an updating technique, to the test example.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The last 20 years have witnessed impressive progress in non-linear structural dynamics. The
identification of non-linear systems began with the study of single-degree-of-freedom (s.d.o.f.)
systems. Since the reference paper of Masri and Caughey [1] in 1979, techniques which can
consider multi-degree-of-freedom (m.d.o.f.) systems were introduced, e.g. the Hilbert transform
[2], NARMAX models [3,4] and Volterra series [5]. However, it appeared quickly that these
techniques are not suitable for systems with high modal density. For a detailed review of the past
years, the reader is referred to Refs. [6,7]. Progress in the treatment of m.d.o.f. systems has been
realized recently and can be attributed to a confluence of new methods of analysis and to the
expansion of computer processor power.

*Corresponding author. Fax: + 32-4-366-48-56.
E-mail address: g.kerschen@ulg.ac.be (G. Kerschen).

0022-460X/03/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0022-460X(02)01151-3



890 G. Kerschen et al. | Journal of Sound and Vibration 262 (2003) 889-906

Proper orthogonal decomposition (POD), also known as principal component analysis or
Karhunen—Loéve transform, has shown promise for model updating of structural parameters in
m.d.o.f. non-linear systems [8,9]. The procedure is based on the solution of an optimization
problem which consists in minimizing the difference between the bi-orthogonal decompositions of
the measured and simulated data, respectively.

The development of frequency response function (FRF)-based approaches has received
increasing attention in the last 10 years. The non-linear identification through feedback of the
outputs (NIFO) exploits the spatial information and treats the non-linear forces as internal
feedback forces in the underlying linear model of the system [10]. The key advantage of this
method lies in its ability to estimate the FRFs of the underlying linear system and the non-linear
coefficients in a single step. This is carried out in a least-squares system of equations through
averaging. The concept of a reverse path (RP) model was first introduced by Rice and Fitzpatrick
[11]. However, this technique requires excitation at every response location. The conditioned
reverse path (CRP) formulation [12] extends the application of the RP algorithm to systems
characterized by non-linearities away from the location of the applied force. This method has been
developed by generalizing the concepts introduced in Refs. [11,13,14]. Conditioned frequency
responses are computed and yield the underlying linear properties without influence of non-
linearities. The non-linear coefficients are identified in a second step.

As stated in Ref. [6], researchers often concentrate too much on lumped parameter systems and
many techniques collapse when faced with systems with a higher modal density. In this paper and
a companion paper [15], it is proposed to study by means of two methods a continuous non-linear
system consisting of an experimental cantilever beam with a geometrical non-linearity. In this
paper (Part I), the ability of the CRP method to identify the behaviour of this structure is assessed.
The companion paper (Part II) is devoted to the application of POD to the test example.

2. CRP method

In the presence of non-linear forces, the classical H; and H; estimators [16] should not be used
because the non-linearities corrupt the underlying linear characteristics of the response. In the
CRP method, spectral conditioning techniques are exploited to remove the effects of non-
linearities before computing the FRFs of the underlying linear system. Once the FRFs are known,
the non-linear coefficients may then be evaluated.

In the following, the notations match the ones used in Ref. [12]. The vibrations of a general
non-linear system are governed by equation

MK(f) + CX(0) + Kx() + ) Ajy; (1) = (D), (1)
j=1

where y;(7) is a non-linear function vector and A; contains the coefficients of the non-linear terms
y;(9). In the frequency domain, Eq. (1) becomes

B(w)X(w) + > AjYj(w) = F(o), 2)
j=1
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where X(w), Y;(w) and F(w) are the Fourier transforms of x(7),y;(?) and f() and B(w) =
(—’M + ioC + K) is the linear dynamic stiffness matrix.

By imposing the applied force to be the output and the measured responses to be the inputs, a
reverse path (RP) model is constructed (Fig. 1). For the sake of brevity, the RP formulation is not
recalled here. For a detailed description of this technique, the reader is referred to Ref. [12].

2.1. Estimation of the underlying linear system properties

The key concept of the CRP formulation is the separation of the non-linear part of the system
response from the linear part and the construction of uncorrelated response components in the
frequency domain.

The spectra of the measured responses X can be decomposed into a component which is
correlated with the spectrum of the first non-linear vector Yi, denoted by X, through a
frequency response matrix Ly, and a component which is uncorrelated with the spectrum of the
non-linear vector, denoted by X_1) (Fig. 2). The spectral component X(_i.,) is the component of
the response uncorrelated with the spectra of all » non-linear function vectors and may be viewed
as the response of the underlying linear system

n n
X1y =X - 21: Xy =X - 2 LixYj—15-1). 3)
J= J=

The reverse path model of Fig. I can now be replaced by the reverse path model of Fig. 3 where
the inputs are uncorrelated. This latter figure shows that the path between X(_;.,) and F(_y., is the

X(w) —— Bw)

Y (w) — A \/
Y (w) A, b)) F(w)

[elele}

Y,(w) —— A,

Fig. 1. Reverse path model.

Yl(w)—- LlX

Fig. 2. Decomposition of the spectra of the measured responses.
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Fig. 3. Reverse path model with uncorrelated inputs.

linear dynamic stiffness matrix B
F_1n)(@) = B(@)X(-1:0)(w). “4)
By transposing Eq. (4), pre-multiplying by the complex conjugate of X, noted X*, taking the

expectation and finally multiplying by 2/7, the underlying linear system may be identified without
corruption from the non-linear terms

2 2
Goxr-tn) = E[X*F(_ )] = - E[X*(BX(_1:)"]

2
=7t [X*X(1,,)B"] = Gxx-10B', (5)

where Gyr(—1.,) and Gyy(—1.,) are conditioned power spectral density matrices.
For the dynamic compliance matrix H,

Hy:H' = G;al!r(_l;n)GXX(—l:n)- (6)
This expression is known as the conditioned H,, estimate. If Eq. (4) is multiplied by the complex
conjugate of F, the conditioned H,; is obtained

He :H' = G 1,y Grx(-1m). (7

2.2. Estimation of the non-linear coefficients

Once the linear dynamic compliance H is identified, the non-linear coefficients A; may be
estimated. Using the same procedure as for Eq. (5), the following relationship is obtained:

n
Gir_1:in = Gix_1i-1B + Z Gij(—l:i—l)AjT- (8)
=1
It should be noted that Gy1;-1) = E[Y}_,,_;)Y;]1 =0 forj<isince Y}_,,  is uncorrelated with
the spectra of the non-linear function vectors Y; through Y; ;. If Eq. (8) is pre-multiplied by
Gij(l_lz,-_l), the first term in the summation is A'. Finally,

n
Al =Gl (GiF(—lzi—l) — Gix(-1:i-1B" — Z sz(—l;i—l)A,-T>- ©))

j=itl
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The identification process starts with the computation of A, working backwards to A;. At this
stage, it is important to emphasise that the non-linear coefficients are frequency dependent.
However, by taking the spectral mean, the actual value of the coefficients may be retrieved.

It can be shown [17] that conditioned power spectral density matrices like Gyr(1.,) may be
obtained from

Gi—1:n = Gj—1-1) — Gir(fl:rfl)L}}a (10)
where
L5 = Grir(lfl:rfl)G'fl'(*lirfl)‘ (11)

2.3. Coherence functions

For linear systems, the ordinary coherence function is a means to assess the quality of transfer
function estimates [16]. However, for a multiple input model with correlated inputs, the sum of
ordinary coherences between the inputs and the output may be greater than unity. In Ref. [18], the
concept of ordinary coherence function is replaced by the concept of cumulative coherence
function 73,

n
V?m(w) = ”/%(iF(q;n)((D) + V%}F(w) = V%(ip(fl;n)(@) + Z Y%F(q;,'fl)(a))s (12)
j=1

where
* % F(—1) 18 the ordinary coherence function between the ith element of X(_,.,) and excitation F

2 - |Gx,r 1)) (13)
YECED ™ Gy x 1) Grr
and indicates the contribution from the linear spectral component of the response of the ith
output.
. yfF(flzifl) is the ordinary coherence function between the conditioned spectrum Y;_i;_1) and
excitation F
2
NGiE -1l

2
AN b G L 14
y]F(—l.j—l) ij(,];_/-,l)GFF ( )

and >0, yj?F(_lj_l) indicates the contribution from the non-linearities.

The cumulative coherence function is always between 0 and 1 and may be considered as a
measure of the accuracy of the model.
3. Experimental set-up

The benchmark is similar to the one proposed by the Ecole Centrale de Lyon (France) in the
framework of COST Action F3 working group on “Identification of non-linear systems” [19].



894 G. Kerschen et al. | Journal of Sound and Vibration 262 (2003) 889-906

Fig. 4. Experimental set-up.

Table 1
Geometrical and mechanical properties of the set-up

Length (m) Width (m) Thickness (m) Material
Main beam 0.7 0.014 0.014 Steel
Thin beam part 0.04 0.014 0.0005 Steel

This experimental application involves a clamped beam with a thin beam part at the end of the
main beam (Fig. 4). The geometrical and mechanical properties of the set-up are listed in Table 1.

Seven accelerometers which span the beam regularly are used to measure the response
and in addition a displacement sensor is also located at the end of the beam, i.e., at position 7.
The excitation force is white-noise sequence band limited in the 0-500 Hz range. Due to the
thin beam part, the effect of gravity is not negligible. Accordingly, two different set-ups are
considered:

o the horizontal set-up in which the thin part is horizontal and the shaker, located at position 2,
excites the structure in a vertical plane (see Fig. 5(a)).

® the vertical set-up in which the thin part is vertical and the shaker, located at position 3, excites
the structure in a horizontal plane (see Fig. 5(b)).

4. Identification results: horizontal set-up
4.1. Conventional frequency response estimation ( H, estimate)

Different excitation levels are considered in the 0.3-21 N r.m.s. range. In order to have some
ideas about the influence of the non-linearity, the FRFs are first estimated using the classical H;
method. Fig. 6 illustrates the magnitude of H7, for the lowest (0.3 N r.m.s.) and highest (21 N
r.m.s.) excitation levels. As can be seen in this figure, distortions appear in the FRF when the
excitation level is increased. This is confirmed by the ordinary coherence functions (Fig. 7).
Accordingly, if the structure may be assumed to be linear for the lowest excitation level, it is no
longer the case for higher levels. Indeed, if the excitation level is increased, the thin part is excited
with a large deflection and a geometrical non-linearity is activated.
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Fig. 5. Experimental set-up, above view: (a) horizontal set-up and (b) vertical set-up.

4.2. Conditioned frequency response estimation (H estimate)

4.2.1. Model selection

The first step in the identification procedure is the model selection. With this aim, the
cumulative coherence function y3,, as defined in Section 2.3 is exploited. Similar work [20] was
done using partial and multiple coherences defined by Bendat [17].

To model the stiffening effect of the thin beam part, a grounded symmetrical non-linearity of
type |x|*sign(x) is introduced in the model at the end of the beam (location 7). Due to the presence
of a second harmonic of the first mode in the FRF (Fig. 6(b)), an asymmetrical non-linearity of



896 G. Kerschen et al. | Journal of Sound and Vibration 262 (2003) 889-906

60

501

40

301

20

10

FRF (dB)

0

-10

-20

-30

0 100 200 300 400 500

@ Frequency (Hz)

FRF (dB)

30, 100 200 300 400 500
(b) Frequency (Hz)

Fig. 6. Horizontal set-up, magnitude of H7, (H, estimate): (a) 0.3 N r.m.s. and (b) 21 N r.m.s.

type |x|? is added to the model. Thus, the non-linearity is modelled as
f(x) = Alx|sign(x) + Blx//, (15)
where x is the displacement at the end of the beam. Exponents o and f are determined by seeking

the maximum value for the spectral mean of the averaged cumulative coherence of all the seven
Sensors

| 30 /1T
accuracy = — Z = Z y?m(w) , (16)
A](DZIO 7 i=1

where NV is the number of frequencies considered in the range from 10 to 500 Hz. The maximum
value is found for = 3 and f = 2 and is equal to 0.9834.
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Fig. 7. Horizontal set-up, ordinary coherence functions y§{7F: (a) 0.3 N r.m.s. and (b) 21 N r.m.s.

4.2.2. Estimation of the FRFs of the underlying linear system

The H, estimate (6) is used to compute the FRFs of the underlying linear system. Fig. 8
illustrates the magnitude of Hy, together with the cumulative coherence y3,, for the 21 N r.m.s.
level. Apart from a few drops (particularly around the first resonance), the cumulative coherence
is unity indicating that the model is quite accurate. Fig. 9 represents the comparison between the
true FRF, i.e., the FRF for the 0.3 N r.m.s. level, and the FRFs obtained using the H» and H,
estimates for the first two resonances. It can clearly be seen that the H., estimate is closer to the
true FRF while the H, estimate is contaminated by the presence of the non-linearity.
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Fig. 8. Horizontal set-up, 21 N r.m.s. level: (a) magnitude of Hy, (H, estimate) and (b) cumulative coherence y3,;.

4.2.3. Estimation of the non-linear coefficient

Once the FRFs of the underlying linear system are evaluated, the non-linear coefficients may
then be calculated. Fig. 10 displays the real part of the non-linear coefficients 4 and B (see
Eq. (15)). As pointed out previously, the coefficients are frequency dependent and a spectral mean
has to be performed to obtain a single value for the coefficients. From the superposition of the
true FRF and the H, estimate, it can be observed that the non-linear behaviour occurs between 10
and 250 Hz. Accordingly, the spectral mean of the non-linear coefficients is realized in this range.
Table 2 gives the spectral mean of 4 and B for the 8, 16 and 21 N r.m.s. levels. The real part of
coefficient A is stable while the real part of coefficient B decreases as the level increases. It is also
worth pointing out that the imaginary part of the coefficients, without any physical meaning, is
several orders of magnitude below the real part.
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estimate (21 N r.m.s.): (a) first resonance and (b) second resonance.

4.3. Summary of the results

Non-linearities introduce distortions in the FRFs as can be seen with the H, estimate. The H,
estimate allows these distortions to be removed:

e for the first resonance, the peak predicted by the CRP method is closer to the actual peak than
the peak obtained with the H, estimate;
e for the second resonance, the H., estimate almost merges with the actual peak.
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Table 2

Spectral mean (10-250 Hz) of the non-linear coefficients

Excitation level (N r.m.s.) A4 (N/m?) B (N/m?)

8 6.65 x 10° —i5.30 x 107 2.53 x 10 —i1.45 x 10*
16 6.41 x 10° +i1.26 x 107 1.25 x 10% +i2.64 x 10*
21 6.29 x 10° +i5.31 x 107 7.85 x 10° +i5.91 x 10*
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However, the results can be substantially improved. The second harmonic that appears in the
FRF (Fig. 6(b)) is due to the influence of gravity and cannot be modelled with an asymmetrical
non-linearity. This is the reason why coefficient B is found to vary strongly with frequency
(Fig. 10(b)) and why its spectral mean decreases when the excitation level increases (Table 2). This
may also explain why the frequency of the first resonance is not well predicted by the H, estimate.

Indeed, gravity is at the origin of a static deflection of the two beams. This deflection imposes a
non-negligible pre-stress in the thin beam part which is responsible for the second harmonic in the
FRF.

5. Identification results: vertical set-up

In order to reduce the influence of gravity, the vertical set-up shown in Fig. 5(b) was built. In
this section, the CRP is again exploited to identify the non-linear behaviour of the thin beam part.
Different excitation levels are considered in the 1.4-22 N r.m.s. range.

5.1. Conventional frequency response estimation ( H, estimate)

Fig. 11 displays the magnitude of H7; for the lowest (1.4 N r.m.s.) and highest (22 N r.m.s.)
excitation levels. It is worth pointing out that the structure can be considered as linear for the
lowest level. In comparison with Fig. 6, the second harmonic has almost completely disappeared.
To consider the influence of the non-linearity on the FRFs, the natural frequencies are estimated
in the 0-500 Hz range using the least squares complex exponential (LSCE) method [16]. The
results are summarized in Table 3. It can be observed that the first two natural frequencies
are shifted towards higher frequencies when the excitation level is increased. This is due to the
stiffening effect of the thin beam part. The third natural frequency does not seem to be affected by
the presence of the non-linearity.

5.2. Conditioned frequency response estimation (H. estimate)

5.2.1. Model selection
As in Section 4.2.1, the thin beam part is modelled with a grounded symmetrical non-linearity

£(x) = Alx|*sign(x). (17)

Since, the effect of gravity is now negligible, the asymmetrical non-linearity is not included in the
model. The best results in terms of spectral mean of the averaged cumulative coherence of all the
sensors are obtained with o = 2.8 (accuracy = 0.9873).

5.2.2. Estimation of the FRFs of the underlying linear system

Fig. 12 represents the magnitude of H73 (H estimate) together with the cumulative coherence
73,7 for the 22 N r.m.s. level. Fig. 13 is the comparison between the frue FRF, i.e., the FRF for the
1.4 N r.m.s. level, and the FRFs obtained using the H., and H, estimates for the first two
resonances. The natural frequencies are also estimated from the H,, estimate using LSCE method.
Table 4 gives the natural frequencies identified for the different excitation levels.
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Fig. 11. Vertical set-up, magnitude of H7; (H; estimate): (a) 1.4 N r.m.s. and (b) 22 N r.m.s.

Table 3

Natural frequencies (H, estimate)

Excitation level (N r.m.s.)

First freq. (Hz)

Second freq. (Hz)

Third freq. (Hz)

1.4
2.8
5.5
11
16
22

30.74
30.99
31.60
33.13
34.81
36.80

139.47
139.49
139.64
140.29
140.84
141.80

390.22
390.16
390.12
390.17
390.34
390.54
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Fig. 12. Vertical set-up, 22 N r.m.s. level: (a) magnitude of H73 (H,, estimate) and (b) cumulative coherence y3,,.

Appreciable results have been obtained. For instance, in comparison with the horizontal set-up,
the natural frequency of the first mode is now well estimated.

5.2.3. Estimation of the non-linear coefficient

The last step of the identification procedure is the computation of the non-linear coefficient.
Fig. 14 represents the real part of coefficient 4 and the spectral mean (10-250 Hz) of this
coefficient for all excitation levels is listed in Table 5. Apart from the 2.8 and 5.5 N r.m.s. levels for
which the non-linearity does not participate sufficiently in the system response, a stable value for
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Table 4
Natural frequencies (H,, estimate)

Excitation level (N r.m.s.) First freq. (Hz) Second freq. (Hz) Third freq. (Hz)
Reference (1.4) 30.74 139.47 390.22
2.8 30.65 139.41 390.12
5.5 30.69 139.41 390.02
11 30.62 139.34 389.87
16 30.62 139.35 389.85
22 30.51 139.33 389.78
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Fig. 14. Vertical set-up, real part of the non-linear coefficient (22 N r.m.s.).

Table 5

Spectral mean (10-250 Hz) of the non-linear coefficient

Excitation level (N r.m.s.) A (N/mz'g)

2.8 2.69 x 10° —i2.76 x 107
5.5 2.08 x 10° —i6.07 x 107
11 1.94 x 10° +1i1.09 x 10°
16 1.96 x 10° —i6.20 x 10°
22 1.96 x 10° +1i1.55 x 107

the non-linear coefficient is identified. Again, the imaginary part of the coefficient is several orders
of magnitude below the real part.

6. Conclusions

The aim of this paper has been to apply the CRP method to a non-linear beam. The non-
linearity was realized by a thin beam excited with a large deflection. To evaluate the influence of
gravity, two different set-up were built. Better results were obtained with the vertical set-up for
which the influence of gravity is significantly reduced.

This work has also illustrated that the H, estimate is unable to recover the linear dynamic
compliance functions of a m.d.o.f. non-linear system. Furthermore, the H,, estimate, proposed by
the CRP method, allows the distortions introduced in the FRFs by the non-linearities to be
reduced. In a second step, the CRP method gives a reliable estimation of the non-linear
coefficients. The key advantage of the method is its ability to deal with m.d.o.f. non-linear
systems. In this context, it appears to be a useful method to be employed on more complex non-
linear structures.
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