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1. Introduction

The method of multiple scales is one of the important perturbation techniques widely used. The
method yields transient solutions as well as steady state solutions in contrast to some other
techniques which yield only the steady state solution.
When employing higher order expansions, slightly different versions of the method appear in

the literature. The oldest version, called reconstitution method, is due to Nayfeh (see, for example,
Refs. [1–3]). Generally speaking, in this method, for primary resonances, the damping and forcing
terms are re-ordered such that they balance the effect of non-linearities. The nearness of the
external excitation frequency to one of the natural frequencies is represented by using only one
correction term. The time derivatives for each time scale do not vanish separately, but their sum
vanishes for finding the steady state solutions. In contrast, Rahman and Burton [4] showed that
the reconstitution method (which will be called MMS I) cannot capture well the steady state
Lindstedt–Poincare solutions. MMS I yielded extra solutions which are not physical for the
simple duffing oscillator. Rahman and Burton [4] then suggested an alternative version (MMS II)
to handle the problem. The excitation frequency and the damping should be expanded in a series
and require that each time-scale derivative vanish independently. This method was presented for
finding the steady state solutions. However, the unsteady solutions cannot be retrieved using the
method. Boyac"y and Pakdemirli [5] applied this new version as well as MMS I to partial
differential equations with arbitrary quadratic and cubic non-linearities and found similar results
to Ref. [4]. Hassan [6] applied MMS II to the case of superharmonic resonances and compared his
results with the harmonic balance method. Later, Lee and Lee [7] improved MMS II by showing
how to calculate unsteady solutions as well as the steady state solutions (MMS II modified).
Similar to MMS I, the suggested modified version make series expansions unnecessary for the
frequency, damping and excitation amplitude. In this version, damping and excitation are scaled
to appear in the first non-linear order. In MMS II, only the steady state solutions can be retrieved
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whereas in this modified version transient solutions can also be obtained. In establishing this, time
derivatives are taken to be non-zero only on their corresponding level of approximation, i.e., D1

terms are non-zero on the first level of approximation but vanish on the second level of
approximation.
In treating partial differential equations using MMS, besides selecting a version, one has to

select one of the two choices: (1) discretize the equations first and then apply MMS (discretization-
perturbation method) or (2) apply MMS directly to the partial differential system (direct-
perturbation method). The advantages of selecting the latter choice has been widely discussed [2,5,
8–13].
In this work, an odd non-linearity problem will be treated using MMS I and MMS II modified.

The model considered is

.x þ m ’x þ x þ ax3 þ bx5 ¼ F cosOt; ð1Þ

where x is the amplitude of vibrations, m is the viscous damping, a and b are the non-linearity
coefficients, and F and O are the external excitation amplitude and frequency, respectively. Dot
denotes differentiation with respect to time variable t: Approximate solutions will be derived using
two higher order versions and comparisons between the methods as well as with direct numerical
calculations will be presented.

2. Approximate solution by MMS I

The non-linearities are reordered such that their effects appear at different orders

a ¼ e%a; b ¼ e2 %b: ð2Þ

In this version, the excitation amplitude and damping are ordered such that they balance the non-
linearity at the last order. Primary resonances are assumed for the external excitation frequency

F ¼ e2f ; m ¼ e2 %m; O ¼ 1þ e2s: ð3Þ

This choice of ordering is the best possible choice as will be explained at the end of this section and
Section 4. The approximate expansion is

xðt; eÞ ¼ x0ðT0;T1;T2Þ þ ex1ðT0;T1;T2Þ þ e2x2ðT0;T1;T2Þ þ?; ð4Þ

where Tn ¼ ent: Time derivatives in terms of fast and slow time scales are

d=dt ¼ D0 þ eD1 þ e2D2 þ?;

d2=dt2 ¼ D2
0 þ 2eD0D1 þ e2ðD2

1 þ 2D0D2Þ þ?; ð5Þ

where Dn ¼ @=@Tn: Substituting all into the original equation and separating terms at each order
yields

D2
0x0 þ x0 ¼ 0; ð6Þ

D2
0x1 þ x1 ¼ �2D0D1x0 � %ax3

0; ð7Þ
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D2
0x2 þ x2 ¼ � 2D0D1x1 � ðD2

1 þ 2D0D2Þx0

� %mD0x0 � 3%ax2
0x1 � %bx5

0 þ f cosOT0: ð8Þ

The first order solution is

x0 ¼ AðT1;T2Þ expðiT0Þ þ c:c:; ð9Þ

where c.c. stands for complex conjugates of preceding terms. Removing the secular terms at the
next order requires

2iD1A ¼ �3%aA2 %A: ð10Þ

The solution at this order is

x1 ¼
%a
8
ðA3 expð3iT0Þ þ c:c:Þ: ð11Þ

At the last order, the secular terms are removed if

2iD2A ¼ � %miA � 10 %b� 15
8 %a

2
� �

A3 %A2 þ
f

2
expðisT2Þ: ð12Þ

The evolution of complex amplitudes in real time would then be

2i
dA

dt
¼ 2iðeD1A þ e2D2AÞ þ? ð13Þ

or

2i
dA

dt
¼ � miA � 3aA2 %A � 10b� 15

8
a2

� �
A3 %A2

þ
F

2
expðiðO� 1ÞtÞ: ð14Þ

Note that all system parameters are expressed in their original form since the original
equation does not depend on the artificially introduced perturbation parameter. Using the polar
form

A ¼ 1
2
a expðilÞ; ð15Þ

the approximate solution and amplitude phase modulation equations can be written in the
form

x ¼ a cosðOt � gÞ þ
aa3

32
cosð3Ot � 3gÞ þ?; ð16Þ

’a ¼ �
m
2

a þ
F

2
sin g; ð17Þ

a’g ¼ aðO� 1Þ � 3
8
aa3 �

1

32
10b� 15

8
a2

� �
a5 þ

F

2
cos g; ð18Þ

where

g ¼ ðO� 1Þt � l: ð19Þ
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In the case of steady state motion, ’a ¼ ’g ¼ 0 and the frequency–response relation becomes

O ¼ 1þ 3
8
aa2

0 þ
1
32

10b� 15
8
a2

� �
a407

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

a2
0

� m2

s
: ð20Þ

Performing the standard stability analysis [14] for the fixed points, one obtains the conditions

m2 � 4c > 0 and co0 ðunstable solutionsÞ;

m2 � 4c > 0 and c > 0 ðstable solutionsÞ;

m2 � 4co0 ðstable solutionsÞ; ð21Þ

where

c ¼
m2

4
þ

F

2a
cos g 3

4aa2 þ 1
8 10b� 15

8 a
2

� �
a4 þ

F

2a
cos g

� �
: ð22Þ

Now, one might wonder if a different choice of ordering would yield better results. Another choice
would be to incorporate damping and excitation at the first non-linear order

F ¼ ef ; m ¼ e %m; O ¼ 1þ es: ð23Þ

Note that there is no other choice possible than the considered two different scaling (i.e., Eqs. (23)
and (3)). Selecting the excitation and damping to appear at different orders of approximation
may lead to inconsistencies. Performing a similar analysis for this choice of ordering yields
finally

’a ¼ �
m
2

a þ 3
16
ama3 þ 1

8
mF cos g

þ F sin g
3� O
4

� �
� 9

32
aFa2 sin g; ð24Þ

a’g ¼ aðO� 1Þ þ 1
8
m2a � 3

8
aa3 þ F cos g

3� O
4

� �
� 1

8
mF sin g

�
1

32
10b� 15

8
a2

� �
a5 � 3

32
aFa2 cos g: ð25Þ

Comparing Eqs. (24) and (25) with Eqs. (17) and (18), one readily observes excess terms. The
approximate solution is again the one given in Eq. (16) but modulations of amplitudes and phases
differ for this choice. More will be said about these different selections in Section 4.
Note that a time transformation T ¼ Ot in the beginning of the analysis with the scaling given

in Eq. (3) would yield exactly the same frequency–response relation as given in Eq. (20).

3. Approximate solution by MMS II modified

The same problem will be solved by using the modified MMS II due to Lee and Lee [7]. First,
the time variable is transformed into

T ¼ Ot: ð26Þ
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The equation of motion would then be

O2x00 þ mOx0 þ x þ ax3 þ bx5 ¼ F cos T : ð27Þ

Excitation frequency and amplitude and damping are expanded to first non-linear order only [7]
and hence

a ¼ e%a; b ¼ e2 %b; F ¼ ef ; m ¼ e %m;

O2 ¼ 1þ es1; O ¼ 1þ es2: ð28Þ

The approximate expansion is the same as given in Eq. (4) with the time variables defined in a
slightly different manner such that Tn ¼ enT : The equations at each order are

D2
0x0 þ x0 ¼ 0; ð29Þ

D2
0x1 þ x1 ¼ �2D0D1x0 � %mD0x0 � s1D2

0x0 � %ax3
0 þ f cos T0; ð30Þ

D2
0x2 þ x2 ¼ � 2D0D1x1 � ðD2

1 þ 2D0D2Þx0

� %mðD0x1 þ D1x0Þ � %ms2D0x0

� s1ðD2
0x1 þ 2D0D1x0Þ � 3%ax2

0x1 � %bx5
0: ð31Þ

Solutions x0 and x1 are the same as given in the previous section. Elimination of secular terms
yield the following relations at each order:

2iD1A ¼ � %miA þ s1A þ
f

2
� 3%aA2 %A; ð32Þ

2iD2A ¼ �ð10 %bþ 3
8%a

2ÞA3 %A2 � %ms2iA: ð33Þ

The evolution of complex amplitudes in terms of original parameters would be

2i
dA

dT
¼ðO2 � 1ÞA þ

F

2
� 3aA2 %A

� ð10bþ 3
8
a2ÞA3 %A2 � mOiA: ð34Þ

Using the polar form

A ¼ 1
2

a exp ð�igÞ; ð35Þ

the solution- and amplitude-phase relations in real time are

x ¼ a cosðOt � gÞ þ
aa3

32
cosð3Ot � 3gÞ þ?; ð36Þ

’a ¼ �
m
2
O2a þ

F

2
O sin g; ð37Þ

a’g ¼
O
2
ðO2 � 1Þa � 3

8
aOa3 �

O
32

10bþ 3
8
a2

� �
a5 þ

F

2
O cos g: ð38Þ
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The frequency–response relation is

O2 ¼ 1þ 3
4
aa20 þ

1
16

10bþ 3
8
a2

� �
a4
07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2

a2
0

� ðmOÞ2
s

: ð39Þ

Performing a similar stability analysis yields

m2O4 � 4c > 0 and co0 ðunstable solutionsÞ;

m2O4 � 4c > 0 and c > 0 ðstable solutionsÞ;

m2O4 � 4co0 ðstable solutionsÞ; ð40Þ

where

c ¼
m2O4

4
þ

FO
2a

cosg 3
4
aOa2 þ

O
8

10bþ 3
8
a2

� �
a4

�
þ

FO
2a

cos g
�
: ð41Þ

Next section is devoted to comparisons between the methods as well as numerical solutions

4. Comparisons

The alternative scaling (i.e., Eq. (23)) in MMS I produced very much different amplitude and
phase modulation equations (i.e., Eqs. (24) and (25)) compared to the others (i.e., Eqs. (17) and
(18) for MMS I and Eqs. (37) and (38) for MMS II modified). This alternative ordering in
MMS I produce the extra unphysical solutions which are discussed in detail in Ref. [4]. For this
reason, only the solutions corresponding to the best possible choice of MMS I (i.e., orderings
given in Eq. (3)) are compared with those of MMS II modified. Comparing the frequency–
response relations obtained by each version (i.e., Eq. (20) for MMS I and Eq. (39) for MMS II
modified), a major difference is noted in the coefficient of a40: For a suitable selection of
positive non-linearity coefficients a and b; the coefficient of a4

0 can be negative in MMS I, whereas
it is always positive in MMS II. The square root terms limit the maximum amplitudes (i.e., root
argument is zero) and it is higher in MMS I. MMS I and MMS II frequency–response curves
are drawn for the parameter values a ¼ 0:4; b ¼ 0:005; m ¼ 0:02 and F ¼ 0:1 in Fig. 1. Solid
lines belong to stable solutions and dotted lines belong to unstable ones. Results of direct
numerical integration of the original equation are represented by diamonds in the figure. It is
evident that MMS II produces more reliable solutions and as a40 term becomes dominant for
larger amplitudes, the error in MMS I solution increases. MMS I predicts up to three stable
branches for a given frequency, whereas numerical integration and MMS II both predict up to
two stable branches. Time transformation in MMS II is not responsible for the better results. If
time transformation had been done for MMS I, exactly the same frequency-response relation
given in Eq. (20) would be obtained. For a suitable selection of a and b; it is of course possible to
approximately equate the coefficients of a40 for each version in which case both solutions would be
indistinguishable.
A sample numerical integration plot is given with the above parameter values for the point

corresponding to O ¼ 1:7 in Fig. 2. The steady state amplitude is 2.486. In numerical calculations,
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it becomes more and more involved to find specific initial conditions yielding the stable solutions
in the neighborhood of the turning points (saddle node bifurcation points). By trying different sets
of initial conditions, the highest and lowest values of frequency for jump phenomena occur at
O ¼ 1:75 and 1:15; respectively. Since extensive trials are needed, these points are not the exact
jump points but without appreciable error, it is estimated that jump occurs for slightly higher and
lower frequency values.
An interesting special case is linear damped-forced vibrations (i.e., a ¼ b ¼ 0 in the original

equation) where exact closed-form solution is available,

x ¼ x0 exp �
m
2

t
	 


cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

m2

4

s
t þ j

0
@

1
A

þ
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� O2Þ2 þ ðmOÞ2
q cosðOt � gÞ: ð42Þ

Fig. 1. Frequency–response curves for MMS I and MMS II (solid stable, dotted unstable) and direct numerical results

(diamonds) for the non-linear case. (a ¼ 0:4; b ¼ 0:005; m ¼ 0:02 and F ¼ 0:1).
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The approximate solution using MMS I is

x ¼ x0 exp �
m
2

t
	 


cosðt þ jÞ

þ
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð1� OÞ2 þ m2
q cosðOt � gÞ ð43Þ

and the one using MMS II is

x ¼ x0 exp �
m
2
O2t

	 

cos O 1�

O2 � 1

2

� �
t þ j

� �

þ
Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� O2Þ2 þ ðmOÞ2
q cosðOt � gÞ: ð44Þ

The steady state solution (i.e., the last term ) obtained by MMS II is exactly the same with the
analytical solution. On the contrary, it is approximately equal to the analytical solution for the
case of MMS I and the error increases as the frequency deviates from 1. This can be seen from
Fig. 3 clearly where solid lines belong to the analytical as well as MMS II solutions and dashed
lines belong to those of MMS I.

Fig. 2. Time history of the original equation (xð0Þ ¼ 0; ’xð0Þ ¼ 30; O ¼ 1:7; a ¼ 0:4; b ¼ 0:005; m ¼ 0:02 and F ¼ 0:1).
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Comparing the transient responses (the first terms in the solutions), however, the error
introduced is more in MMS II than in MMS I as frequency deviates from 1 as can be readily
detected from the arguments of exponential and cosine terms. This conclusion is also supported
by the comparisons between the different versions in the general non-linear case. Comparing
Eqs. (17) and (18) with Eqs. (37) and (38), one can readily detect the excess multiplications of
frequency in the latter case which makes the transient responses imprecise. To see further that
MMS I produces more reliable transient solutions, one may consider the more degenerate case of
linear damped vibrations without excitation. The approximate analytical solution using MMS I is
reproduced from Ref. [3, p. 144]

x ¼ x0 exp �
m
2

t
	 


cos t �
m2

2
t þ j

� �
: ð45Þ

The solution using MMS II is

x ¼ x0 exp �
m
2

t
	 


cosðt þ jÞ: ð46Þ

The damped frequency of the exact analytical solution is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
or approximately 1� m2=2: It is

clear that the second correction term in the cosine argument can not be retrieved by MMS II. The
fail stems from selecting D1A ¼ 0 at the second order of approximation.

Fig. 3. Frequency–response curves for MMS I (dotted), MMS II (solid) and exact (solid) for the linear case.
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5. Concluding remarks

The following conclusions can be withdrawn from the analysis:

(1) MMS II is better than MMS I in finding steady state solutions.
(2) On the contrary, MMS I is better than MMS II in finding transient responses.

These conclusions are valid for primary resonances of the external excitation. Conclusion 1
confirms the previously obtained results given in Refs. [4,7]. However, in this work, a different
non-linear model is used. Conclusion 2 appears to be new and not previously reported. Note that
both methods will yield identical results when D1A ¼ 0 at the first level of approximation [4].

References

[1] A.H. Nayfeh, Perturbation methods in nonlinear dynamics, in: Topical Course on Nonlinear Dynamics, Societa

Italiana di Fisica, Santa Margherita di Pula, Sardina, 1985.

[2] A.H. Nayfeh, J.F. Nayfeh, D.T. Mook, On methods for continuous systems with quadratic and cubic

nonlinearities, Nonlinear Dynamics 3 (1992) 145–162.

[3] A.H. Nayfeh, Introduction to Perturbation Techniques, Wiley, New York, 1981.

[4] Z. Rahman, T.D. Burton, On higher order methods of multiple scales in non-linear oscillations-periodic

steady-state response, Journal of Sound and Vibration 133 (1989) 369–379.

[5] H. Boyaci, M. Pakdemirli, A comparison of different versions of the method of multiple scales for partial

differential equations, Journal of Sound and Vibration 204 (1997) 595–607.

[6] A. Hassan, A second comparison of two higher order perturbation schemes, Journal of Sound and Vibration 184

(1995) 907–928.

[7] C.L. Lee, C.T. Lee, A higher order method of multiple scales, Journal of Sound and Vibration 202 (1997) 284–287.

[8] M. Pakdemirli, A comparison of two perturbation methods for vibrations of systems with quadratic and cubic

nonlinearities, Mechanics Research Communications 21 (1994) 203–208.

[9] M. Pakdemirli, H. Boyaci, Comparison of direct-perturbation methods with discretization-perturbation methods

for non-linear vibrations, Journal of Sound and Vibration 186 (1995) 837–845.

[10] M. Pakdemirli, S.A. Nayfeh, A.H. Nayfeh, Analysis of one-to-one autoparametric resonance in cables–

discretization versus direct treatment, Nonlinear Dynamics 8 (1995) 65–83.

[11] A.H. Nayfeh, S.A. Nayfeh, M. Pakdemirli, On the discretization of weakly nonlinear spatially continuous systems,

in: N.S. Namachchivaya, W. Kliemann (Eds.), Nonlinear Dynamics and Stochastic Mechanics, CRC Press, Boca

Raton, FL, 1995, pp. 175–200.

[12] M. Pakdemirli, H. Boyaci, The direct-perturbation method versus the discretization-perturbation method: linear

systems, Journal of Sound and Vibration 199 (1997) 825–832.

[13] A.H. Nayfeh, W. Lacarbonara, On the discretization of distributed-parameter systems with quadratic and cubic

nonlinearities, Nonlinear Dynamics 13 (1997) 203–220.

[14] A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics, Wiley, New York, 1995.

M. Pakdemirli / Journal of Sound and Vibration 262 (2003) 989–998998


	Comparison of higher order versions of the method of multiple scales for an odd non-linearity problem
	Introduction
	Approximate solution by MMS I
	Approximate solution by MMS II modified
	Comparisons
	Concluding remarks
	References


