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Abstract

The natural frequencies and mode shapes of beams with constant width and linearly tapered depth (or
thickness) carrying any number of point masses at arbitrary positions along the length of the beams were
investigated using the Euler–Bernoulli equation. Use of the closed-form (exact) solutions for the natural
frequencies and mode shapes of the unconstrained single-tapered beam (without carrying any point masses)
and incorporation of the expansion theorem, the equation of motion for the associated constrained beam
(carrying any point masses) were derived. Solution of the last equation will yield the desired natural
frequencies and mode shapes of the constrained single-tapered beam. The bending vibrations of a single-
tapered beam with six kinds of boundary conditions were investigated. Comparison with the existing
literature or the traditional finite element method results reveals that the adopted approach has excellent
accuracy and simple algorithm.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this paper, for convenience, as in the existing literature, a beam is called ‘‘constrained’’ beam
if it carries any concentrated point masses and is called ‘‘unconstrained’’ beam if it has no
attachments. The literature relating to the vibration analysis of the non-uniform unconstrained
beams is plenty [1–16]; however, the information regarding the dynamic behavior of the non-
uniform constrained beams (carrying multiple concentrated elements) is relatively fewer [3,17–26].
All the statements of this paper refer to the Euler–Bernoulli beams unless particularly mentioned.
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For the unconstrained non-uniform beams, Cranch and Adler [1] presented the closed-form
solutions (in terms of the Bessel functions and/or power series) for the natural frequencies and
mode shapes of complete beams with four kinds of rectangular cross-sections: linear depth � any
power width, quadratic depth � any power width, cubic depth � any power width, and constant
depth � any exponential width. Conway and Dubil [2] obtained similar closed-form solutions for
the truncated-cone beams and the truncated-wedge beams. Goel [3] obtained the closed-form
solutions of the single- and double-tapered truncated beams with non-idealized end conditions:
spring hinged with rotational springs or tip mass. Housner and Keightley [4] solved a similar
problem numerically with Myklestad–Prohl (MP) method and the Stodola (ST) method.
Heidebrecht [5] determined the approximate natural frequencies and mode shapes of a non-
uniform simply supported beam from the frequency equation and a Fourier sine series, where the
frequency equation was derived from the Lagrangian equation by expanding the sectional mass

%mðxÞ and moment of inertia I(x) of the beam in terms of the Fourier cosine series. Similar to
Heidebrecht [5], Mabie and Rogers [6] used the second- and fourth order polynomials of axial co-
ordinate x to express the sectional area A(x) and moment of inertia I(x), respectively, but they
transformed the partial differential equation of free vibration of a double-tapered beam into the
ordinary one, and then solved the last equation to get the natural frequencies. Downs [7]
presented the natural frequencies and parts of the corresponding mode shapes of the cantilever
beams with 36 combinations of linear depth and breadth taper based on both Euler and
Timoshenko theories by using the dynamic discretization technique. Bailey [8] determined the
natural frequencies of the non-uniform cantilever beams numerically by directly solving the
frequency equation derived from the Hamilton’s law. Gupta [9] derived the stiffness and
consistent mass matrices for the linearly tapered beam element and then determined the natural
frequencies and mode shapes of the tapered beams with the traditional finite element procedure.
Naguleswaran determined the approximate natural frequencies of the single-tapered beams [10]
and double-tapered beams [11] with a direct solution of the mode shape equation based on the
Frobenius method. Abrate [12] found that the equation of motion of a non-uniform beam may be
transformed into that of a uniform beam and then solved for the natural frequencies and mode
shapes if the sectional area A(x) and the moment of inertia I(x) take the special forms. Laura et al.
[13] investigated the natural frequencies of Bernoulli beams with constant width and bilinearly
varying thickness using three well-known approximate numerical approaches: Rayleigh–Ritz
method, differential quadrature method and finite element method. Datta and Sil [14] employed
the reverse procedures of Ref. [1] to determine the natural frequencies of cantilever beams with
constant width and linearly varying depth. Hoffmann and Wertheimer [15] presented a simple
formula for determining the fundamental frequency of tapered cantilever beams with linear tapers
as a function of the first-mode-deflection beam stiffness, the beam mass and a mass distribution
parameter. Mabie and Rogers [16] studied the transverse vibration of single-tapered clamped–
hinged beams.
For the natural frequencies and mode shapes of the non-uniform (constrained) beams carrying

concentrated attachments at one end or both ends [17–22], the solution procedures are exactly
the same as those for the non-uniform unconstrained beams [1–16]. The only difference is to
change the boundary conditions for the unconstrained beams to accommodate the effects of the
attachments at one end or both ends of the constrained beams, such as the restoring force due to
translational spring, restoring bending moment due to rotational spring and inertial force due to
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lumped mass and/or inertia moment due to concentrated mass moment of inertia. Because the
problem becomes much complicated and intractable if the attachments are located at arbitrary
positions along the length of the beam [23–26], the literature in this aspect is fewer, particularly for
the cases with more than two intermediate attachments.
In Ref. [27], it has been found that the analytical and numerical, combined, method (ANCM)

can deal with the foregoing drawback of the existing approaches. Hence this paper tries to use
ANCM to tackle the title problem. First, the closed-form solutions for the natural frequencies and
mode shapes of an unconstrained tapered beam with prescribed boundary conditions were
determined analytically. Secondly, the equation of motion and the eigenvalue equation for the
corresponding constrained tapered beam (carrying any number of point masses) were derived
using the expansion theorem and the last natural frequencies and mode shapes. Finally, the
eigenvalue equation was solved numerically to give the natural frequencies and mode shapes of
the constrained tapered beam. The free vibration characteristic of a single-tapered beam with six
boundary conditions was investigated. To validate the numerical results of ANCM, the
traditional finite element method (FEM) was also used to solve the same problem and good
agreement between the corresponding results was achieved.

2. Natural frequencies and normal mode shapes of an unconstrained wedge beam

For an unconstrained non-uniform Euler–Bernoulli beam as shown in Fig. 1, the equation of
motion is given by [1–3]

@2

@x2
EIðxÞ

@2yðx; tÞ
@x2

� �
þ rAðxÞ

@2yðx; tÞ
@t2

¼ 0; ð1Þ

where x is the axial co-ordinate, y is the transverse deflection, E is Young’s modulus, r is the mass
density of material, A(x) is the cross-sectional area of beam, I(x) is the moment of inertia of A(x)
and t is time.
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Fig. 1. Sketch for the wedge beam studied: (a) top view; (b) front view; (c) left side view.
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For harmonic free vibration, one has

yðx; tÞ ¼ W ðxÞeiot; ð2Þ

where W(x) is the amplitude of the deflection y(x,t) and represents the mode shape of the beam in
free vibration, o is the natural frequency and i ¼

ffiffiffiffiffiffiffi
�1

p
: From Eqs. (1) and (2) one has

d2

dx2
EIðxÞ

d2W ðxÞ
dx2

� �
� rAðxÞo2W ðxÞ ¼ 0: ð3Þ

If the values of rA(x) and EI(x) appearing in Eq. (3) take the forms

rAðxÞ ¼ rA1
x

L1

� �n

and EIðxÞ ¼ EI1
x

L1

� �nþ2

ð4a;bÞ

or

rAðxÞ ¼ rA1x
n and EIðxÞ ¼ EI1x

nþ2 ð5a;bÞ

with

x ¼
x

L1
; ð6Þ

then the solution of Eq. (3) is given by [28–31]

W ðxÞ ¼ L
�n=2
1 x�n=2½c1JnðzÞ þ c2YnðzÞ þ c3InðzÞ þ c4KnðzÞ�: ð7Þ

In Eqs. (4)–(6), L1 is the length of the tapered beam from the sharp end (i.e., the origin of the axial
co-ordinate x) to the large end, and

A1 ¼ b1h1; I1 ¼
b1h

3
1

12
ð8a;bÞ

are, respectively, the cross-sectional area and moment of inertia of the beam at the large end, while
n is a parameter defining variations of AðxÞ and IðxÞ along the length of the beam. In Eq. (7), Jn

and Yn are the nth order Bessel functions of first kind and second kind, respectively, while In and
Kn are the nth order modified Bessel functions of first kind and second kind, respectively, ci–c4 are
integration constants determined by the boundary conditions, and

z ¼ 2bx1=2; ð9Þ

b4 ¼ o2L4
1

rA1

EI1

� �
: ð10aÞ

Substituting the values of A1 and I1 defined by Eq. (8) into Eq. (10a), one obtains

b2r ¼
orL

2
1

h1

ffiffiffiffiffiffiffiffi
12r
E

r
: ð10bÞ

For the single-tapered beam as shown in Fig. 1, the width is constant and the depth is linearly
varying, i.e.,

bðxÞ ¼ b1 ¼ b0 ¼ constant; ð11Þ

hðxÞ ¼ axL1 ð12Þ
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with

a ¼ h1=L1 ¼ h0=L0; ð13Þ

x0 ¼ L0=L1; ð14Þ

where a is the taper ratio.
From Eqs. (5), (8), (11) and (12), one sees that parameter n for single-tapered beam shown in

Fig. 1 is equal to one, i.e., n=1.0 Hence, Eq. (7) reduces to

W ðxÞ ¼ L
�1=2
1 x�1=2 c1J1ðzÞ þ c2Y1ðzÞ þ c3I1ðzÞ þ c4K1ðzÞ½ �: ð15Þ

For the free–clamped (FC) single-tapered beam shown in Fig. 1, one has

d2W

dx2
¼

d

dx
EIðxÞ

d2W

dx2

� �
¼ 0 at x ¼ x0 ¼ L0=L1; ð16a;bÞ

W ¼
dW

dx
¼ 0 at x ¼ 1:0: ð17a;bÞ

The substitution of Eq. (15) into Eqs. (16a), (16b), (17a) and (17b) gives

c1J2ðz0Þ þ c2Y2ðz0Þ þ c3I2ðz0Þ � c4K2ðz0Þ ¼ 0; ð18aÞ

c1J3ðz0Þ þ c2Y3ðz0Þ þ c3I3ðz0Þ þ c4K3ðz0Þ ¼ 0; ð18bÞ

c1J1ð2bÞ þ c2Y1ð2bÞ þ c3I1ð2bÞ þ c4K1ð2bÞ ¼ 0; ð18cÞ

c1J2ð2bÞ þ c2Y2ð2bÞ � c3I2ð2bÞ þ c4K2ð2bÞ ¼ 0; ð18dÞ

where

z0 ¼ 2bx1=20 ¼ 2bðL0=L1Þ
1=2: ð19Þ

Non-trivial solution of Eq. (18) requires that

J2ðz0Þ Y2ðz0Þ I2ðz0Þ �K2ðz0Þ

J3ðz0Þ Y3ðz0Þ I3ðz0Þ K3ðz0Þ

J1ð2bÞ Y1ð2bÞ I1ð2bÞ K1ð2bÞ

J2ð2bÞ Y2ð2bÞ �I2ð2bÞ K2ð2bÞ

���������

���������
¼ 0: ð20Þ

From the last equation one may determine the values of b ¼ br (r ¼ 1;2,3,y). The associated
values of o ¼ or obtained from Eq. (10) are the corresponding natural frequencies, i.e.,

or ¼
br

L1

� �2
ffiffiffiffiffiffiffiffi
EI1

rA1

s
ðr ¼ 1; 2; 3;yÞ: ð21Þ

The corresponding mode shapes may be obtained from Eq. (15), i.e.,

WrðxÞ ¼ L
�1=2
1 x�1=2 c1J1ðzrÞ þ c2Y1ðzrÞ þ c3I1ðzrÞ þ c4K1ðzrÞ½ �; ð22Þ

where

zr ¼ 2brx
1=2: ð23Þ
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The mode shapes W(x) given by Eq. (22) are the natural mode shapes. In order to apply the
ANCM to the title problem, one requires to obtain the normal mode shapes %WrðxÞ: The latter
must satisfy the following orthonormal conditions:Z 1

x0

%WrðxÞrAðxÞ %WsðxÞL1 dx ¼ drs; ð24Þ

where x0 ¼ L0=L1 and drs is the Kronecker’s delta.
For the single-tapered beam studied in this paper (see Fig. 1), from Eq. (4a) one has

AðxÞ ¼ A1x: ð25Þ

From Eqs. (24) and (25) one obtains the normal mode shapes to be

%WrðxÞ ¼ CrWrðxÞ; ð26Þ

where

Cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

rA1Br

s
; ð27Þ

Br ¼
Z 1

x0

½c1rJ1ðzrÞ þ c2rY1ðzrÞ þ c3rI1ðzrÞ þ c4rK1ðzrÞ�2 dx: ð28Þ

The analytical integration of Eq. (28) is usually difficult. In such a case one may obtain the
numerical values of Br (r ¼ 1;2,3,y) by means of Simpson’s rule. Simpson’s rule is one of the
techniques for calculating the area under a curve. Because the curves defined by mode shapes of a
wedge beam, shown in Eq. (28), are very smooth, one requires only small number of subdivision
intervals, ni, for Simpson’s rule. In this paper, ni ¼ 80 was used in numerical integration of
Eq. (28). It has been found that differences between natural frequencies based on ni ¼ 80 and
those based on ni ¼ 160 are very small and negligible.
Besides the free–clamped (FC) beam described above, the other five boundary conditions of the

single-tapered beam are also studied in this paper: HC, CC, CF, CH and HH. (Here H, C and F
represent hinged, clamped and free ends, respectively.) For the associated frequency equations,
one may refer to Refs. [14,29,30].

3. Natural frequencies and mode shapes of the constrained wedge beams

For a non-uniform Euler–Bernoulli beam carrying P point masses with magnitudes mj

(j ¼ 1�P) located at xj, the equation of motion is given by (see Fig. 2)

@2

@x2
EIðxÞ

@2yðx; tÞ
@x2

� �
þ rAðxÞ

@2yðx; tÞ
@t2

¼ �
XP

j¼1

mj

@2yðx; tÞ
@t2

dðx � xjÞ; ð29Þ

where d( 	 ) denotes the Dirac delta function and meanings of the other symbols are exactly the
same as in Eq. (1).
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According to the method of separation of variables and the expansion theorem [32,33], we set

yðx; tÞ ¼
X%n

s¼1

%WsðxÞZsðtÞ; ð30Þ

where %WsðxÞ is the sth normal mode shape of the unconstrained beam obtained in the last section,
ZsðtÞ is the associated generalized co-ordinate and %n is the total number of modes considered.
Substituting Eq. (30) into Eq. (29), multiplying the resulting expression by %WrðxÞ dx; then

integrating each term over the whole length of the beam (i.e., x ¼ L0 � L1) and using the
orthogonal property between normal mode shapes, one obtains

Mrr .ZrðtÞ þ KrrZrðtÞ ¼ NrrðtÞ; ð31Þ

where Mrr, Krr and Nrr represent the generalized mass, generalized stiffness and generalized force,
respectively, and are given by

Mrr ¼
Z 1

x0

%WrðxÞrAðxÞ %WrðxÞL1 dx; ð32aÞ

Krr ¼
1

L3
1

� �Z 1

x0

%WrðxÞ
@2

@x2
EIðxÞ

@2 %WrðxÞ

@x2

� �� �
dx; ð32bÞ

Nrr ¼ �
XP

j¼1

X%n

s¼1

mj %WrðxjÞ %WsðxjÞ.ZsðtÞ; ð32cÞ

where

%WrðxjÞ ¼ %WrðxÞ 	 dðx� xjÞ; xj ¼ xj=L1: ð33a;bÞ

m1 mj mP

0b b11m Pmmj

(b)

(a)

h1

x

y

h0

L0

1L

L

x1

xj

xP

Fig. 2. A free–clamped (FC) single-tapered beam carrying P point masses mj located at xj ¼ xj=L1 (j ¼ 1–P): (a) top

view; (b) front view.
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From Eq. (24) one sees that Mrr ¼ 1:0: Thus Eq. (31) reduces to

.ZrðtÞ þ o2
rZrðtÞ ¼ NrrðtÞ; ð34Þ

where

or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Krr=Mrr

p
ð35Þ

which is the natural frequency of the unconstrained beam.
When the constrained beam performs free vibration with frequency %o; one has

ZrðtÞ ¼ %Zre
i %ot; ð36Þ

where %Zr represents the amplitude of ZrðtÞ: Substituting Eq. (36) in Eq. (32c), then inserting the
result into Eq. (34), one obtains

o2
r � %o2

� 

%Zr � %o2

XP

j¼1

X%n

s¼1

mj %WrðxjÞ %WsðxjÞ%Zr ¼ 0 ðr ¼ 12 %nÞ ð37Þ

or in matrix form we have

W

o2

W

2
64

3
75f%Zg � ð½I � þ ½ %B�Þ %o2f%Zg ¼ 0; ð38Þ

where

W

o2

W

2
64

3
75 ¼ Jo2

1 o2
2 o2

3 y o2
%nm; ð39aÞ

W

I

W

2
64

3
75 ¼ J1 1 1 y 1m; ð39bÞ

½ %B� ¼
XP

j¼1

mjf %WðxjÞgf %WðxjÞg
T; ð39cÞ

f %WðxjÞg ¼ f %W1ðxjÞ %W2ðxjÞ y %W %nðxjÞg; ð39dÞ

f%Zg ¼ f%Z1 %Z2 y %Z %ng: ð39eÞ

In the foregoing equations, the symbols Jm, [ ] and { } represent the diagonal matrix, square
matrix and column vector, respectively.
For convenience, Eq. (38) is further rewritten as

W

o2

W

2
64

3
75� %o2½B�

0
B@

1
CAf%Zg ¼ 0; ð40Þ
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where

½B� ¼

W

I

W

2
64

3
75þ ½ %B�: ð41Þ

Eq. (40) is a standard characteristic equation. One may use the Jacobi method [34] to determine
the eigenvalues %os and the corresponding eigenvectors f%Zg

ðsÞ; where %os is the sth natural frequency
of the constrained beam (carrying any point masses) and the corresponding sth mode shape is
determined by

*WsðxÞ ¼ f %WðxÞgTf%ZgðsÞ ðs ¼ 12 %nÞ: ð42Þ

4. Numerical results and discussions

Physical properties and dimensions of the single-tapered beam (see Fig. 1) studied are: Young’s
modulus E ¼ 2:051� 1011 N=m2; mass density r ¼ 7850 kg=m3; beam width b1 ¼ b0 ¼ 0:1 m;
beam depth at large end h1 ¼ 0:4 m; distance from origin to large end of beam L1 ¼ 2:0 m;
distance from origin to small end of beam L0 ¼ 0:4 m (excluding Table 1). In order to validate the
numerical results obtained from the present method (ANCM), each example was also calculated
using the finite element method (FEM) [35]. To this end, the tapered beam was replaced by an
equivalent stepped beam composed of 80 uniform beam elements as shown in Fig. 3 and the total
number of modes considered by ANCM is %n ¼ 6: In general, the accuracy of the lowest %n � 1
natural frequencies and mode shapes of the constrained beam is reasonable for ANCM as shown
in Ref. [27].

4.1. Comparison with the existing literature

The presented theory is available for the beams carrying any number of point masses, P.
Therefore, the ANCM results for the free–clamped (FC) single-tapered beams carrying no
attachments (i.e., P ¼ 0Þ will agree with those of the unconstrained cantilever beams of Ref. [2].
Table 1 shows the values of the parameter b2r obtained from present paper and those from Ref. [2]
for the cases of L1=L0 ¼ 2; 3; 4; 10 (here L1 ¼ 2:0 m ¼ constantÞ: In Ref. [2], A ¼ ðh1=2Þ=L1 and
p ¼ o: Thus substitution of the last relationship into the expression x ¼ q2L1 ¼ ðpL1=AÞ

ffiffiffiffiffiffiffiffiffiffiffi
3r=E

p
(see Fig. 1 and Table 4 of Ref. [2]) will yield identical equation for b2r defined by Eq. (10b) of this
paper. From Table 1 one sees that the values of b2r obtained from the present paper are in good
agreement with those of Ref. [2].

4.2. Influence of number of finite elements on the natural frequencies

To determine the natural frequencies of a non-uniform beam by conventional FEM, one
requires to replace the original beam (see Fig. 1) by the equivalent stepped beam (see Fig. 3)
composed of a number of uniform beam segments (or finite elements). Table 2 gives the natural
frequencies of the free–clamped (FC) single-tapered beam shown in Fig. 1 with L0=0.4m for the
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cases of number of finite elements ðNe ¼Þ16; 32; 48; 64; 80: Table 2(a) is for the unconstrained
beam with no attachment (i.e., P ¼ 0Þ; while Tables 2(b) and (c) are, respectively, for the
constrained beams carrying one point mass ðP ¼ 1 with magnitude m1 ¼ mb=5 ¼ 60:288 kg
located at x1 ¼ x1=L1 ¼ L0=L1 ¼ 0:2; where mb ¼ 301:44 kg is the total mass of the tapered beam)
and five point masses ðP ¼ 5 with magnitudes mj ¼ mb=5 ¼ 60:288 kg located at xj ¼ xj=L1 ¼
0:3; 0:45; 0:6; 0:75; 0:9; j ¼ 125Þ: From Tables 2(a)–(c) one sees that either the lowest five natural
frequencies of the unconstrained beam (o1–o5) or those of the constrained beams ð %o1 � %o5Þ
increase with increasing the number of finite elements Ne and approach constants for Ne greater
than 80. Therefore, the subsequent FEM results are based on Ne ¼ 80: It is noted that one must
calculate the cross-sectional area (A) and moment of inertia (I) of each finite beam element from
the width and depth of the corresponding ‘‘uniform’’ beam segment (Fig. 3) and must not directly
take the mean values of A’s and I’s from the associated ‘‘non-uniform’’ beam segment (Fig. 1).

4.3. Natural frequencies and mode shapes of the free–clamped (FC) beam

To show the effectiveness of the presented theory, the free–clamped (FC) single-tapered beam
shown in Fig. 2 ðL0 ¼ 0:4 mÞ with P ¼ 0 (no attachment), P ¼ 1 (one point mass attached) and

Table 1

Comparison for the values of b2r obtained from present paper and Ref. [2]

L1=L0 Methods b21 b22 b23 b24 b25

2 Present 15.295 73.269 189.059 361.802 592.007

Ref. [2] 15.3a 73.3 189.0 362.0 592.0

3 Present 9.061 38.062 93.959 177.083 287.731

Ref. [2] 9.06 38.1 94.0 177.0 288.0

4 Present 7.425 28.772 68.933 128.455 207.591

Ref. [2] 7.43 28.8 68.9 128.0 208.0

10 Present 5.717 18.433 40.535 72.737 115.294

Ref. [2] 5.72 18.4 40.5 72.7 115.0

aAll numerical values given by Ref. [2] have only three digits.

Fig. 3. The finite element model for the free–clamped (FC) single-tapered beam studied: (a) top view; (b) front view.
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P ¼ 5 (five point masses attached) are investigated. The magnitudes and locations of the point
masses are exactly the same as those shown in Table 2. Table 3 and Fig. 4 show the lowest five
natural frequencies and the associated mode shapes of the cantilever beam obtained from ANCM
and FEM, respectively. From Table 3 one finds that FEM results are very close to ANCM results.
The percentage differences shown in the final rows of Tables 3(a)–(c) are calculated with the
formula Difference ¼ ðoi;ANCM � oi;FEMÞ � 100%=oi;ANCM for i ¼ 1–5 where oi;ANCM and oi;FEM

denote the i-th natural frequencies obtained from ANCM and FEM, respectively. It has been
shown in Ref. [36] that the accuracy of ANCM is better than that of FEM. This will be the reason
why the values of %oi;ANCM (or oi;ANCMÞ are greater than the corresponding ones of %oi;FEM (or
oi;FEMÞ in Table 3. In other words, the values of %oi;FEM (or oi;FEMÞ will approach the
corresponding ones of %oi;ANCM (or oi;ANCMÞ when the number of finite elements ðNeÞ increases
gradually according to the result of the last subsection. Although the magnitude of the single-
point mass for Table 3(b) is only one-fifth of the total point masses for Table 3(c), the lowest two
natural frequencies of the cantilever beam carrying a tip mass are lower than the corresponding
ones of the same beam carrying five uniformly distributed point masses. This means that the effect

Table 2

Influence of element number (Ne) on the lowest five natural frequencies of the FC single-tapered beam carrying P point

masses using FEM: (a) P ¼ 0; (b) P ¼ 1 (with m1 ¼ mb=5 ¼ 60:288 kg located at x1 ¼ x1=L1 ¼ L0=L1 ¼ 0:2Þ; (c) P ¼ 5

(with mj ¼ mb=5 ¼ 60:288 kg located at xj ¼ xj=L1 ¼ 0:3; 0:45; 0:6; 0:75; 0:9; j ¼ 1–5)

Number of Natural frequencies, oi (rad/s)

elements, Ne o1 o2 o3 o4 o5

(a) P ¼ 0

16 985.6516 3606.0146 8439.5203 15581.7720 25075.8849

32 988.6574 3623.6492 8487.5440 15672.5252 25214.9764

48 989.2355 3627.0143 8496.8141 15690.5746 25244.2108

64 989.4102 3628.0938 8499.8388 15696.5316 25254.0097

80 989.5017 3628.6311 8501.3310 15699.4691 25258.8597

Natural frequencies, %oi (rad/s)

%o1 %o2 %o3 %o4 %o5

(b) P ¼ 1

16 567.5976 2493.1872 6679.4115 13226.7517 22140.6722

32 568.9315 2501.1023 6702.6176 13273.3556 22214.4561

48 569.1872 2502.6033 6707.0080 13282.3127 22229.4133

64 569.2638 2503.0602 6708.3547 13285.0782 22234.0869

80 569.3039 2503.2976 6709.0488 13286.4974 22236.4917

(c) P ¼ 5

16 611.4682 2513.3925 6318.6153 11965.3103 15732.6558

32 612.7602 2521.9491 6345.8905 12075.1412 15852.0428

48 613.0102 2523.5738 6351.0350 12095.7223 15874.1878

64 613.0835 2524.0820 6352.6796 12102.6284 15881.5535

80 613.1226 2524.3389 6353.4962 12105.9359 15885.0965
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of distribution of the attached point masses along the beam length must be considered in addition
to the effect of the magnitudes of the point masses. From Table 3 one sees that the CPU time (for
PC Pentium II) required by FEM is about 13 times that required by ANCM.
From Fig. 4 one sees that the dashed curves obtained from FEM are well coincident with the

corresponding dotted curves obtained from ANCM. Furthermore, the profile of 1st to 4th mode
shapes for the unconstrained beam shown in Figs. 4(a) and (a)0 agree with that shown in Ref. [7,
Fig. 4]. In addition, for a clamped–free torsional shaft carrying a rigid disk at the free end, the
rigid disk will asymptotically approach zero deflection for the higher mode shapes [33,36]. This is
the reason why the mode displacement of the tip mass (at left end of the beam) decreases with
increase of mode number as shown in Figs. 4(b) and (b)0 for the bending cantilever beam with one
point mass at the free end. From Fig. 4 one also finds that the lowest five mode shapes for the
tapered beam carrying five point masses (Figs. 4(c) and (c)0) look like those for the unconstrained
beam (without any attachment, Figs. 4(a) and (a)0). This is because the five point masses are
identical and uniformly distributed along the beam length.

4.4. Natural frequencies of the constrained beam carrying five point masses in six end conditions

In this subsection, the lowest five natural frequencies of the constrained beam carrying five
identical point masses (P ¼ 5) with six end conditions are investigated (see Fig. 2). The

Table 3

Comparison between the lowest five natural frequencies obtained from the ANCM and those from the FEM: (a) P ¼ 0;
(b) P ¼ 1; (c) P ¼ 5

Methods Natural frequencies, oi (rad/s) CPU time

o1 o2 o3 o4 o5 (s)

(a) P ¼ 0

ANCM 989.6626 3629.5821 8503.9741 15704.6849 25267.5120 1

FEM 989.5017 3628.6311 8501.3310 15699.4691 25258.8597 13

Difference 0.016% 0.026% 0.031% 0.033% 0.034% —

Natural frequencies, %oi (rad/s) CPU time

%o1 %o2 %o3 %o4 %o5 (s)

(b) P ¼ 1

ANCM 569.6273 2508.8947 6743.2318 13408.5313 22570.1693 1

FEM 569.3039 2503.2976 6709.0487 13286.4974 22236.4917 13

Differencea 0.057% 0.223% 0.507% 0.910% 1.478% —

(c) P ¼ 5

ANCM 613.2201 2525.5381 6366.4999 12184.0282 16089.9494 1

FEM 613.1226 2524.3389 6353.4962 12105.9359 15885.0965 13

Differencea 0.016% 0.047% 0.204% 0.641% 1.273% —

The magnitudes and locations of the point masses are the same as those shown in Table 2.
aDifference¼(oi,ANCM�oi,FEM)� 100%/oi,ANCM.
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Fig. 4. The lowest five mode shapes of the free–clamped (FC) wedge beam carrying P point masses obtained from

ANCM ð??Þ and those from FEM (— — —) for (a), (a)0 P ¼ 0; (b), (b)0 P ¼ 1; (c), (c)0 P ¼ 5; while J, � , W, &,

and % are for the 1st, 2nd, 3rd, 4th and 5th mode shapes, respectively.
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magnitudes and locations of the five point masses are exactly the same as those shown in Table 2,
i.e., mj ¼ mb=5 ¼ 60:288 kg and xj ¼ xj=L1 ¼ 0:3; 0:45; 0:6; 0:75; 0:9 ðj ¼ 125Þ: In addition to the
free–clamped (FC) beam shown in Figs. 1–3, the other five end conditions of the beam are
hinged–clamped (HC), clamped–clamped (CC), clamped–free (CF), clamped–hinged (CH) and
hinged–hinged (HH). The frequency equations for the associated unconstrained beams can be
found from Refs. [14,29,30]. From the frequency equations and Eq. (21) one may determine the
natural frequencies of the unconstrained beams and referring to Eqs. (22) and (26) one may obtain
the associated normal mode shapes. Finally, the natural frequencies and mode shapes of the
constrained beams are determined by means of Eqs. (40) and (42).
From Table 4 one sees that the lowest five natural frequencies of the constrained beams

obtained from ANCM, %oi,ANCM (i ¼ 1–4), and those obtained from FEM, %oi;FEM (i ¼ 1–4), are in
good agreement in every end condition. The influence of the end conditions on the lowest five
natural frequencies is %oi;CC > %oi;HC > %oi;CH > %oi;HH > %oi;FC > %oi;CF : It is evident that the last
relationship holds only if the beam is positively tapered (i.e., the left end is smaller and the right
end is larger, as shown in Figs. 1–3); for a negatively tapered beam (with left end larger and right
end smaller) the last relationship should be changed to %oi;CC > %oi;CH > %oi;HC > %oi;HH > %oi;CF >
%oi;FC :
From Table 4 one also sees that the values of %oi;ANCM are greater than the corresponding ones

of %oi;FEM with very few exceptions. This agrees with the results for the FC beam studied in the
previous subsections (see Table 3). As to the few exceptions, they may have something to do with
accuracy of numerical computations, convergent tolerance for Jacobi method, or step sizes for the
cut and try numerical approaches.

4.5. Influence of truncated ratio on the natural frequencies of the FC wedge beam carrying 10 point

masses

As shown in Figs. 1 and 2, if L0 and L1 represent the distances from the tip of the ‘‘complete’’
wedge beam to the small and large ends of the corresponding ‘‘truncated’’ tapered beam,
respectively, then the ratio Rt ¼ L0=L1 is called the ‘‘truncated ratio’’ in this paper. The objective
of this subsection is to investigate the influence of the truncated ratio (Rt) on the lowest five
natural frequencies of the foregoing tapered beam. The dimensions and the physical properties of
the beam are the same as the last examples except that the values of L0 are 0.05, 0.20 and 0.40m
(corresponding to the truncated ratios ðRt ¼ L0=L1 ¼Þ 0:025; 0.1 and 0.2), respectively. For
simplicity, only the free–clamped (FC) beam carrying ten ðP ¼ 10Þ uniformly distributed point
masses with identical magnitude mj ¼ mb=10 ¼ 30:144 kg (j ¼ 1–10) is studied. The spacing
between any two adjacent point masses is Dxj ¼ ðL1 � L0Þ=10 (j ¼ 1–10) and one of the
point masses is located at the free end (with smallest cross-sectional area). The results as shown in
Table 5 are obtained using 80 beam elements (i.e., Ne ¼ 80Þ for FEM and 80 integration intervals
(i.e., ni ¼ 80Þ for ANCM. From Table 5 one sees that the lowest two natural frequencies obtained
from FEM are very close to the corresponding ones obtained from ANCM for the cases of
truncated ratios ðRt ¼ L0=L1 ¼Þ 0:025; 0.1 and 0.2. The percentage difference between the natural
frequencies obtained from FEM and ANCM decreases with increase in the truncated ratio Rt and
for the case of Rt ¼ 0:2; the biggest percentage difference is smaller than 0.039% for the
first natural frequency and 1.374% for the fifth natural frequency. It is noted that the
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above-mentioned percentage differences were determined by means of the formula Difference ¼
ð %oi;ANCM � %oi;FEMÞ � 100%= %oi;ANCM :
In theory, the formulation of this paper is available for the cases with small truncated ratio (i.e.,

RtE0Þ: Therefore, the reason why the percentage difference becomes larger for very small value of
Rt requires further study.

5. Conclusions

1. For a wedge beam carrying multiple point masses along the beam length, the lowest i-th natural
frequencies and the corresponding mode shapes determined by ANCM are very close to those
by FEM if ioð %n � 1Þ; where %n is the total number of natural frequencies and mode shapes of the
associated unconstrained beam considered by ANCM.

2. If %oi denotes the ith natural frequency of a wedge beam carrying uniformly distributed point
masses, then the influence of end conditions on the lowest five natural frequencies is %oi;CC >

Table 4

The lowest five natural frequencies obtained from the ANCM and those from the FEM for the single-tapered beam

carrying five point masses (P ¼ 5) with six kinds of boundary conditions

Boundary Methods Natural frequencies, %oi (rad/s)

conditions
%o1 %o2 %o3 %o4 %o5

FC ANCM 613.2201 2525.5381 6366.4999 12184.0282 16089.9494

FEM 613.1226 2524.3389 6353.4962 12105.9359 15885.0965

Differencea 0.016% 0.047% 0.204% 0.641% 1.273%

HC ANCM 1459.1106 4105.9737 8025.0232 14581.7560 30488.5776

FEM 1458.6114 4097.4309 7985.8453 14526.3489 29897.8784

Differencea 0.034% 0.208% 0.488% 0.380% 1.937%

CC ANCM 1810.1240 4855.3673 8800.2959 14819.6266 31073.3722

FEM 1810.4456 4849.3983 8753.7178 14759.7359 30383.5348

Differencea �0.018% 0.123% 0.529% 0.404% 2.220%

CF ANCM 108.5195 1391.2900 4610.2500 8680.4611 15088.1528

FEM 108.5848 1391.7859 4602.9112 8630.0374 14786.3576

Differencea �0.060% �0.036% 0.159% 0.581% 2.000%

CH ANCM 1014.3480 3781.0366 7595.8442 12630.1757 23820.1082

FEM 1014.7597 3778.8431 7565.2554 12540.7835 23627.7206

Differencea �0.041% 0.058% 0.403% 0.708% 0.808%

HH ANCM 765.6113 3140.2938 6724.8871 12257.9200 23774.0557

FEM 765.4745 3136.4515 6691.3136 12184.5714 23493.7720

Differencea 0.018% 0.122% 0.499% 0.598% 1.179%

The magnitudes and locations of the point masses are the same as those shown in Table 2.
aDifference ¼ ð %oi;ANCM � %oi;FEM Þ � 100%= %oi;ANCM :
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%oi;HC > %oi;CH > %oi;HH > %oi;FC > %oi;CF for the positively tapered beam (with left end smaller and
right end larger). However, for the negatively tapered beam (with left end larger and right end
smaller) the last relationship should be changed to %oi;CC > %oi;CH > %oi;HC > %oi;HH > %oi;CF >
%oi;FC ; where the subscripts C, H and F denote the clamped, hinged and free ends, respectively.

3. In addition to the magnitudes of the point masses, the distribution of the point masses along
the length of the beam affects the dynamic behavior of the beam significantly.

4. For a cantilever beam carrying a point mass at the free end, the point mass will asymptotically
approach zero deflection at higher modes.

5. For the examples illustrated in this paper, reasonable accuracy for the lowest five natural
frequencies and the corresponding mode shapes can be achieved using 80 beam elements (i.e.,
Ne ¼ 80Þ for FEM and 80 integration intervals (i.e., ni ¼ 80Þ for the Simpson’s rule.

6. If the truncated ratio for a wedge beam is defined by Rt ¼ L0=L1; where L0 and L1; respectively,
denote the distances from the tip of the ‘‘complete’’ wedge beam to the smallest and largest ends
of the corresponding ‘‘truncated’’ wedge beam, then for the wedge beam with Rt > 0:2; the
natural frequencies obtained from FEM are very close to the corresponding ones obtained from
ANCM. However, the last conclusion is not necessarily true for the same wedge beam with
small truncated ratio (e.g., Rto0:025Þ: The reasons relating to the last phenomenon require
further study.
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