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Abstract

A hybrid analytical/numerical method is proposed that permits the efficient dynamic analysis of planar
serial-frame structures. The method utilizes a numerical implementation of a transfer matrix solution to the
equation of motion. By analyzing the transverse and longitudinal motions of each segment simultaneously
and considering the compatibility requirements across each frame angle, the undetermined variables of the
entire frame structure system can be reduced to six which can be determined by application of the boundary
conditions. The main feature of this method is to decrease the dimensions of the matrix involved in the
finite element methods and certain other analytical methods.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Frame structures are usually used in engineering designs, i.e., cranes, bridges, aerospace
structures, etc. The dynamic behaviors of frame structures can be predicted by using certain
analytical and numerical methods such as the dynamic stiffness methods (DSM) and the finite
element methods (FEM). The DSM employs the solutions of governing equations under
harmonic nodal excitations as shape functions to formulate an analytical stiffness matrix. The
method requires closed-form solutions of the governing equations which restrict the application
areas [1]. The FEM has been very commonly used in recent years in this field. However, the FEM
requires a large amount of computer memory and computation time, since many degrees of
freedom are required for accurately solving dynamic problems for these structures [2,3]. To solve
this problem, various methods have been studied to overcome the disadvantages [2—5]. In most of
the previous studies, the Euler—Bernoulli beam-theory model obtained by deriving the differential
equation and the associated boundary conditions for a basic uniform Euler—Bernoulli beam are
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often used and discussed. Some researchers have also studied the different results between the
Euler—Bernoulli beam-theory models and the Timoshenko beam theory. Finally, it is possible to
evaluate natural frequencies simply by finding roots of the high order determinant of the coefficient
matrix of the linear system if accuracy of the eigensolutions is required.

This investigation presents a hybrid analytical/numerical method that permits the efficient
computation of the eigensolutions for planar serial-frame structures with various boundary
conditions. The method is based on partitioning the frame structure to the sub-beam segments
and considering the transverse and longitudinal motions of each segment and, by the
compatibility requirements across each frame angle, the relationship of the six integration
constants of the eigenfunctions between adjacent sub-beams can be determined. By using the
transfer matrix method [9,10], as a consequence, the entire system has only six unknown
constants, which can be solved through the satisfaction of six boundary conditions. In this article,
the eigenvalue problem is solved by using closed-form transfer matrix methods.

2. Theoretical model

A typical planar serial-frame structure with K frame angles 01, 0,, ..., 0k is shown in Fig. 1. This
structure is partitioned into K + 1 components at the angle positions enabling a substructure
approach. There are K + 1 sub-beams with lengths Ly, L, ..., Lx,1, and the positions of the frame
angles are located by X, X3, ..., Xk, respectively, in Fig. 1. In doing the vibration analysis of this
system for this study, each component member (sub-beam) is analyzed by its transverse and
longitudinal motions, respectively. Let the X -axis represent the longitudinal direction and the Y-
axis the transverse direction of each component member; then, the traditional vibration theories
of an Euler—Bernoulli beam and the axial vibration of a rod are considered. The vibration
amplitudes of the transverse and longitudinal displacements of the component i (sub-beam) are

LK+1
V222
Fig. 1. A planar serial-frame structure with K frame angles 0,,0,, ...,0; located at positions Xi,X>,..., Xk,

respectively; lengths of sub-beams are Ly, Ly, ..., Ly, Ly where Ly + Lo + -+ + Ly + Ly = L.
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Fig. 2. Transverse and longitudinal motions of a segment.

denoted by Yi(X,T) and U;(X, T) on the interval X;_| <X < X; where the sub-index i represents
the ith segment and i = 1,2, ..., K + 1, as shown in Fig. 2. The entire system is now divided into
K + 1 segments, wherein the total length of this frame system is L(= L + Ly + -+ + Lg11).
According to Refs. [6-8], the equations of motion for each segment, assumed with a uniform
cross-section, are

transverse motion.
El l( s ) ( 1( B )

e 3T 0, X 1<X<X;, i=12,..,K+1, (1)
longitudinal motion:
PUX, T PUX, T
E ( )—p ( ):O, Xii<X<X;, i=12 .., K+1, 2)

0X? oT?
where E is Young’s modulus of the material, / is the moment of inertia of the beam cross-section,

p is the density of material and A is the cross-section area of the beam.
The boundary conditions, the fixed—fixed supported case for this example, are

Y(0,7T)= Y(L,T) =0, (3a)
Y'(0,T) = Y(L,T) =0, (3b)
U, T) = UL, T) = 0. (3¢)

The transverse and the longitudinal motions at the end of the segment before each frame angle
constrain the motions of the adjacent segment after the same frame angle. So the “compatibility
conditions” enforce continuities in the displacement field (in both transverse and longitudinal),
slope, bending moment, shear force and axial force, respectively, across each frame angle 0;, as
shown in Fig. 3a (displacements) and Fig. 3b (forces), which can be expressed as

Yiri(X;", T) = =YX, T)cos0; + U(X;,T)sin6;, displacement continuity, (4a)

Uni(X;",T) = —Y«(X;,T)sin0; + U(X;,T)cos0;, displacement continuity, (4b)
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segment i+1

segment 7+1 N V;
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1 e
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(a) L segment i (b) _J

Fig. 3. (a) Displacement compatibility requirements across ith frame angle 0;: ¥; and U; are transverse and longitudinal
displacements of segment 7 at position X;. (b) Force compatibility requirements across ith frame angle 0;: V; and F; are
shear and axial forces of segment i at position X;.

Y. (X7, T)=Y/(X;,T), slope continuity, (4¢)

YI-J’FI(XI-*, T)=Y!(X;,T), moment continuity, (4d)

EIY! \(X;",T)= —EIY/"(X;,T)cos0; — EAU/(X; ,T)sin0;, shear continuity,  (4e)

EAU, (X;",T) = EIY/"(X;,T)sin0; — EAU/(X;, T)cos0;, axial force continuity, (4f)

where the symbols X;” and X, denote the locations immediately above and below the angle
position X;. All the assumptions in the above compatibility conditions are the same as the
traditional analysis of the transverse vibrations of an Euler—Bernoulli beam and the axial
vibrations of a rod. The frame angles are also assumed to be unchanged during the motions of the
frame.

In the above, the following quantities are introduced:

Y X U T L Xi
y=— X=— U=— t=— Li=— xj=— (5)

L’ L’ L’ \/z’

Thus, in each segment, Egs. (1) and (2) can then be expressed in a non-dimensional form as

EI 0yi(x, 1) 3 yi(x, 1) .
FW‘FPAT:O, Xi—1 <XxX<Xj, l:1,2,...,K+1, (6)
E 2 i 2 i

Eouxn  oued o im0 K41 )

L a2 P o
The non-dimensional ‘“‘compatibility conditions” across each frame angle are (from Egs.

(4a)—(40))
Vir1(xF, 1) = —yi(x;, 1) cos 0; + ui(x; , t)sin 0;, (8a)
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Ui (x;, 1) = —yi(x;, ) sin 0; — ui(x;, 1) cos 0;, (8b)
Vi (57,0 = yi(x; . 0), (8¢)
Va0 =y (6,0, (8d)
AL? .
Vi, 0 = —y"(x;, 1) cos 0; — 7 u(x; , t)sin0;, (8e)
/ + 1 nyeo— . 1oo—
Ui (7, 0) = Eyi (x;,1)sin 0; — u(x; ,t)cos 0;, (8f)

where i = 1,2, ..., K. Similarly, the non-dimensional boundary conditions from Egs. (3a)—(3c), for
the example of fixed—fixed ends, can be written as

0,2 =y, =0, (%a)
V(0,0 =y'(1,1)=0, (9b)
u(0,7) = u(l, ) = 0. (9¢)

3. Calculation of eigensolutions

The eigensolutions for cases of commonly used different boundary conditions are derived. The
solutions of the other boundary conditions can also be obtained easily through a similar
procedure. Using the separable solutions: y;(x, ) = wi(x)el”’ and u;(x, {) = v;(x)e!’ in Egs. (6) and
(7) leads to an associated eigenvalue problem,

wl"(x) = 2wix) =0, xi<x<x, i=12...,K+1, (10)
v;-’(x)+y2vl~(x):0, X1 <x<x;, i=12,....K+1, (11)
where
po AL g P (12)
TR T TE

From Eq. (12), the relationship between A and y can be expressed as

I1
=\ /== =al? 1
Y \/—lL ar, ( 3)

where a is a constant (a = y/I/A (1/L)); for a square cross-section of the segment with width B
and height H, a can be expressed as a = \/I/A(1/L) = /1/12(H/L). From Eqgs. (8a)—(8f), the
corresponding compatibility conditions across each frame angle lead to

wir1(x]) = —wi(x;) cos 0; + vi(x; ) sin 0;, (14a)
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vir1(xF) = —wi(x;) sin 0; — v;(x;) cos 0;, (14b)
Wi (xh) = wix)), (14c)

Wi (") = wi(x)), (14d)

Wi () = —w'(x;7) cos 0; — ATLZ vi(x;) sin 0;, (14e)
Vi (x) = ﬁ w(x;) sin 0; — vi(x; ) cos 0; (14f)

fori=1,2,...,K. The boundary conditions, from Egs. (9a)—(9c¢), are
w(0) =0, w(l) =0, w'(0)=0, (15a—c)

Ww(1) =0, v(0)=0, v(l)=0. (15d—f)

A closed-form solution to this eigenvalue problem can be obtained by employing transfer matrix
methods [9,10]. The general solutions of Egs. (10) and (11), for each segment, are
wi(x) = A;sin A(x — x;_1) + B;jcos A(x — x;_1) + C; sinh A(x — x;_1)
+ D;cosh A(x — x;_1), xi1<x<x;, i=12,....K+1, (16)

vi(x) = Ejsiny(x — x;_1) + F;cos p(x — x;_1)
= E;sin aiz(x — Xi_1) + F;cos aﬂvz(x —Xi—1), Xi1<x<x;, i=12,...,.K+1, (17)

where A4;, B;, C;, D;, E; and F; are constants associated with the ith segment (i = 1,2, ..., K + 1).
The constants in the (i + 1)th segment (A;.1, Bi+1, Ciy1, Div1, Eiv1 and Fy, ) are related to those in
the ith segment (A4;, B;, C;, D;, E; and F;) through the compatibility conditions in Egs. (14a)—(14f),
which can be expressed as

( Al+1 3\ Al 3\ (Al

Bi th ty tiz ha hLs Ll 0 B; B;

Cor | _ | G\ _ 70 al (18)
Dy : D; D;

Ei tes  leo E; E;

Fiy F; F; )

where -T(ﬁi)xs is the 6 x 6 transfer matrix which depends on the eigenvalue 4, for which the elements
are derived in Appendix A.
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Through repeated applications of Eq. (18), the six constants in the first segment (4, By, Ci, Dy,
E, and F)) can be mapped into those of the last segment, thereby reducing the number of
independent constants of the entire system to six:

Ak Ag ) A1 A )
Bg Bk Bk By
Ckt1 & ) Ck & k-1) Cx-1 & k-1 o0 ) €
Diir = T'56 Dy = To26 L'x6 Dx_i =166 T6x6 - Toxe D, ( (19)
Eg. Ex Ex_y E,
[ Fk+1 | Fx | Fx-1 F

These six remaining constants (4, By, Ci, D;, E; and F;) can be determined through the
satisfaction of the boundary conditions in Egs. (15a)-(15f). For the example case of a planar
serial-frame with fixed—fixed ends, beginning with those at the left support, Egs. (16), (17), (15a),
(15¢) and (15e) lead to

B +D, =0, A1+C; =0, F =0. (20a—c)

Satisfaction of the boundary conditions of Egs. (16) and (17) at the right support, Egs. (15b),
(15d) and (15f), requires

Agiysin Algyy + Bgyjcos Algi + Cgoysinh Algy | + Dgyj cos hAlg 1 =0, (20d)
Agi1cos gy — By sin Algyy + Cgog cosh Al + Dgyg sinh Alg =0, (20e)
Ex.1 sinai’lx, + Fxy cos al’lg,) =0, (20f)

which can be expressed in matrix form as

0 sin Algy;  cosilgyy  sinh Algy;  cosh Alg g 0 0
0% =|cosdlgy1 —sinAlg,; coshdlg,; sinh gy 0 0
0 0 0 0 0 sinal’lg.;  cosallxy
Ak Ak 11
Bi 1 Bk
" Ck 11 — Bune Ck+1 ’ o
Dk D11
Ex 1 Exi
| Fr+1 Fia
where
sin Algy;  cosAlgyy sinh Algy; cosh Algy; 0 0
By = | cos Ak —sinllgy; coshilg.; sinh gy 0 0 . (22)

0 0 0 0 sin aileH cos aileH
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Substitution of Eq. (19) into Eq. (21) and use of Eq. (20a)-(20c) leads to

Ak A
0 Brii B
Ck 1 C
_ _ (K) (K-1) (1) 1
0 —_B3><6 —_B3><6T(,><(, _T6><(, ---T(,X(, )
0 Dk D,
Eg E,
FK+1 ) Fl )
r A, ( A 3\
Bl BI
rny ri riz ria ris e
C] _Al
0 p = Rsx Do (= |7 T2 rsora T g B ( (23)
1 —B
0 F31 32 F33 14 I35 I3
E] El
Fi 0
\ \
where
rnin rin riz rig ris rie
(K) (K-1 (1)
R3.6 = B3xo T'gy Lo )~~~T6><6 = |ra rn 13 rug Is T

F31 I3 133 T34 I35 136
Thus, the existence of non-trivial solutions requires
ri(d) —riz(A) ra(d) —ra(d)  ris(d)
det | r21(4) — r23(4)  r2(2) —ra(4) ras(4) | =0. (24)
r31(4) —r33(A)  r3(d) —raa(d)  r3s(4)

This determinant provides the single (characteristic) equation for the solution of the eigenvalue 4,,.
This equation is solved using the standard Newton—Raphson iterations or, for simplification,
using the method shown in Fig. 4 to obtain the eigenvalues. The coefficients of the eigenfunctions,
wy(x) and v,(x), are obtained by back-substitution into Egs. (23) and (18) followed by Egs. (16)
and (17).

For cases of other usually used boundary conditions, through a similar procedure, the following
relationships can be obtained:

(a) Fixed—hinged boundary conditions: The existence of non-trivial solutions for the
constants 4, B;,Cy, D1, E; and F is the same as in Eq. (24), but the matrix B3y« in Eq. (21)
now becomes

sin Alg g cos Alg 1 sinh Algy; cosh Algy 0 0
Biye = —sin )JK—H —COoS /UK-H sinh ilK_H cosh )JK-H 0 0
0 0 0 0 sin aileH cos aileH

(25)
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Fig. 4. Simple calculation of eigenvalues.

(b) Fixed—free boundary conditions: The existence of non-trivial solutions is the same as in
Eq. (24), but the matrix Bs.¢ in Eq. (21) now becomes

—sin Alg,1  —cosAlgy; sinh Alg; cosh Alg. 0 0
B3y = | —cosilgy1  sinAlgyy  coshilgyy  sinh Algyy 0 0
0 0 0 0 cos alleH —sin aJ~2lK+1

(26)
(¢) Hinged-hinged boundary conditions: The existence of non-trivial solutions now requires
(A riz(d)  ris(d)
det| ra(4) raa(4d) ras(d) | =0, (27)
r3(4)  r33(4)  r3s(4)

the matrix Bs«¢ in Eq. (21) is now the same as in Eq. (25).
(d) Free—free boundary conditions: The existence of non-trivial solutions requires

() +riz(d)  ria(a) +rig(d)  ris(4)
det | ra1(A) +123(A)  12(4) +r24(A) r26(A) | =0, (28)
r31(4) +133(4)  r32(4) +1r34(4)  r36(4)

and the matrix Bs«¢ in Eq. (21) is now the same as Eq. (26).
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4. Numerical results and discussion

In order to validate the method presented in this article, some numerical results are compared
with the available and experimental data. First is the case of an angled-beam structure, as shown
in Fig. 5. The case of 0; = = represents a straight beam, for which the numerical calculation
results for different boundary conditions by the proposed solution procedure in this study are
shown in Table 1. Table 1 shows that the above results are almost the same as the exact solutions
for a beam in different boundary conditions. For another case of a fixed—free angled beam with
0, =mn/2, Ly = L, = 50cm, section width B = 12.7mm, section height H = 12.7 mm, density
o = 7800 kg/m3, Young’s modulus E = 2.06 x 10" N/mz, as shown in Fig. 6, by experimental
modal testing, the lowest five natural frequencies of this structure are measured as Q; = 14 Hz,
2, =38Hz, Q3 =184Hz, Q4 =269Hz and Qs = 583 Hz. The comparisons of the calculated
natural frequencies from this study and the measured results are shown in Table 2, which indicates
that the errors are small and satisfactory.

For the case of 0; = n/2 with a fixed—fixed boundary condition (Fig. 5), by changing the angle
position /; (non-dimensional) from 0 to 1.0, the lowest four eigenvalues (natural frequencies)
obtained in this study are shown in Fig. 7. In this case, Fig. 7 is symmetric because the results
from angle position /; should be the same as the results from angle position 1 — /;. Also note that
the solutions for the cases /; = 0 and 1.0 are the same as the cases of a straight beam with a fixed—
fixed boundary condition. For the same structure with /; =/, = 0.5 (Fig. 5), by changing the
frame angle 6, from 0° to 180°, the lowest four eigenvalues are obtained as shown in Fig. §, which
indicates that the variations in these lowest four eigenvalues are small when the angle 6, is in the

L2

X1

61

L1

Fig. 5. An angled-beam structure with one frame angle.
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Table 1
Comparisons for an angled-beam structure with angle 6, = 180° (H/L = 0.05)
Different Eigenvalues
B.C’s
A Ao A3
Calculated Exact Calculated Exact Calculated Exact
from this solution from this solution from this solution
study study study
Hinged— 3.1426 b 6.2842 2n 9.4258 3n
hinged
Fixed—free 1.8801 1.8735 4.6991 4.6736 7.8598 7.8549
Fixed-fixed 4.7350 4.7296 7.8582 7.8524 11.0006 10.9955

Fig. 6. An experimental fixed—free angled-beam structure.

range from 40° to 140°. It can be considered that the dynamic stiffness of this frame structure is
close within this frame angle range. Also note that in Fig. 8, there is a *“‘cross-over’”” phenomenon
for the first and the second modes near the angle 0; above 160°. Before this cross-over point, the
first mode is anti-symmetric and the second mode is symmetric in the transverse motion
(dominant). After this cross-over point, the first mode now becomes symmetric and the second
mode becomes anti-symmetric. This can be distinguished from the mode shapes shown in Figs. 9
and 10 for different 6, angles (6; = 140°,160°,170° and 180°). The third mode in Fig. § also has a
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fixed-fixed angle beam with H/L=0.024, theta=90 degree
18 T T T T T T T T T

T e L

the lowest four eigenvalues

0 0.1 02 03 04 05 06 07 08 09 1
non-dimensional angle position

Fig. 7. Lowest four eigenvalues for an angled-beam structure by changing angle position /;.

fixed-fixed angle beam with H/L=0.024, L1=L2=0.5
18 T T T T T T T T

16 |---.. .. Symmetric. made. .....i...io . SO AU S i

14 anti-symmetric m:ode

the lowest four eigenvalues

0 20 40 60 80 100 120 140 160 180
angle degree

Fig. 8. Lowest four eigenvalues for an angled-beam structure by changing angle 0,.
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Experimental comparisons of a fixed—free angled-beam structure with angle 6 = /2, L; = L, = 50 cm, section height
H = 1.27 cm, section width B = 1.27 cm, density p = 7800 kg/m’ and Young’s modulus, E = 2.06 x 10'! N/m?

Measured natural frequencies (Hz)

Calculated natural frequency

Calculated from this study (Hz)

Error (%)

Q=14
Q, =38
Q; =184
Q4 =269
Qs = 583

14.2
38.3
188.9
276.6
603.2

1.4
0.79
32
2.8
3.5

second mode, theta=140 degree

<4
©

o
o

o
=

o
[N}

transverse and longitudinal mode displacement
[=)

transverse and longitudinal mode displacement

second mode, theta=160 degree

-02
-04}
-0.6
.08 H H H H H H H H H 08 H H H H H H H H H
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09
non-dimensional length non-dimensional length
first mode, theta=170 degree first mode, theta=180 degree
T H M H H 08 T T T T T T T T T
0.8 i

o
)

1N
S

I
[N}

o

S
N

o
>

transverse and longitudinal mode displacement
1<)
(=2}

and longitudinal mode displacement

transverse

-0.6

..... P S AP

S
©
o

01 02 03 04 05 06 07 08 09 1
non-dimensional length

-0.8
0

non-dimensional length

01 02 03 04 05 06 07 08 09 1

Fig. 9. Transverse symmetric mode shapes near cross-over point for 0; = 140°, 160°, 170°, and 180°: solid curve,
transverse displacement; dashed curve, longitudinal displacement.

phenomenon similar to the first mode. There is also a ‘“‘cross-over’” point at the third and the
fourth modes near the position 0; below 140°. The third mode shapes for different 6; values
(60; = 20°,30°100°,140°,160° and 180°) are shown in Fig. 11, which indicated that before the
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08 first mode, theta=140 degree first mode, theta=160 degree
. T T T T T T T T T 08

transverse and longitudinal mode displacement
transverse and longitudinal mode displacement

08 : : : : : : : : : i i i i i i i i i
0 01 02 03 04 05 06 07 08 09 1 O80T 07 03 02 05 o6 07 08 oo 1
non-dimensional length non-dimensional length
second mode, theta=170 degree second mode, theta=180 degree

08 08

transverse and longitudinal mode displacement
transverse and longitudinal mode displacement

H H H H H H H H H .08 H H H H H H H H H
01 02 03 04 05 06 07 08 09 1 0 0.1 02 03 04 05 06 07 08 09 1
non-dimensional length non-dimensional length

-0.8
0

Fig. 10. Transverse anti-symmetric mode shapes near cross-over point for 6; = 140°, 160°, 170°, and 180°: solid curve,
transverse displacement; dashed curve, longitudinal displacement.

cross-over point (6; <140°) the transverse motion of the third mode is anti-symmetric, and after
this cross-over point the third mode becomes symmetric.

For a frame structure with multiple frame angles, as shown in Fig. 12a, by the proposed
solution procedure in this study, the eigensolutions (natural frequencies and mode shapes) can
easily be obtained. The geometry of the frame structure in Fig. 12ais [} = 0.3, , = 0.4, 5 = 0.3,
0, =mn/2, 0, = /2 with a fixed-fixed boundary condition. The lowest three eigenvalues are
obtained as: A = 5.5992, /1, =9.5904, A3 = 14.3330, the corresponding eigenfunctions (mode
shapes) of which are shown in Figs. 12b—d.

5. Conclusions
A hybrid analytical/numerical solution method that permits the efficient evaluation of

eigensolutions for planar serial-frame structures has been developed. The method utilizes a
numerical implementation of a transfer matrix solution to the analytical equation of motion.
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the third mode, theta=20 degree

0.8

0.8

transverse and longitudinal mode displacement

the third mode, theta=30 degree

0.8 ; ; ; ; -08 ; ; ; ; ;
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
non-dimensional length non-dimensional length
the thirdmode, theta=140 degree
the third mode, theta=100 degree 0.8 ; . . ; ;
0.8

0.8 : : : : :
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
non-dimensional length
the third mode, theta=160 degree
0.8 T T T T T

-0.8
0

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
non-dimensional length

transverse and longitudinal mode displacement

0.8

transverse and longitudinal mode displacement

-0.8
0

01 02 03 04 05 06 07 08 09 1

non-dimensional length

the third mode, theta=180 degree

01 02 03 04 05 06 07 08 09 1

non-dimensional length

1127

Fig. 11. Third mode shape for different 0; angles (6; = 20°,30° 100°, 140°, 160° and 180°): solid curve, transverse
displacement; dashed curve, longitudinal displacement.

Unlike all the other methods, in which the dimensions of the matrix increase with the complexity
of the structure, there are only six undetermined coefficients in the method proposed in this study.
The main feature of this method is to decrease the dimension of the matrix involved in the finite

element method and certain other analytical methods.
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(c) second mode shape: 7, = 9.5984, (d) third mode shape: /., = 14.3330,

Fig. 12. Lowest three eigensolutions of a multi-angle frame structure.
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Appendix A. Transfer matrix derivation

The compatibility conditions across the ith angle (i=1,2,...,K) are represented in
Eqgs. (14a)—(14f).
From Eq. (14a),
wir1(x) = —wi(x;) cos 0; + vi(x; ) sin 0;,
wir1(x;]) = Biy1 + Dit1,
wi(x; ) = A;sin Al; + B cos Al; + C; sinh Al; + D, cosh Al;,
vi(x;7) = E;sina)?l; + F; cos al’l,



H.P. Lin, J. Ro | Journal of Sound and Vibration 262 (2003) 1113-1131 1129

Bi\1 + Di1 = — (A;sin Al; + B; cosAl; + C;sinh Al; + D; cosh A/;) cos 0;

+ (E;sinal*l; + Fycos all)sin0;, i=1,2,....K. (A.1)
From Eq. (14b),

Vi1 (x7) = —wi(x; ) sin 0; — vi(x;) cos 6;,

vin1 (%) = Fiy,

Fi 1 = — (A4;sin Al; + B;cos Al; + C;sinh Al; + D; cosh Al;) sin 0;
— (E;sinal*l; + Fycosal’l)cos0;, i=12,... K. (A.2)
From Eq. (14c),
Wi (1) = wix)),
Wi (X)) = Aip1 A+ Cipi A,
wi(x;) = A;l.cos Al; — Bidsin Al; + C;Acosh Al; + D/ sinh Al;,

Aiv1 + Civy = Ajcos Al; — B;sin Al; + C;cosh Al; + D;sinh A;, i=1,2,...,K. (A.3)
From Eq. (14d),

H—l(x+) - W”(X )

z+l(x+) = _BzHA + Dl+1j~2

wl(x;7) = — A;2%sin Al — Bi2* cos Al + C;” sinh Al + Dy* cosh I;
—Biy1 +Diy1 = —A4; sin Al; — B;cos Al; + C;sin Al; + D, cosh Al;,
i=12,..,K. (A.4)

From Eq. (14e),

2
Wit () = =) cos 0; = ——vi(x; ) sin 0,
;/Jlrl(x+) - _AHrl/L + C1+1ﬂ
w'(x;) = —A;2° cos i + Bi2’ sin Al; + C;2° cosh 21; + D;2” sinh 1,

Vi(x;) = Eiai? cos al*l; — Fia)? sin a)’l;,
—Ai1+ Cipy = — (—A;cos Al; + B; sin Al; + C; cosh Al; + D; sinh A/;) cos 0;

aA 2 3 .
(E cos al’l; — F; sin a/ lH)sin0;, i=12,..., K. (A.5)

a_\/Yl
VAL

Here
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SO

AL? AL*1 /12
al/l = 7= (H/L) (for square cross-section).

From Eq. (14f),

1 .
Vi (X)) = 1 w!(x;) sin 0; — vi(x;") cos 0;,

2
Vi (X)) = Eipiad”,

E = i(—A,- cos Al; + B; sin Al; + C; cosh Al; + D; sinh A;) sin 0;
aAL?
— (E;cos al’l; — F;sin aizli) cos 0;

1 (H . e
= \/—Tz(z) AM—A;cos il + B;sin Al; + C; cosh Al; + D; sinh Al;)sin 0;
— (E;cos a’*l; — Fysinai*l)cos0;, i=1,2,...,K. (A.6)

Solving for Egs. (A.1)—(A.6) leads to the following recursion formulae for the constants A;.1,
Biy1, Ciy1, Diyi1, Eiy and Fiyg:

/

Aiy (A 4;
Bi th t tz ha hHs e 0 B; B;
Ci : C; , C
= =10 L i=1,2,..,K
Diyy D; D;
Ei tes o6 E; E;
\ Fl+1 Vs \ Fl \ Fl

Here, _Tg)X6 is a transfer matrix composed of the elements:
111 = Ycos Al(1 — cos 0))], 112 = Ssin (1 — cos 0,)],

113 = Ycosh Ali(1 + cos 0;)], 114 = Ysinh AL(1 + cos 0,)],

IRV v
tis =3 mcosm [; sin 9,], t6 =3 (H/TMSIHM lisin 0;],

t1 = fsin Ai(1 —cos 0p)], 122 = 3fcos Ali(1 — cos 0))],
13 = Ssinh Al(1 4 cos 0;)], 14 = SHcosh Ali(1 + cos 0,)],
ths = i[sin ai’lsin 0], 1 = 3[cos al’l;sin 0],

131 = Ycos (1 + cos 0))], 132 = SHsin /(1 + cos 0,)],
133 = 3[cosh Al;(1 — cos 0,)], 134 = 4[sinh A/i(1 — cos 0;)],
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1| V12

ts = B3 mcos al’l;sin 0,

t4) = ‘71[sin Ali(1 + cos 0,)],
t43 = Ysinh A%(1 — cos 0,)],

tas = Ysin a2’lsin 0],

ts] = _—1<%> Jcos Al;sin 0,

V12

! (%) Acosh Al; sin 0;,

fen = ——
53 \/1—2

1 V12, 2, .
t6 = 5 msm a’l;sin 0; |,
tr = _71[003 Ali(1 + cos 0,)],
[44 = %[Cosh ;Lll(l — COS 0[)]7

tas = Ycos ai’l;sin 0],

ts) = . <%> A-sin Al; sin 0;,

V12

! <%> J.sinh AJ; sin 0;,

ey = ——
54 \/1—5

tss = —cos ai*l; cos 0;, ts¢ = sin al’l; cos 0;,
te1 = —sin A/; sin 0;, ter = —cos Al; sin 0;,
te3 = —sinh A/; sin 0;, tes = —cosh Al sin 0;,
tes = —sin ad’l; cos 0, tes = —cos al’l; cos 0;.
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