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Abstract

The frequency bands of perfect bi-periodic mass–spring systems and the localized modes in the same
systems with one disordered subsystem are exactly analyzed using the U-transformation method.

The linear bi-periodic system with an infinite number of subsystems may be considered as an equivalent
cyclic bi-periodic system having infinite subsystems. The governing equation for such an equivalent system
with cyclic bi-periodicity can be uncoupled by applying the U-transformation twice to form a set of single-
degree-of-freedom equations. These equations can be used to analyze the pass bands and localized modes
corresponding to the considered system with and without disorder, respectively.

Some specific systems are taken as examples to demonstrate how to apply the formulas obtained in this
paper and to find the localized modes and frequencies.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

Analyses of bi-periodic systems have been presented by a number of researchers using various
methods, including transfer matrix method [1], wave approach [2–4], standard stiffness and
transmission methods [5] and U-transformation method [6–10]. Vibration analyses of free wave
motion and response in mono-coupled periodic systems with a single or multiple disorders have
been investigated by Bansal [11] and Mead et al. [12–14] using receptance method.

Localized phenomenon was first predicted by Anderson [15] in the field of solid-state physics. It
was shown that the electron eigenstates in a disordered solid may become localized. The localized
problems in solid-state physics have been an active area of research for the past over 40 years. In
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structural dynamics, Hodges [16] was the earliest to show that in one-dimensional periodic
structures all modes are localized for arbitrarily small extended disorders. There is a great volume
of literature on localization. A detailed discussion of that literature is contained in the special issue
of Chaos, Solitons and Fractals on localization problems [17].

Mode localization phenomenon in an infinite periodic mass–spring system with a single
disorder was investigated by Cai et al. [18] using the U-transformation method. Localized modes
in mono-coupled periodic mass–spring systems having one or two non-linear disorders were
studied by means of the U-transformation method and L-P method [19]. Recently, the same
method was applied to analyze the localized modes in a periodic mass–spring system with two
coupling co-ordinates between adjacent elements and a non-linear disordered subsystem [20].
Meanwhile, the method was also used to analyze the forced vibration of damped periodic systems
having one non-linear disorder [21].

Generally, a bi-periodic mass–spring system can be regarded as a single periodic one but
there could be many degrees of freedom in a typical subsystem. If the U-transformation
method is applied to this single periodic system as illustrated in the book [22], each uncoupled
equation still contains many unknown variables, the number of which is equal to the number of
degrees of freedom for each subsystem. Therefore, it may be impossible to obtain the solution
in explicit form. Though the subsystem or the uncoupled equation possesses periodicity,
it is not cyclic periodic. Hence, it is not possible to go any further to apply the U-transformation
technique directly to uncouple these equations. In order to find explicit solution for the
bi-periodic mass–spring system, it is necessary to apply the U-transformation twice to the
equivalent cyclic bi-periodic system with one-degree-of-freedom subsystems as illustrated in
Ref. [6].

The considered system consists of two kinds of periodic mass–spring subsystems and has
infinite number of subsystems with a single disorder. The aim of the present paper is to study the
application of the U-transformation to the localized vibration analysis in bi-periodic systems. The
explicit form of the frequency equation for localized modes is derived and the attenuation
constants of localized modes are also found.

It should be emphasized that the expressions of the obtained results (e.g., frequency equation
and attenuation constant) are very simple and concise although the derivation is somewhat
lengthy by using the U-transformation method. On the other hand, the analysis of the considered
problem can also be conducted if the receptance methods or the transfer matrix methods are used.
The two kinds of methods are very successful in the analysis of one-dimensional periodic systems.
For two-dimensional bi-periodic systems (e.g., the dynamic analysis of rectangular networks with
periodically distributed supports and a single disorder); however, the receptance methods and the
transfer matrix methods may cease to be effective. But the U-transformation method can be very
easily extended to analyze the two-dimensional bi-periodic systems so long as the double
U-transformation is used to replace the U-transformation [7,8].

2. Governing equation

Consider an infinite bi-periodic mass–spring system with one disorder, as shown in Fig. 1. This
system consists of two different kinds of subsystems, say M- and M 0-subsystems, where only one
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subsystem departs from the regularity in both stiffness and mass. In Fig. 1, K ðK 0Þ and M ðM 0Þ
denote the stiffness and mass for M ðM 0Þ-subsystems, k denotes the coupling stiffness and Kd ; Md

denote the magnitudes of the disorders in stiffness and mass, respectively. Without loss of
generality, ðs � 1Þp þ 1 ðs ¼ 1; 2;yÞ denotes the ordinal number of the sth M 0-subsystem and
ðsn � 1Þp þ 1 denotes the ordinal number of the disordered subsystem (see Fig. 1). If the
considered bi-periodic system is regarded as a single periodic one, p denotes the number of degrees
of freedom for a typical subsystem.

The localized modes in an infinite periodic mass–spring system are negligibly affected by the
conditions at infinity. Consequently, the system under consideration may be regarded as a cyclic
bi-periodic one, as shown in Fig. 2.

At the outset a cyclic bi-periodic system with n M 0-subsystems (see Fig. 2) is considered. Then
by adopting a limiting process with n approaching infinity, the governing equation and its solution
will be applicable for a cyclic bi-periodic system with infinite subsystems.

M' M' M' M' M'M M M M M M M M M M M
M'+Md

K' K' K' K' K'K K K K K K K K K K

k k k k k k k k k k k k k k

1 2 p p+1 p+2 2p 2p+1 (s*-2)p+1 (s*-1)p+1 s*p+1
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Fig. 1. Infinite bi-periodic mass–spring system with one disorder.

M'

M'

M'

M'

M'

M'

M

M

M
M

M

M

M

M

M

M

M

K

K
K K

K

K

K

K'

K'

K'

K'

K'

M'+Md

K'+Kd

1
2 p+1

2p+1

(s*-2)p+1

(s*-1)p+1

s*p+1

n

1 2
3

s*

(n-1)p+1

j

xj

→ ∞n

Fig. 2. Rotationally bi-periodic mass–spring system with one disorder.
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Applying Newton’s second law to every M 0 and M; the natural vibration equations can be
expressed as

ðK þ 2k � Mo2Þxj � kðxjþ1 þ xj�1Þ ¼ �ðDK � DMo2Þxj þ Fj;

j ¼ 1 þ ðs � 1Þp; s ¼ 1; 2;y; n ð1aÞ

and

ðK þ 2k � Mo2Þxj � kðxjþ1 þ xj�1Þ ¼ 0;

ja1; 1 þ p;y; 1 þ ðn � 1Þp; j ¼ 1; 2;y; np; ð1bÞ

respectively, where xj denotes the displacement for the jth subsystem; o represents the natural
frequency; and

DK ¼ K 0 � K ; DM ¼ M 0 � M; ð2Þ

Fj� ¼ ðMdo2 � KdÞxj� ; j� � 1 þ ðs� � 1Þp ðj� is the fixed numberÞ ð3Þ

with the other Fj vanishing and xnpþ1 � x1; x0 � xnp due to the cyclic periodicity.
Formally, the terms �ðDK � DMo2Þxj and Fj on the right side of Eq. (1a) act as the loads.

3. The first application of the U-transformation

The left sides of Eqs. (1a) and (1b) possess cyclic periodicity. In order to uncouple the left sides
of the simultaneous Eqs. (1a) and (1b), one can now apply the U-transformation to Eqs. (1a) and
(1b). Let

qm ¼
1ffiffiffiffiffi
N

p XN

j¼1

e�iðj�1Þmcxj; m ¼ 1; 2;y;N ð4aÞ

and its inverse transformation is

xj ¼
1ffiffiffiffiffi
N

p XN

m¼1

eiðj�1Þmcqm; j ¼ 1; 2;y;N; ð4bÞ

where

N ¼ np; c ¼
2p
N
; i ¼

ffiffiffiffiffiffiffi
�1

p
: ð5Þ

The right side of Eq. (4b) can be regarded as a series of rotating modes for the cyclic periodic
system with N M-subsystems and qm is the coefficient of the mth rotating mode having phase
difference mc between two adjacent subsystems. q1; q2;y; qN can be regarded as a set of
generalized displacements.

The natural vibration equations (1a) and (1b) can be expressed in terms of the generalized
displacements qm ðm ¼ 1; 2;?;NÞ as

ðK þ 2k � Mo2Þqm � 2k cos mcqm ¼ f 0
m þ f 0

m; m ¼ 1; 2;y;N; ð6Þ
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in which

f 0
m ¼ �

ðDK � DMo2Þffiffiffiffiffi
N

p Xn

u¼1

e�iðu�1Þmpcx1þðu�1Þp; ð7aÞ

f 0
m ¼

Mdo2 � Kdffiffiffiffiffi
N

p e�iðj��1Þmcxj� : ð7bÞ

Both f 0
m and f 0

m are dependent on the M 0 and disordered subsystems, respectively.
The generalized displacement qm may be formally expressed as

qm ¼
f 0
m þ f 0

m

K þ 2k � Mo2 � 2k cos mc
; m ¼ 1; 2;y;N: ð8Þ

Substituting Eqs. (8), (7a) and (7b) into Eq. (4b) yields

xj ¼ �
ðDK � DMo2Þ

N

Xn

u¼1

XN

m¼1

ei½j�1�ðu�1Þp
mc

K þ 2k � Mo2 � 2kcos mc
x1þðu�1Þp þ x0

j ð9aÞ

and

x0
j ¼

Mdo2 � Kd

N
xj�

XN

m¼1

eiðj�j�Þmc

K þ 2k � Mo2 � 2k cos mc
: ð9bÞ

Inserting j ¼ 1 þ ðs � 1Þp ðs ¼ 1; 2;y; nÞ and j� ¼ 1 þ ðs� � 1Þp in Eqs. (9a) and (9b) gives

Xs þ ðDK � DMo2Þ
Xn

u¼1

b0
s;uXu ¼ X 0

s ; s ¼ 1; 2;y; n; ð10Þ

where

Xs � x1þðs�1Þp; s ¼ 1; 2;y; n; ð11Þ

b0
s;u �

1

N

XN

m¼1

eiðs�uÞmpc

K þ 2k � Mo2 � 2k cos mc
; s; u ¼ 1; 2;y; n; ð12Þ

X 0
s � x0

1þðs�1Þp ¼ ðMdo2 � KdÞXs�b
0
s;s�; ð13Þ

Xs and Xs� indicate the displacements for the sth M 0 and disordered subsystems, respectively. b0
s;u

denotes the harmonic influence coefficient (i.e., receptance) for the perfectly single periodic system
with the parameters DK ; DM; Kd and Md vanishing.

By using the U-transformation once, the natural vibration equations (1a) and (1b) with Nð¼ pnÞ
unknowns become Eq. (10) with n unknowns.
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4. The second application of the U-transformation

Note that the harmonic influence coefficients for the cyclic periodic system possess cyclic
periodicity, namely

b0
1;1 ¼ b0

2;2 ¼ ? ¼ b0
n;n; ð14aÞ

b0
s;1 ¼ b0

sþ1;2 ¼ ? ¼ b0
n;n�sþ1 ¼ b0

1;n�sþ2 ¼ ? ¼ b0
s�1;n; s ¼ 2; 3;y; n: ð14bÞ

The left side terms of the simultaneous equations (10) possess cyclic periodicity. The
U-transformation can be performed for the second time. Introducing the U- and inverse
U-transformation

Qr ¼
1ffiffiffi
n

p Xn

s¼1

e�iðs�1ÞrjXs; r ¼ 1; 2;y; n ð15aÞ

and

Xs ¼
1ffiffiffi

n
p Xn

r¼1

eiðs�1ÞrjQr; s ¼ 1; 2;y; n ð15bÞ

with j ¼ 2p=n ¼ pc; into Eq. (10) results in

½1 þ ðDK � DMo2Þ
Xn

s¼1

b0
s;1e

�iðs�1Þrj
Qr ¼ br; r ¼ 1; 2;y; n; ð16Þ

where

br ¼
1ffiffiffi

n
p Xn

s¼1

e�iðs�1ÞrjX 0
s : ð17Þ

For the second U-transformations (15a) and (15b), Eq. (15b) shows that the displacements
of M 0-subsystems is expressed by the series of rotating modes for the cyclic periodic system having
n M 0-subsystems. Q1;Q2;y;Qn are a set of generalized displacements for M 0-subsystems.

Substituting Eqs. (12) and (13) into Eqs. (16) and (17), respectively, and using the identical
relation

1

n

Xn

s¼1

eiðs�1Þðm�rÞj ¼
1; m ¼ r; r þ n;y; r þ ðp � 1Þn;

0; mar; r þ n;y; r þ ðp � 1Þn;

(

m ¼ 1; 2;y;Nð¼ pnÞ; r ¼ 1; 2;y; n ð18Þ

we have

arðoÞQr ¼ brðoÞ; r ¼ 1; 2;y; n; ð19aÞ
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in which

arðoÞ ¼ 1 þ ðDK � DMo2Þ
X

r

ðoÞ; ð19bÞ

brðoÞ ¼
ðMdo2 � KdÞffiffiffi

n
p Xs�e

ið1�s�Þrj
X

r

ðoÞ ð19cÞ

and

X
r

ðoÞ ¼
1

p

Xp

u¼1

K þ 2k � Mo2 � 2k cos
rj
p
þ ðu � 1Þ

2p
p

� �� ��1

; ð19dÞ

where Qr can be formally expressed as

Qr ¼
brðoÞ
arðoÞ

¼
Mdo2 � Kdffiffiffi

n
p Xs�e

ið1�s�Þrj
P

rðoÞ
1 þ ðDK � DMo2Þ

P
rðoÞ

; r ¼ 1; 2;y; n; ð20Þ

where the displacement Xs� for the disordered subsystem is unknown.
Introducing Eq. (20) into the second inverse U-transformation (15b) yields

Xs ¼ ðMdo2 � Kd ÞXs�bs;s� ; s ¼ 1; 2;y; n ð21Þ

and

bs;s� �
1

n

Xn

r¼1

eiðs�s�Þrj
P

rðoÞ
1 þ ðDK � DMo2Þ

P
rðoÞ

; ð22Þ

bs;s� represents the harmonic influence coefficient (i.e., receptance) for the cyclic bi-periodic system
without disorder and means the amplitude of the sth M 0-subsystem caused by unit harmonic force
acting at the s*th M 0-subsystem.

By letting s ¼ s� and Xs�a0 in Eq. (21), the frequency equation can be found as

Mdo2 � Kd ¼
1

bs�;s�
; ð23Þ

where

bs�;s� ¼
1

n

Xn

r¼1

P
rðoÞ

1 þ ðDK � DMo2Þ
P

rðoÞ
: ð24Þ

The frequency equations (23) and (24) are applicable to the cyclic bi-periodic system with n

subsystems and a single disorder.
We can now consider the limiting case of n approaching infinity. By letting n approach infinity,

the limit of the series summation on the right side of Eq. (22) becomes the definite integral, namely

bs;s� ¼
1

2p

Z 2p

0

cos ðs � s�Þy
P

yðoÞ
1 þ ðDK � DMo2Þ

P
yðoÞ

dy;

s ¼ s�; s�71; s�72;y; s�7N; ð25Þ
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where X
y

ðoÞ �
1

p

Xp

u¼1

K þ 2k � Mo2 � 2k cos
y
p
þ ðu � 1Þ

2p
p

� �� ��1

: ð26Þ

Eq. (25) leads to

bsn;sn ¼
1

2p

Z 2p

0

P
yðoÞ

1 þ ðDK � DMo2Þ
P

yðoÞ
dy: ð27Þ

The frequency equations (23) and (27) are applicable to the original system shown in Fig. 1. It is
well known that if the natural frequency o lies in the pass band of the ordered system, the
corresponding mode must extend through to the whole system and if o lies in the stop band, the
corresponding mode is localized. We are interested in the latter case.

5. Pass bands for the ordered bi-periodic systems

One can now consider the case of Md ¼ Kd ¼ 0; leading to brðoÞ ¼ 0 ðr ¼ 1; 2;yÞ: Eq. (19a)
becomes

arðoÞQr ¼ 0; r ¼ 1; 2;y; n: ð28Þ

When Qra0; i.e., Xsa0; the corresponding frequency equation can be expressed as

arðoÞ � 1 þ ðDK � DMo2Þ
X

r

ðoÞ ¼ 0; r ¼ 1; 2;y; n; ð29Þ

which is applicable to the ordered cyclic bi-periodic system. By letting n approach infinity, the
frequency equation (29) becomes

1 þ ðDK � DMo2Þ
X
y

ðoÞ ¼ 0; 0oyp2p; ð30Þ

which is the frequency band equation for the infinite bi-periodic system without disorder. The
solutions for o of Eq. (30) will be continuously distributed in each pass band. In general if y is
given, there are p roots for o of Eq. (30). Let orðyÞ (r ¼ 1; 2;y; p) denote the rth root of Eq. (30).
orðyÞ is the function (may be implicit form) of y; orðyÞ (yA½0; p
) represents the rth pass band.
The parameter y in Eq. (30) indicates the rotating mode phase difference between two adjacent
M 0-subsystems. We can show readily that if y is replaced by 2p� y; the frequency equation (30)
does not change. Its physical meaning is that the two rotating modes with phase differences y and
2p� y between two adjacent M 0-subsystems correspond to a same frequency. Hence, we consider
only the case of yA½0;p
 or ½p; 2p
 in Eq. (30).

One can now consider the upper and lower limits (say oU and oL) of the pass bands. By
introducing y ¼ 0 (or 2p), y ¼ p and Eq. (26) in Eq. (30), the equations for oL and oU can be
obtained as

1 þ ðDK � DMo2Þ
1

p

Xp

u¼1

K þ 2k � Mo2 � 2k cos ðu � 1Þ
2p
p

� ��1

¼ 0

for y ¼ 0 ðor 2pÞ ð31aÞ
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and

1 þ ðDK � DMo2Þ
1

p

Xp

u¼1

K þ 2k � Mo2 � 2k cos
p
p
þ ðu � 1Þ

2p
p

� �� ��1

¼ 0

for y ¼ p: ð31bÞ

Eqs. (31a) and (31b) correspond to two kinds of modes having the same and opposite phases for
two adjacent M 0-subsystems.

When Qr � 0; i.e., Xs � 0; which means every mass M 0 is located at the nodal point of the
mode, the corresponding frequency equation for n-N can be obtained, from Eq. (6) with f 0

m and
f 0
m vanishing, as

K þ 2k � Mo2 � 2k cos
rp
p
¼ 0; r ¼ 1; 2;y; p � 1: ð32Þ

In Eq. (6), mc denotes the mode phase difference between two adjacent subsystems, meaning
that pmc represents the mode phase difference between two adjacent M 0-subsystems. In order to
have a node at every mass point M 0; pmc must be equal to rp ðr ¼ 1; 2;y; p � 1Þ; i.e., mc ¼ rp=p;
where r denotes a mode number.

The solution for o2 of Eq. (32) can be expressed as

o2 ¼
K þ 2k � 2k cos

rp
p

M
; r ¼ odd number ðrpp � 1Þ for y ¼ p;

r ¼ even number ðrpp � 1Þ for y ¼ 0;

ð33Þ

in which y denotes the mode phase difference between two adjacent M 0-subsystems.
The bounds of pass bands for the infinite bi-periodic system are made up of all roots for o of

Eqs. (31a), (31b) and (33), which are dependent on the parameter p besides the other system
parameters. Let us consider some specific values of p as follows:

(a) p ¼ 2: There is one M-subsystem between adjacent pairs of M 0-subsystems for the system
under consideration.

Eqs. (31a) and (31b) can be simplified, respectively, as

ðK 0 þ 2k � M 0o2ÞðK þ 2k � Mo2Þ � 4k2 ¼ 0 for y ¼ 0 ð34aÞ

and

K 0 þ 2k � M 0o2 ¼ 0 for y ¼ p: ð34bÞ

The solutions for o2 of Eqs. (34a) and (34b) are

o2
1;2 ¼

1

2

K 0 þ 2k

M 0 þ
K þ 2k

M

� �
8

1

2

K 0 þ 2k

M 0 �
K þ 2k

M

� �2

þ
16k2

MM 0

" #1=2

for y ¼ 0 ð35aÞ

and

o2 ¼
K 0 þ 2k

M 0 for y ¼ p: ð35bÞ
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The latter frequency corresponds to the mode in which nodes occur at all of the masses M: For
y ¼ p; the other frequency limit can be obtained from Eq. (33) with p ¼ 2 and r ¼ 1; as

o2 ¼
K þ 2k

M
for y ¼ p: ð35cÞ

The nodes of the corresponding mode lie in the M 0-subsystems.
In general, the bounds of the sth pass band are made up of both the sth frequencies for

y ¼ 0 and p ðs ¼ 1; 2;y; pÞ: For the present case of p ¼ 2; there are two pass bands which can be
denoted by ½o1L o1U 
 and ½o2L o2U 
:

Here osL and osU ðs ¼ 1; 2;y; pÞ represent the lower and upper bounds of the sth pass band,
respectively. They can be expressed as

o2
1L ¼

1

2

K 0 þ 2k

M 0 þ
K þ 2k

M

� �
�

1

2

K 0 þ 2k

M 0 �
K þ 2k

M

� �2

þ
16k2

MM 0

" #1=2

; ð36aÞ

o2
1U ¼ min

K 0 þ 2k

M 0 ;
K þ 2k

M

� �
; ð36bÞ

o2
2L ¼ max

K 0 þ 2k

M 0 ;
K þ 2k

M

� �
; ð36cÞ

o2
2U ¼

1

2

K 0 þ 2k

M 0 þ
K þ 2k

M

� �
þ

1

2

K 0 þ 2k

M 0 �
K þ 2k

M

� �2

þ
16k2

MM 0

" #1=2

: ð36dÞ

If ðK 0 þ 2kÞ=M 0 ¼ ðK þ 2kÞ=M; the two pass bands will degenerate into one pass band, with

o2
L ¼

K þ 2k

M
�

2kffiffiffiffiffiffiffiffiffiffiffi
MM 0

p and o2
U ¼

K þ 2k

M
þ

2kffiffiffiffiffiffiffiffiffiffiffi
MM 0

p : ð37Þ

When K ¼ K 0 and M ¼ M 0; the considered system is an uni-periodic one. Eq. (37) becomes

o2
L ¼

K

M
; o2

U ¼
K þ 4k

M
: ð38Þ

(b) p ¼ 3: There are two M-subsystems between adjacent pairs of M 0-subsystems for the
considered one. Eqs. (31a) and (31b) can be simplified as

ðK 0 � M 0o2ÞðK þ k � Mo2Þ þ 2kðK � Mo2Þ ¼ 0 for y ¼ 0 ð39aÞ

and

ðK 0 þ k � M 0o2ÞðK þ 3k � Mo2Þ þ kðK þ k � Mo2Þ ¼ 0 for y ¼ p: ð39bÞ

The solutions for o2 of Eqs. (39a) and (39b) can be found, respectively, as

o2
01;02 ¼

1

2

K þ k

M
þ

K 0 þ 2k

M 0

� �
8

1

2

K þ k

M
�

K 0 þ 2k

M 0

� �2

þ
8k2

MM 0

" #1=2

for y ¼ 0 ð40aÞ
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and

o2
p1;p2 ¼

1

2

K þ 3k

M
þ

K 0 þ 2k

M 0

� �
8

1

2

K þ 3k

M
�

K 0 þ 2k

M 0

� �2

þ
8k2

MM 0

" #1=2

:

for y ¼ p: ð40bÞ

In addition, Eq. (33) with p ¼ 3 leads to

o2
0 ¼

K þ 3k

M
for y ¼ 0 ð41aÞ

and

o2
p ¼

K þ k

M
for y ¼ p: ð41bÞ

If o1a;o2a;o3a ðo1apo2apo3aÞ represent the three frequencies shown in Eqs. (40a) and (41a)
and o1b;o2b;o3b ðo1bpo2bpo3bÞ denote the other three frequencies shown in Eqs. (40b) and
(41b), the three pass bands can be expressed as

½o1a o1b
; ½o2b o2a
; ½o3a o3b
: ð42Þ

It can be verified that

o1L ¼ o1a ¼ o01; ð43aÞ

o2U ¼ o2a ¼ minðo02;o0Þ; ð43bÞ

o3L ¼ o3a ¼ maxðo02;o0Þ; ð43cÞ

o1U ¼ o1b ¼ minðop1;opÞ; ð43dÞ

o2L ¼ o2b ¼ maxðop1;opÞ; ð43eÞ

o3U ¼ o3b ¼ op2: ð43fÞ

One can show readily that if ðK þ kÞ=M ¼ ðK 0 þ kÞ=M 0; op1 ¼ op; i.e., o1b ¼ o2b and if ðK þ
3kÞ=M ¼ ðK 0 þ 3kÞ=M 0; o02 ¼ o0; i.e., o2a ¼ o3a: Therefore, for the particular case of ðK þ
kÞ=M ¼ ðK 0 þ kÞ=M 0 or ðK þ 3kÞ=M ¼ ðK 0 þ 3kÞ=M 0; the three pass bands will degenerate into
two pass bands.

6. Frequency equation for localized modes

For the original system shown in Fig. 1, the frequency equation for localized modes has been
found as shown in Eqs. (23), (26) and (27), which are dependent on the parameter p:

(a) p ¼ 1: Substituting Eq. (26) with p ¼ 1 into Eq. (27) results in

bsn;sn ¼
1

p

Z p

0

1

K 0 þ 2k � M 0o2 � 2k cos y
dy: ð44aÞ
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Consider the frequency range given by

jK 0 þ 2k � M 0o2j > 2k ð44bÞ

so that either

o2o
K 0

M 0ð¼ o2
LÞ or o2 >

K 0 þ 4k

M 0 ð¼ o2
U Þ: ð44cÞ

The definite integral can then be evaluated to yield

bs�;s� ¼
1

2kZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p ; jZj > 1; ð44dÞ

where

Z ¼
K 0 þ 2k � M 0o2

2k
: ð44eÞ

The condition jZj > 1 is equivalent to Eq. (44c), i.e., o lies in the stop band. Because the
frequency of localized modes must lie in the stop band, Eq. (44d) holds true.

For localized modes, the frequency equation shown in Eqs. (23) and (44d) is in agreement with
that given in Ref. [18].

(b) p ¼ 2: For this case Eqs. (26) and (27) becomeX
y

ðoÞ ¼
K þ 2k � Mo2

ðK þ 2k � Mo2Þ2 � 2k2 � 2k2 cos y
ð45aÞ

and

bs�;s� ¼
1

p

Z p

0

K þ 2k � Mo2

ðK þ 2k � Mo2ÞðK 0 þ 2k2 � M 0o2Þ � 2k2 � 2k2 cos y
dy

¼
K þ 2k � Mo2

2k2

1

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p ; jZj > 1; ð45bÞ

where

Z ¼
ðK þ 2k � Mo2ÞðK 0 þ 2k � M 0o2Þ

2k2
� 1: ð45cÞ

One can show that the condition jZj > 1 is equivalent to

ðo2 � o2
1LÞðo

2 � o2
2U Þ > 0 ð45dÞ

or

ðo2 � o2
1U Þðo

2 � o2
2LÞo0; ð45eÞ

in which o1L; o1U ; o2L and o2U are given in Eqs. (36a)–(36d).
Eqs. (45d) and (45e) lead to ooo1L or o > o2U and o1Uoooo2L; respectively. Therefore if

and only if o lies in the stop bands, implying that Zj j > 1; the definite integral for bsn;sn exists. This
conclusion is the same as that for p ¼ 1:

When o lies in the pass band, bsn;sn approaches infinity. This phenomenon can be explained
from the physical meaning of bsn;sn : Because bsn;sn is harmonic influence coefficient, if o
approaches a natural frequency, the harmonic influence coefficient must approach infinity. But
when o is equal to a frequency given in Eq. (33), i.e., each M 0-subsystem is located at the nodal
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point of the corresponding mode, bsn;sn ¼ 0: For the present case, when o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 2kÞ=M

p
;

bsn;sn ¼ 0:
Substituting Eq. (45b) into Eq. (23) yields

Mdo2 � Kd ¼
2k2

K þ 2k � Mo2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
; jZj > 1: ð46Þ

Eqs. (46) and (45c) represent the frequency equation for localized modes in the considered system
with p ¼ 2:

Introducing the non-dimensional parameters

O2 ¼ o2M

K
; eM ¼

Md

M
; eK ¼

Kd

K
; eC ¼

k

K
; a ¼

K 0

K
; g ¼

M 0

M
ð47Þ

into Eqs. (46) and (45c), we have

FðO2Þ ¼ DðO2Þ; ð48aÞ

where

F ðO2Þ ¼ eMO2 � eK ; ð48bÞ

DðO2Þ ¼
2e2C

1 þ 2eC � O2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
ð48cÞ

and

Z ¼
ð1 þ 2eC � O2Þðaþ 2eC � gO2Þ

2e2C
� 1: ð48dÞ

The number and magnitude of the frequencies for localized modes can be explained qualitatively
by using the graphic representation.

When all the parameters are given, the functions, y ¼ DðO2Þ and F ðO2Þ; can be plotted against
O: The number of the points of intersection between the two curves is equal to the number of
localized modes, and the transverse co-ordinates of the intersection points represent the
magnitudes of the corresponding frequencies.

Let us consider a specific case, namely

M 0 ¼ 2M; K 0 ¼ 3K ; k ¼ 0:1K ð49aÞ

leading to

g ¼ 2; a ¼ 3; eC ¼ 0:1: ð49bÞ

Introducing Eq. (49a) into Eqs. (36a)–(36d) gives

O2
1L ¼ o2

1L

M

K
¼ 1:155051026; ð50aÞ

O2
1U ¼ o2

1U

M

K
¼ 1:2; ð50bÞ

O2
2L ¼ o2

2L

M

K
¼ 1:6; ð50cÞ

O2
2U ¼ o2

2U

M

K
¼ 1:644948974: ð50dÞ
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The function DðO2Þ can be defined when O lies in the stop bands, namely
OoO1L;O1UoOoO2L;O > O2U :

The curve, D versus O2; is plotted in Fig. 3, which is made up of three continuous and
monotonically decreasing curves, corresponding to the three stop bands. The straight lines, y ¼
FðO2Þ; corresponding to various disordered parameters, are also plotted in Fig. 3. By observation
from Fig. 3, it is clear that in either case of eKo0; eM ¼ 0 or eK ¼ 0; eM > 0; two localized
modes with OoO1L and O1UoOoO2L will occur, and in either case of eK > 0; eM ¼ 0 or
eK ¼ 0; eMo0; one localized mode with O > O2U will occur.

(c) p ¼ 3: For this case, one can show that Eqs. (26) and (27) lead toX
y

ðoÞ ¼
ðK þ 2k � Mo2Þ2 � k2

ðK þ 2k � Mo2Þ3 � 3k2ðK þ 2k � Mo2Þ � 2k3 cos y
ð51aÞ

and

bsn;sn ¼
1

p

Z p

0

ðK þ 2k � Mo2Þ2 � k2

2k3ðZ� cos yÞ
dy

¼
ðK þ 2k � Mo2Þ2 � k2

2k3

1

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p ; jZj > 1; ð51bÞ

Fig. 3. Functions DðO2Þ and F ðO2Þ for p ¼ 2: (a) O2
1L ¼ 1:155051026; (b) O2

1U ¼ 1:2; (c) O2
2L ¼ 1:6; (d) O2

2U ¼
1:644948974:
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where

Z ¼fðK þ 2k � Mo2Þ2ðK 0 þ 2k � M 0o2Þ

� k2½2ðK þ 2k � Mo2Þ þ K 0 þ 2k � M 0o2
g=2k3: ð51cÞ

It can be proved that the condition jZj > 1 is again equivalent to o lying in the stop bands,
namely ooo1L; o1Uoooo2L; o2Uoooo3L and o > o3U :

The frequency equation (23) can be expressed as

Mdo2 � Kd ¼
2k3

ðK þ 2k � Mo2Þ2 � k2
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
; jZj > 1: ð52Þ

By introducing the non-dimensional parameters shown in Eq. (47) into Eqs. (52) and (51c), we
have

F ðO2Þ ¼ DðO2Þ; jZj > 1; ð53aÞ

where

F ðO2Þ � eMO2 � eK ; ð53bÞ

DðO2Þ �
2e3C

ð1 þ 2eC � O2Þ2 � e2C
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
ð53cÞ

and

Z ¼ fð1 þ 2eC � O2Þ2ðaþ 2eC � gO2Þ � e2C ½2ð1 þ 2eC � O2Þ þ aþ 2eC � gO2
g=2e3C : ð53dÞ

Consider the same system parameters as those shown in Eq. (49a). Introducing Eqs. (40a), (40b),
(41a), (41b) and (49) into Eqs. (43a)–(43f) results in

O2
1L � o2

1L

M

K
¼ 1:08074176; ð54aÞ

O2
1U � o2

1U

M

K
¼ 1:1; ð54bÞ

O2
2L � o2

2L

M

K
¼ 1:269722437; ð54cÞ

O2
2U � o2

2U

M

K
¼ 1:3; ð54dÞ

O2
3L � o2

3L

M

K
¼ 1:61925824; ð54eÞ

O2
3U � o2

3U

M

K
¼ 1:630277563: ð54fÞ

In the same way as before, the curve, y ¼ DðO2Þ with a ¼ 3; g ¼ 2; eC ¼ 0:1; is plotted in Fig. 4.
This curve is made up of four sectional curves corresponding to the four stop bands:
OoO1L; O1UoOoO2L; O2UoOoO3L and O > O3U : Four straight lines, y ¼ F ðO2Þ; correspond-
ing to four sets of eK and eM are also plotted in Fig. 4. From Fig. 4, it can be observed that for
either case of eKo0; eM ¼ 0 or eK ¼ 0; eM > 0 three localized modes will occur and the
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corresponding frequencies lie in the first three stop bands and for either case of eK > 0; eM ¼ 0 or
eK ¼ 0; eMo0; one localized mode with o > o3U will occur.

7. Localized modes

When the natural frequency is found by solving Eq. (23), the corresponding mode can be
obtained from Eqs. (21) and (23). Introducing Eq. (23) into Eq. (21), yields

Xs ¼ Xsn
bs;sn

bsn;sn
; s ¼ s�; s�71; s�72;y; ð55aÞ

where Xs and Xs� denote the amplitudes of the sth M 0 and disordered subsystems, respectively.
The above equation can be rewritten as

Xsnþm ¼ Xsn
bsnþm;sn

bsn;sn
; m ¼ 0;71;72;y ð55bÞ

Fig. 4. Functions DðO2Þ and F ðO2Þ for p ¼ 3: (a) O2
1L ¼ 1:08074176; (b) O2

1U ¼ 1:1; (c) O2
2L ¼ 1:269722437; (d) O2

2U ¼
1:3; (e) O2

3L ¼ 1:61925824; (f) O2
3U ¼ 1:630277563:
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and

bsnþm;sn ¼
1

2p

Z 2p

0

cos my
P

yðoÞ
1 þ ðDK � DMo2Þ

P
yðoÞ

dy; m ¼ 0;71;72;y: ð55cÞ

Eq. (55b) indicates the localized mode for M 0-subsystems, where Xsn acts as an arbitrary constant
factor.

(a) p ¼ 1: Substituting Eq. (26) with p ¼ 1 into Eq. (55c) gives

bsnþm;sn ¼
1

p

Z p

0

cos my
K 0 þ 2k � M 0o2 � 2k cos y

dy ¼
1

2k
Iðm; ZÞ; ð56Þ

where

Iðm; ZÞ �
1

p

Z p

0

cos my
Z� cos y

dy; jZj > 1; m ¼ 0;71;72;y; ð57aÞ

Z ¼
K 0 þ 2k � M 0o2

2k
: ð57bÞ

It can be proved that Iðm; ZÞ possesses the following property:

Ið1; ZÞ
Ið0; ZÞ

¼
Ið2; ZÞ
Ið1; ZÞ

¼ ? ¼ Zð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
Þ: ð58Þ

Introducing Eqs. (56) and (58) into Eq. (55b), we have

Xsn�1 ¼ Xsnþ1 ¼ Xsn
Ið1; ZÞ
Ið0; ZÞ

¼ Xsnx; ð59aÞ

Xsn�2 ¼ Xsnþ2 ¼ Xsn
Ið2; ZÞ
Ið0; ZÞ

¼ Xsnx
2; ð59bÞ

Xsn�m ¼ Xsnþm ¼ Xsnx
m; m ¼ 0; 1; 2;y; ð59cÞ

where

x ¼ Zð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
Þ; jZj > 1 ð60Þ

is the attenuation constant of the localized mode.
It is obvious that x and Z are of the same sign, and xj j always less than one. x is an odd function

of Z; as shown in Fig. 5.
These results for p ¼ 1 are in agreement with those given in Ref. [18].
(b) p ¼ 2: Introducing Eq. (45a) into Eq. (55c) results in

bsnþm;sn ¼
1

p

Z p

0

ðK þ 2k � Mo2Þ cos my
ðK þ 2k � Mo2ÞðK 0 þ 2k � M 0o2Þ � 2k2 � 2k2 cos y

dy

¼
K þ 2k � Mo2

2k2

1

p

Z p

0

cos my
Z� cos y

dy ¼
K þ 2k � Mo2

2k2
Iðm; ZÞ; ð61aÞ

where

Z ¼
ðK þ 2k � Mo2ÞðK 0 þ 2k � M 0o2Þ

2k2
� 1: ð61bÞ
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The definition of Iðm; ZÞ is the same as that shown in Eq. (57a) except that the definition of Z
must be Eq. (61b) instead of Eq. (57b).

The localized mode and its attenuation constant can be also expressed as Eqs. (59a)–(59c) and
(60), respectively, in which Z is defined as that shown in Eq. (61b).

When the frequency corresponding to the localized mode has been found the attenuation
constant can be calculated from Eqs. (60) and (61b).

(c) p ¼ 3: Inserting Eq. (51a) into Eq. (55c) yields

bsnþm;sn ¼
ðK þ 2k � Mo2Þ2 � k2

2k3

1

p

Z p

0

cos my
Z� cos y

dy

¼
ðK þ 2k � Mo2Þ2 � k2

2k3
Iðm; ZÞ; ð62aÞ

Fig. 5. Attenuation constant x versus Z; x ¼ Zð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Z�2

p
Þ; jZj > 1:
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where

Z ¼fðK þ 2k � Mo2Þ2ðK 0 þ 2k � M 0o2Þ

� k2½2ðK þ 2k � Mo2Þ þ K 0 þ 2k � M 0o2
g=2k3: ð62bÞ

The localized mode can be also expressed as that shown in Eqs. (59a)–(59c) in which the
attenuation constant x is the same function of Z as that shown in Eq. (60). But the functions Z of
o2 for p ¼ 1; 2; 3 have different expressions, as shown in Eqs. (57b), (61b) and (62b)
corresponding to p ¼ 1; 2 and 3:

When the natural frequency for localized mode is found, its attenuation constant can be
calculated by applying formulas (60) and (62b).

8. Conclusions

In the present study, the application of the U-transformation method has been extended from
the localized mode analysis of nearly periodic mass–spring systems to the same analysis of bi-
periodic mono-coupled mass–spring systems with a single disorder. In order to utilize completely
the property of bi-periodicity, the proposed analysis method requires the application of U-
transformation twice. The governing equation of natural vibration is uncoupled to form a set of
single-degree-of-freedom equations in terms of the harmonic influence coefficients. Then the
frequency equation and localized modes can be obtained.

Some specific bi-periodic systems with p ¼ 1; 2; 3 are taken as examples. In the two examples,
with p ¼ 2 and 3, the degenerate phenomenon of pass bands is discovered, i.e., two pass bands
have merged into one. The conditions under what the degenerate phenomenon occurs are found
in explicit form.

It should be pointed out that the U-transformation method used in the present paper is also
applicable to the dynamic analysis of some two-dimensional bi-periodic systems with and without
disorders.
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