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Abstract

The frequency bands of perfect bi-periodic mass—spring systems and the localized modes in the same
systems with one disordered subsystem are exactly analyzed using the U-transformation method.

The linear bi-periodic system with an infinite number of subsystems may be considered as an equivalent
cyclic bi-periodic system having infinite subsystems. The governing equation for such an equivalent system
with cyclic bi-periodicity can be uncoupled by applying the U-transformation twice to form a set of single-
degree-of-freedom equations. These equations can be used to analyze the pass bands and localized modes
corresponding to the considered system with and without disorder, respectively.

Some specific systems are taken as examples to demonstrate how to apply the formulas obtained in this
paper and to find the localized modes and frequencies.
© 2002 Published by Elsevier Science Ltd.

1. Introduction

Analyses of bi-periodic systems have been presented by a number of researchers using various
methods, including transfer matrix method [1], wave approach [2-4], standard stiffness and
transmission methods [5] and U-transformation method [6—10]. Vibration analyses of free wave
motion and response in mono-coupled periodic systems with a single or multiple disorders have
been investigated by Bansal [11] and Mead et al. [12—14] using receptance method.

Localized phenomenon was first predicted by Anderson [15] in the field of solid-state physics. It
was shown that the electron eigenstates in a disordered solid may become localized. The localized
problems in solid-state physics have been an active area of research for the past over 40 years. In
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structural dynamics, Hodges [16] was the earliest to show that in one-dimensional periodic
structures all modes are localized for arbitrarily small extended disorders. There is a great volume
of literature on localization. A detailed discussion of that literature is contained in the special issue
of Chaos, Solitons and Fractals on localization problems [17].

Mode localization phenomenon in an infinite periodic mass—spring system with a single
disorder was investigated by Cai et al. [18] using the U-transformation method. Localized modes
in mono-coupled periodic mass—spring systems having one or two non-linear disorders were
studied by means of the U-transformation method and L-P method [19]. Recently, the same
method was applied to analyze the localized modes in a periodic mass—spring system with two
coupling co-ordinates between adjacent elements and a non-linear disordered subsystem [20].
Meanwhile, the method was also used to analyze the forced vibration of damped periodic systems
having one non-linear disorder [21].

Generally, a bi-periodic mass—spring system can be regarded as a single periodic one but
there could be many degrees of freedom in a typical subsystem. If the U-transformation
method is applied to this single periodic system as illustrated in the book [22], each uncoupled
equation still contains many unknown variables, the number of which is equal to the number of
degrees of freedom for each subsystem. Therefore, it may be impossible to obtain the solution
in explicit form. Though the subsystem or the uncoupled equation possesses periodicity,
it is not cyclic periodic. Hence, it is not possible to go any further to apply the U-transformation
technique directly to uncouple these equations. In order to find explicit solution for the
bi-periodic mass—spring system, it is necessary to apply the U-transformation twice to the
equivalent cyclic bi-periodic system with one-degree-of-freedom subsystems as illustrated in
Ref. [6].

The considered system consists of two kinds of periodic mass—spring subsystems and has
infinite number of subsystems with a single disorder. The aim of the present paper is to study the
application of the U-transformation to the localized vibration analysis in bi-periodic systems. The
explicit form of the frequency equation for localized modes is derived and the attenuation
constants of localized modes are also found.

It should be emphasized that the expressions of the obtained results (e.g., frequency equation
and attenuation constant) are very simple and concise although the derivation is somewhat
lengthy by using the U-transformation method. On the other hand, the analysis of the considered
problem can also be conducted if the receptance methods or the transfer matrix methods are used.
The two kinds of methods are very successful in the analysis of one-dimensional periodic systems.
For two-dimensional bi-periodic systems (e.g., the dynamic analysis of rectangular networks with
periodically distributed supports and a single disorder); however, the receptance methods and the
transfer matrix methods may cease to be effective. But the U-transformation method can be very
easily extended to analyze the two-dimensional bi-periodic systems so long as the double
U-transformation is used to replace the U-transformation [7,8].

2. Governing equation

Consider an infinite bi-periodic mass—spring system with one disorder, as shown in Fig. 1. This
system consists of two different kinds of subsystems, say M- and M’-subsystems, where only one
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Fig. 1. Infinite bi-periodic mass—spring system with one disorder.

Fig. 2. Rotationally bi-periodic mass—spring system with one disorder.

subsystem departs from the regularity in both stiffness and mass. In Fig. 1, K (K') and M (M)
denote the stiffness and mass for M (M’)-subsystems, k denotes the coupling stiffness and K;, M
denote the magnitudes of the disorders in stiffness and mass, respectively. Without loss of
generality, (s— 1)p+ 1 (s=1,2,...) denotes the ordinal number of the sth M’-subsystem and
(s* — 1)p+1 denotes the ordinal number of the disordered subsystem (see Fig. 1). If the
considered bi-periodic system is regarded as a single periodic one, p denotes the number of degrees
of freedom for a typical subsystem.

The localized modes in an infinite periodic mass—spring system are negligibly affected by the
conditions at infinity. Consequently, the system under consideration may be regarded as a cyclic
bi-periodic one, as shown in Fig. 2.

At the outset a cyclic bi-periodic system with n M’-subsystems (see Fig. 2) is considered. Then
by adopting a limiting process with n approaching infinity, the governing equation and its solution
will be applicable for a cyclic bi-periodic system with infinite subsystems.
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Applying Newton’s second law to every M’ and M, the natural vibration equations can be
expressed as

(K + 2k — Mo?)x; — k(xj11 + xj-1) = —(AK — AMo?)x; + F;,
j=14+G6-1)p, s=12,...,n (1a)
and
(K + 2k — Ma)z)xj — k(xj41 + xj-1) =0,
jELL+p, ..., 1+m—1)p, j=12 .. ,np, (1b)

respectively, where x; denotes the displacement for the jth subsystem; w represents the natural
frequency; and

AK =K —K, AM=M —M, (2)
Fr = (My* — Ka)xp, =1+ —1p ( is the fixed number) (3)

with the other F; vanishing and x,,,1 = x1, Xo = X,,, due to the cyclic periodicity.
Formally, the terms —(AK — AM?)x; and F; on the right side of Eq. (1a) act as the loads.

3. The first application of the U-transformation
The left sides of Egs. (1a) and (1b) possess cyclic periodicity. In order to uncouple the left sides

of the simultaneous Egs. (1a) and (1b), one can now apply the U-transformation to Egs. (1a) and
(1b). Let

1 N
G = _Zefl(/fl)mwxj’ m=12,....,N (4a)
VN
and its inverse transformation is
1 N
Xj =7 Zel(lil)mw%n, Jj=12,..,N, (4b)
Nm:I
where
2n . ST
N:}’lp, l/j:Na 1= -1 (5)

The right side of Eq. (4b) can be regarded as a series of rotating modes for the cyclic periodic
system with N M-subsystems and ¢, is the coefficient of the mth rotating mode having phase
difference my between two adjacent subsystems. ¢i,¢»,...,gy can be regarded as a set of
generalized displacements.

The natural vibration equations (la) and (1b) can be expressed in terms of the generalized
displacements ¢, (m =1,2,---, N) as

(K + 2k — M?)qy, — 2k cos mpg = f0 +f1, m=1,2,...,N, (6)
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in which

(AK — AMo?) <~ .,
fo = )Ze DY X s
VN
,  Mgo® — Ky e 0Dy

fm - \/]—V—

Both f2 and /!, are dependent on the M’ and disordered subsystems, respectively.

m

The generalized displacement g,, may be formally expressed as

f0+ /
m = M \ =1,2,...,N.
9 K + 2k — Mw?* — 2k cos mys "

Substituting Egs. (8), (7a) and (7b) into Eq. (4b) yields

S AM @) eili— 1= oy :
o ;mz K + 2k — Mo? — 2kcosmy " =P + X
and
X = Mg — Ky Z elG=/" my
T N ] K+2k MwZ 2kCOSm¢.

Inserting j =1+ (s— p(s=1,2,...,n)and j* = 1 +(s* — 1)p in Egs. (9a) and (9b) gives

X, + (AK — AMco2)ZﬁwX X, s=12,..,n,

where

XS’ = x1+(s—1)p7 s = 1729 -5 1,

1 N ei(s—wympy
N;K+ 2k — Mw? — 2k cos my’

s,su=1,2,...,n,

0 __
ﬁs,u =

_ 2 0
‘X;{ = xll+(s71)p = (de - Kd)XS*ﬁs,s*’
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(7a)

(7b)

(8)

(9a)

(9b)

(10)

(11)

(12)

(13)

X, and X+ indicate the displacements for the sth M’ and disordered subsystems, respectively. /32’“
denotes the harmonic influence coefficient (i.e., receptance) for the perfectly single periodic system

with the parameters AK, AM, K; and M,; vanishing.

By using the U-transformation once, the natural vibration equations (1a) and (1b) with N(= pn)

unknowns become Eq. (10) with n» unknowns.
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4. The second application of the U-transformation

Note that the harmonic influence coefficients for the cyclic periodic system possess cyclic
periodicity, namely

ﬁ(l),l = ﬁ(z),z == ﬁﬁ,n, (14a)

ﬁg,l = ﬁg+l,2 == ﬁg,nferl = ﬁ(l),nfs+2 == /3871,;1’ §=12,3,....n (14b)

The left side terms of the simultaneous equations (10) possess cyclic periodicity. The
U-transformation can be performed for the second time. Introducing the U- and inverse
U-transformation

1 n .
0, =—=) e=rox  r=1,2...,n (15a)
Vn ;
and
1 <
X,=—=) 6o, s=1,2,...,n (15b)
Vn ;
with ¢ = 2n/n = py, into Eq. (10) results in
[1+(AK =AM ple 10, = b, r=1,2,...,n, (16)

s=1

where
1 & .
by=—=) ey’ (17)
Vn ; ‘

For the second U-transformations (15a) and (15b), Eq. (15b) shows that the displacements
of M’-subsystems is expressed by the series of rotating modes for the cyclic periodic system having
n M’'-subsystems. Q1, 0y, ..., Q, are a set of generalized displacements for M’-subsystems.

Substituting Egs. (12) and (13) into Egs. (16) and (17), respectively, and using the identical
relation

liei(&lxmw: L m=rr+n...r+@-1n
n‘= 0, m#r,r+n,....,r+(p— n,

m=12,....,N=pn), r=12,...,n (18)
we have
a ()0, = b(w), r=1,2,...,n, (19a)
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in which
a(w) =1+ (AK — AMw?) ) (o), (19b)
b(w) = %ﬁ_@ Xpr 170N (@) (19¢)
and
-1
Z(w)zézp:{K+2k—Mw2—2kcos [%”Hu— 1)%”]} , (19d)
r u=1

where O, can be formally expressed as

b (w My0? — K, .

0, = argw; — NG 4 Yeili=ro Y _ZA’;%z) Sy T 1,2, ....,n, (20

where the displacement X+ for the disordered subsystem is unknown.

Introducing Eq. (20) into the second inverse U-transformation (15b) yields
X, = (Mg — K)) Xy Bogs s=12,..,n (21)
and
I »

bt =5 2 Tk - Ar(Mzo?) 5 (@) ()

B, represents the harmonic influence coefficient (i.e., receptance) for the cyclic bi-periodic system
without disorder and means the amplitude of the sth M’-subsystem caused by unit harmonic force
acting at the s th M’-subsystem.

By letting s = s* and X, #0 in Eq. (21), the frequency equation can be found as

1

Mda)2 — Kd = ,Bs*,s*, (23)
where
e > ()
Pew = E; 1+ (AK = AM?) Y () -

The frequency equations (23) and (24) are applicable to the cyclic bi-periodic system with n
subsystems and a single disorder.

We can now consider the limiting case of n approaching infinity. By letting n approach infinity,
the limit of the series summation on the right side of Eq. (22) becomes the definite integral, namely

g .= 1 T cos (s — 50 (o) 40
Y2y T4+ (AK — AMo?) Y y(w)
s:s*,s*il,s*i2,...,s*ioo, (25)
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where
—1
Z(w)z}’zp:{Kuk—sz—2kcos[g+(u—1)%“]} . (26)
0 u=1
Eq. (25) leads to
B 1 2n Zg(a’)
P = 2 /0 1+ (AK — AM?) Y () do. 27)

The frequency equations (23) and (27) are applicable to the original system shown in Fig. 1. It is
well known that if the natural frequency w lies in the pass band of the ordered system, the
corresponding mode must extend through to the whole system and if o lies in the stop band, the
corresponding mode is localized. We are interested in the latter case.

5. Pass bands for the ordered bi-periodic systems

One can now consider the case of M; = K; = 0, leading to b,(w) =0 (r = 1,2, ...). Eq. (19a)
becomes

a ()0, =0, r=12 ..,n (28)
When Q,#0, i.e., X;#0, the corresponding frequency equation can be expressed as
a(w) =1+ (AK —AMo)) () =0, r=12,...n, (29)

which is applicable to the ordered cyclic bi-periodic system. By letting n approach infinity, the
frequency equation (29) becomes

1+ (AK — AM?) (0) =0, 0<0<2m, (30)
0

which is the frequency band equation for the infinite bi-periodic system without disorder. The
solutions for w of Eq. (30) will be continuously distributed in each pass band. In general if 6 is
given, there are p roots for w of Eq. (30). Let w,(0) (r = 1,2, ..., p) denote the rth root of Eq. (30).
w,(0) is the function (may be implicit form) of 6, w,(f) (A€[0, n]) represents the rth pass band.
The parameter 6 in Eq. (30) indicates the rotating mode phase difference between two adjacent
M’-subsystems. We can show readily that if 0 is replaced by 27 — 0, the frequency equation (30)
does not change. Its physical meaning is that the two rotating modes with phase differences 6 and
21 — 0 between two adjacent M’-subsystems correspond to a same frequency. Hence, we consider
only the case of 0€[0, n] or [r,2x] in Eq. (30).

One can now consider the upper and lower limits (say wy and wy) of the pass bands. By
introducing 0 = 0 (or 27n), 0 = n and Eq. (26) in Eq. (30), the equations for w; and wy can be
obtained as

1< 2n) !
1+ (AK — Asz)l—)Z{K—l— 2k — Mw? — 2k cos (u — 1);”} =0
u=1

for 0 = 0 (or 27) (31a)
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and

p —1
1+ (AK — Asz)lZ{K—F 2%k — Mw? — 2kcosE+ (u— 1)2—”] } =0
P p

for 60 = . (31b)

Egs. (31a) and (31b) correspond to two kinds of modes having the same and opposite phases for
two adjacent M’-subsystems.

When O, =0, i.e., X; =0, which means every mass M’ is located at the nodal point of the
mode, the corresponding frequency equation for n— oo can be obtained, from Eq. (6) with £ and
" vanishing, as

K+2k—Ma)2—2kcos%I:O, r=1,2..,p— 1. (32)

In Eq. (6), myy denotes the mode phase difference between two adjacent subsystems, meaning
that pmy represents the mode phase difference between two adjacent M’-subsystems. In order to
have a node at every mass point M’, pmy must be equal torn (r = 1,2, ...,p — 1), i.e., my = rn/p,
where r denotes a mode number.

The solution for w? of Eq. (32) can be expressed as

K+2k—2kcosr—n
? = 7 P r=odd number (r<p — 1) for 6 =, (33)

r = even number (r<p — 1) for 0 =0,

in which 6 denotes the mode phase difference between two adjacent M’-subsystems.

The bounds of pass bands for the infinite bi-periodic system are made up of all roots for w of
Egs. (31a), (31b) and (33), which are dependent on the parameter p besides the other system
parameters. Let us consider some specific values of p as follows:

(a) p = 2: There is one M-subsystem between adjacent pairs of M’-subsystems for the system
under consideration.

Egs. (31a) and (31b) can be simplified, respectively, as

(K" + 2k — M'0*)(K 4+ 2k — Mw*) —4k> =0 for 0 =0 (34a)
and
K +2k—Mw»*=0 forf=nm. (34b)
The solutions for w? of Eqgs. (34a) and (34b) are

1/2
o V(K 2k K42k\ 11 (K 2%k K42\ 16k /
2=\ M )2\ M) MM

for =0 (35a)

and
, K +2k
) =
M’

for 0 = . (35b)



1142 C.W. Cai et al. | Journal of Sound and Vibration 262 (2003) 1133-1152

The latter frequency corresponds to the mode in which nodes occur at all of the masses M. For
0 = m, the other frequency limit can be obtained from Eq. (33) with p =2 and r =1, as

,  K+2k
M

The nodes of the corresponding mode lie in the M’-subsystems.

In general, the bounds of the sth pass band are made up of both the sth frequencies for
0=0and n (s=1,2,...,p). For the present case of p = 2, there are two pass bands which can be
denoted by [wi; wy] and [wyr way].

Here wy; and wgy (s = 1,2, ..., p) represent the lower and upper bounds of the sth pass band,
respectively. They can be expressed as

W for 0 = =. (35¢)

1/2
. (K% K2\ [k 4%k K+ok) 16k ]
=5t ) 5| (e ) | (36)
. (K'+2k K +2k
w%U—mm< ]\—;’ , L ), (36b)
K' +2k K + 2k
w%L:maX< ]\—'4—’ , L ), (36¢)
1/2
, (K2 K+2k\  1[/K 2k K2\ 16k ]
Pu T\ T M )2\ T M) T Ged)

If (K' +2k)/M' = (K + 2k)/ M, the two pass bands will degenerate into one pass band, with
K+2k 2 2_K+2k+ 2k

2 _
w; = - and oy = - (37)
When K = K’ and M = M’, the considered system is an uni-periodic one. Eq. (37) becomes
K K + 4k
2 2

(b) p = 3: There are two M-subsystems between adjacent pairs of M’-subsystems for the
considered one. Egs. (31a) and (31b) can be simplified as

(K' = M'o*) K +k — Mw?) +2k(K — Mw*) =0 for =0 (39a)
and
(K'+k — M o*)K 43k — Mo*) + k(K +k— Mw*) =0 for 0 =n. (39b)
The solutions for ? of Egs. (39a) and (39b) can be found, respectively, as

1/2
, 1<K+k+K’+2k>$1 <K+k_K’+2k>2| 8k2]/

o102 =5\ Ty M 2\ M MM
for 6 =0 (40a)
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and

: 1<K+3k+K’+2k>$1 <K+3k_K’+2k)2l 8k2]1/2

N M )2\ M M) MM
for 0 = n. (40b)
In addition, Eq. (33) with p = 3 leads to
o2 = K3 e 00 (41a)
and
wi = KT—HC for 60 = m. (41b)

If w14, W24, W34 (01, <02, < w3,) represent the three frequencies shown in Egs. (40a) and (41a)
and wip, wop, 3 (01 <wyp <wip) denote the other three frequencies shown in Egs. (40b) and
(41b), the three pass bands can be expressed as

(w1 ©1p], [0 ®2),  [w34 ©35)- (42)
It can be verified that

Wi = 014 = O, (43a)

Wy = Wy, = min(wo3, o), (43b)

w3 = W3, = max(wo2, W), (43¢)

w1y = w1y = Min(wy1, 0), (43d)

Wy = Wop = mMax(wyi, Wy), (43e)

W3y = W3p = Wp. (43f)

One can show readily that if (K + k)/M = (K' +k)/M', w1 = w,, i.e., w1, = wy and if (K +
3k)/M = (K" + 3k)/ M, wo, = wy, i.e., wy, = w3,. Therefore, for the particular case of (K +
k)y/M = (K'+ k)/M' or (K + 3k)/M = (K" + 3k)/M’, the three pass bands will degenerate into
two pass bands.

6. Frequency equation for localized modes

For the original system shown in Fig. 1, the frequency equation for localized modes has been
found as shown in Egs. (23), (26) and (27), which are dependent on the parameter p.
(a) p = 1: Substituting Eq. (26) with p = 1 into Eq. (27) results in

1" 1
o1 do.
ﬂs 8 7'5/0 K + 2k — M'w? — 2k cos 0

(44a)
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Consider the frequency range given by

|K' + 2k — M'w?| > 2k (44b)
so that either
K K' + 4k
w’ <M(: wi) or > U (= w%/). (44¢)

The definite integral can then be evaluated to yield

1
S* S* = ., T | |
P 2kn\/1 —n=2 1

K' +2k — M'o?
= 2k '
The condition || >1 is equivalent to Eq. (44c), i.e., @ lies in the stop band. Because the
frequency of localized modes must lie in the stop band, Eq. (44d) holds true.
For localized modes, the frequency equation shown in Eqgs. (23) and (44d) is in agreement with
that given in Ref. [18].
(b) p = 2: For this case Eqgs. (26) and (27) become

> 1, (44d)

where

(44e)

K + 2k — Mo?
S (@) = R (450)
5 (K + 2k — Mw?)” — 2k* — 2k*cos 0
and
5 _1/“ K+ 2k — Mo? 46
S o (K 42k — Mao?)(K' + 2k — M'w?) — 2k? — 2k2 cos 0
K + 2k — Mw? 1
— , > 1, 45b
where
o 2 ! - 1,32
n:(KJer Mo )K' + 2k Mw)_l. (45¢)
2k?
One can show that the condition || > 1 is equivalent to
(0* — ol )@ —w3,) >0 (45d)
or
(0* — o})(0? — w3;)<0, (45e)

in which w;;, w;y, wyr and wyy are given in Eqs. (36a)—(36d).

Eqgs. (45d) and (45¢) lead to w<w;z or @ > wry and w y <w<w,, respectively. Therefore if
and only if w lies in the stop bands, implying that || > 1, the definite integral for f . exists. This
conclusion is the same as that for p = 1.

When o lies in the pass band, B approaches infinity. This phenomenon can be explained
from the physical meaning of B . Because B« i1s harmonic influence coefficient, if
approaches a natural frequency, the harmonic influence coefficient must approach infinity. But
when w is equal to a frequency given in Eq. (33), i.e., each M’-subsystem is located at the nodal
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point of the corresponding mode, fx« = 0. For the present case, when w = /(K + 2k)/M,

ﬁs*,s* - O
Substituting Eq. (45b) into Eq. (23) yields
2k?
4o =Kk —Mar VI Inl (46)
Eqgs. (46) and (45c) represent the frequency equation for localized modes in the considered system
with p = 2.
Introducing the non-dimensional parameters
M M, K, k K M’
@ =o', SM:ﬁd, usfd, bc= T=n 7=o0 (47)
into Eqs. (46) and (45¢), we have
F(Q*) = D(@), (48a)
where
F(Q%) = e Q% — ek, (48b)
2¢2
D) =—"C /1 —n2 48¢
Q) [+ 200 — 2 n (48¢)
and

y— (14 26c — Q)(o+ 28 —92%)

1. (48d)
282C

The number and magnitude of the frequencies for localized modes can be explained qualitatively
by using the graphic representation.

When all the parameters are given, the functions, y = D(Q?) and F(Q?), can be plotted against
Q2. The number of the points of intersection between the two curves is equal to the number of
localized modes, and the transverse co-ordinates of the intersection points represent the
magnitudes of the corresponding frequencies.

Let us consider a specific case, namely

M =2M, K =3K, k=01K (49a)
leading to
y=2, a=3 & =0.1. (49b)
Introducing Eq. (49a) into Eqgs. (36a)-(36d) gives
M
Qi = o, = = 1155051026, (50a)
M
Qi = ol % =12 (50b)
M
Q3 =0l = =16, (50c)

= 1.644948974. (50d)
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The function D(Q?) can be defined when @ lies in the stop bands, namely
Q< u<Q<Qr, Q> Qy.

The curve, D versus Q°, is plotted in Fig. 3, which is made up of three continuous and
monotonically decreasing curves, corresponding to the three stop bands. The straight lines, y =
F(Q?), corresponding to various disordered parameters, are also plotted in Fig. 3. By observation
from Fig. 3, it is clear that in either case of ¢x <0, &y =0 or ex =0, &y >0, two localized
modes with Q<Q;; and Q,y<Q<Q,; will occur, and in either case of ex >0, &, =0 or
ex =0, &y <0, one localized mode with Q > Q, will occur.

(c) p = 3: For this case, one can show that Egs. (26) and (27) lead to

(K 4 2k — Mw?)* — k?

D> ()= : (51a)
0 (K + 2k — Mw?)® — 3k*(K + 2k — M?) — 2k3 cos 0

and
P 1 [M(K 4+ 2k — Mo - K
ST 1 o 2k3(n — cos 0)
_ 22 _ 12
:(K+2k Moy —k 1 (51b)

2k n/1—n7
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where
n={(K + 2k — Mo**(K' + 2k — M'»?)
— IP[2(K + 2k — Mw?) + K' + 2k — M'o?*]} /2K (51c)
It can be proved that the condition || > 1 is again equivalent to w lying in the stop bands,

namely o<wi;, wip<o<wyr, wy<o<ws and o> wsy.
The frequency equation (23) can be expressed as

263
(K + 2k — Mw?)?* — k

By introducing the non-dimensional parameters shown in Eq. (47) into Egs. (52) and (51c¢), we
have

My — Ky = A n2  Inl>1 (52)

F(@) =D(@), Inl>1, (53a)
where
F(Q?) = ey Q% — ek, (53b)
283
D(Q*) = c 1 —pn2 53¢
O = e —y —a V! (53¢
and

n=1{(+2ec — P (a+ 2ec — y2%) — e2[2(1 + 2ec — Q) + a + 2ec — y°]} /262 (53d)

Consider the same system parameters as those shown in Eq. (49a). Introducing Egs. (40a), (40b),
(41a), (41b) and (49) into Egs. (43a)—(43f) results in

M
Q= & = 108074176, (54a)
M
Qo =0l —=11 54b
=Yg , (54b)
M
@, = 0}, & = 1269722437, (54c)
M
Q%U = w%U— = 1.3, (54d)
K
M
Q3 =0l & = 161925824, (54e)
M
Q3 =0l & = 1:630277563. (54f)

In the same way as before, the curve, y = D(Q%) with o = 3,7 = 2,¢¢ = 0.1, is plotted in Fig. 4.
This curve is made up of four sectional curves corresponding to the four stop bands:
Q<Qp, Qu<Q<Qrr, QHry<Q<Qs3; and Q > Qsy. Four straight lines, y = F(Qz), correspond-
ing to four sets of ¢x and ¢, are also plotted in Fig. 4. From Fig. 4, it can be observed that for
either case of ex <0, g5y =0 or ¢x =0, gy >0 three localized modes will occur and the
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corresponding frequencies lie in the first three stop bands and for either case of ex >0, &, = 0 or
ex = 0, ey <0, one localized mode with w > ws;y will occur.

7. Localized modes

When the natural frequency is found by solving Eq. (23), the corresponding mode can be
obtained from Egs. (21) and (23). Introducing Eq. (23) into Eq. (21), yields

XS:XS*&, s=s,s +1,5 +2, ..., (55a)
ﬁs*,s*

where Xy and X+ denote the amplitudes of the sth M’ and disordered subsystems, respectively.
The above equation can be rewritten as

Xotam = Xﬁﬁi m=0,+1,+2, ... (55b)
5% 5%
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and

1 [ cos mb ) p(w)
ﬁs +m,s 27'[/(; 1 "‘ (AK _ AMC{)2) Z(’(Q))de, m 0, L1, L& (SSC)

Eq. (55b) indicates the localized mode for M’-subsystems, where X« acts as an arbitrary constant
factor.
(a) p = 1: Substituting Eq. (26) with p = 1 into Eq. (55¢c) gives

1 [ cos m0 1
& * — — :—I
Pems n]ﬁ K 42k = M'a? — 2k oos0 20 = 210 (56)

where
I(m )zl/nMde m>1, m=0,+1,+2 (57a)
’n—non_cose H 71 > T Vs Ly L&y ey
K' +2k — M'e?

n= o . (57b)

It can be proved that I(m, n) possesses the following property:

I(l,n) _ I(2,n)

= ==l = 1=n2). (58)

10,n)  I(Ln)
Introducing Egs. (56) and (58) into Eq. (55b), we have
I(1,n)

Xp_| = Xy = X = XuC, 59

1 +1 10,1) ¢ (59a)
1(2,n) 2
Xp_o = Xgoyp = Xp ———= = X&7, 59b
2= Xoes2 = X om0 = Ko (59)
Xs*fm = Agerym = Xs*fm, m = 0, 1,2, cees (59C)
where

E=nl —v/1=n72), [n>1 (60)

is the attenuation constant of the localized mode.
It is obvious that ¢ and # are of the same sign, and |£| always less than one. & is an odd function
of n, as shown in Fig. 5.
These results for p = 1 are in agreement with those given in Ref. [18].
(b) p = 2: Introducing Eq. (45a) into Eq. (55¢) results in
1 [" (K + 2k — Mw?) cos m0 46
Poime =2 /0 (K + 2k — Ma?)(K' + 2k — M'w?) — 2k — 2k> cos 0

K+2k— Mw*1 [™ cosml K + 2k — Mo?
202 - /0 N —cosf 22 (m,n), (61a)
where
K+ 2k — Mo*)(K' + 2k — M'w?
712( + 2k o?)(K' + 2k w)—l. 61b)

2k?
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The definition of I(m,n) is the same as that shown in Eq. (57a) except that the definition of 5
must be Eq. (61b) instead of Eq. (57b).

The localized mode and its attenuation constant can be also expressed as Egs. (59a)—(59c) and
(60), respectively, in which # is defined as that shown in Eq. (61b).

When the frequency corresponding to the localized mode has been found the attenuation
constant can be calculated from Egs. (60) and (61Db).

(c) p = 3: Inserting Eq. (51a) into Eq. (55¢) yields

P _(K+2k—Ma)2)2—k21/“ cos mf 48
stm,st 243 7)o n—cos0
(K + 2k — Mw?)* — k2
- 243

1(m,n), (62a)
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where
n={(K + 2k — Mo*(K' + 2k — M'»?)
— IP[2(K + 2k — Mo?) + K' + 2k — M'o*]} /2K (62b)

The localized mode can be also expressed as that shown in Egs. (59a)—(59¢) in which the
attenuation constant ¢ is the same function of # as that shown in Eq. (60). But the functions # of
w?> for p=1,2,3 have different expressions, as shown in Egs.(57b), (61b) and (62b)
corresponding to p = 1,2 and 3.

When the natural frequency for localized mode is found, its attenuation constant can be
calculated by applying formulas (60) and (62b).

8. Conclusions

In the present study, the application of the U-transformation method has been extended from
the localized mode analysis of nearly periodic mass—spring systems to the same analysis of bi-
periodic mono-coupled mass—spring systems with a single disorder. In order to utilize completely
the property of bi-periodicity, the proposed analysis method requires the application of U-
transformation twice. The governing equation of natural vibration is uncoupled to form a set of
single-degree-of-freedom equations in terms of the harmonic influence coefficients. Then the
frequency equation and localized modes can be obtained.

Some specific bi-periodic systems with p = 1,2, 3 are taken as examples. In the two examples,
with p = 2 and 3, the degenerate phenomenon of pass bands is discovered, i.e., two pass bands
have merged into one. The conditions under what the degenerate phenomenon occurs are found
in explicit form.

It should be pointed out that the U-transformation method used in the present paper is also
applicable to the dynamic analysis of some two-dimensional bi-periodic systems with and without
disorders.
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