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1. Introduction

Classical ray theory allows physically attractive expansions of acoustic wave fields, and field
components with a well-defined angle-time arrival structure can be isolated. As a result, semi-
empirical scattering rules (such as Lambert’s law in underwater acoustics) can be applied
component-wise, and ray-based field representations often provide the most practical way of
computing scattering and reverberation. Infinite amplitudes at a smooth caustic can be avoided by
Airy-function corrections [1, Section 45.1; 2, Section 9-4] and diffraction rays [1, Section 54.4; 3],
can be introduced to represent the field in a shadow zone. Even with such improvements, however,
ray theory remains an approximation that is exact only at infinite frequency.
The travelling-wave expansion, obtained by a series expansion of a depth-dependent Green

function [4], has been suggested as a way to extend the useful field decomposition of ray theory to
finite frequencies in an exact way. Related hybrid ray-mode and ray-wavenumber-integration
techniques and codes are widely used [5–8]. The travelling-wave expansion works well when the
pertinent wavenumber integrals can be truncated to the propagating regime. As it stands,
however, it turns out that the travelling-wave expansion fails in isolating grazing-ray diffraction
beyond boundary-produced caustics as illustrated in Fig. 1. Here, the evanescent regime of
wavenumbers is important [9]. As a consequence, for example, reverberation levels in shallow
water with a downward-refracting sound-velocity profile will not be correctly modelled.
The aim of the present paper is to explain the mentioned failure and propose a suitable remedy.

Revisiting the travelling-wave expansion in Section 2, it is shown that the pertinent wavenumber
integrals do not in general converge at infinity because of exponential growth! To obtain
convergent integrals with corresponding physically sound field components, it is necessary to
recombine the integrand components. This is shown in Section 3. The recombinant travelling-
wave expansions that are proposed can be used for exact modelling of single (with only one

*Corresponding author.

E-mail addresses: sveni@foi.se (S. Ivansson), bishopjl@npt.nuwc.navy.mil (J. Bishop).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01430-X



interaction with the boundary, j ¼ 0 in Fig. 1) as well as multiple (j ¼ 1; 2;y in Fig. 1) grazing-
ray diffraction.
For single grazing-ray diffraction, Brekhovskikh [1, Chapter IX] and Pierce [2, Section 9-5]

have described how the shadow-zone field can be represented as a residues series, whose terms can
be interpreted physically as ray shedding by diffraction rays or creeping waves. Applications to
aeroacoustics and underwater acoustics can be found in Refs. [10,11], respectively. The results in
Section 3 allow a generalization to multiple grazing-ray diffraction for general sound-speed
profiles. Physically, ray contributions arise from wavenumbers of stationary phase while ray
shedding in the shadow zones arises from leaky modes (Section 3.2).

2. Revisiting the travelling-wave expansion

Mono-frequency acoustic wave propagation is considered with time dependence e�iot; o being
angular frequency. Denoting horizontal slowness by p; and horizontal wavenumber by k ¼ op;

Pðr; zÞ ¼
1

2

Z
N

�N

Gðz; pÞHð1Þ
0 ðoprÞo2p dp ð1Þ

synthetizes the pressure field at range r and depth z in a laterally homogeneous medium from its
wavenumber components [12]. There are several methods for computing the Green function GðzÞ
directly [12]. The travelling-wave expansion is needed, however, to extract directional field
components at finite frequencies. To obtain the expansion, the medium is artificially considered to
be locally homogeneous at certain specification depths, cf., Refs. [13, Chapter 6; 14, Section 1].
Reflection coefficients gAðpÞ and gBðpÞ may then be introduced for up- and down-going plane

Fig. 1. The solid line in this r–z diagram is a grazing ray (the ray grazes the surface) that starts from a source at depth

10 m on the z-axis. Downward refraction is caused by a decrease of the sound speed cðzÞ from 1:500 km=s at the surface
(depth z ¼ 0 m) to 1:480 km=s at the bottom ðz ¼ 80 mÞ; in such a way that 1=c2ðzÞ is a linear function. The dashed lines
for each j illustrate ray shedding, by horizontal displacements of the grazing ray at the surface, to produce single ðj ¼ 0Þ
and multiple ðj ¼ 1; 2;yÞ grazing-ray diffraction into the shadow zone for rays with j bottom bounces, that appears to

the right of the corresponding downward going segment of the grazing ray. (The shadow will not be reached by a true

ray, since a steeper one will be reflected at the surface and a less steep one will turn below the surface. For j ¼ 0; this is
well illustrated by Ref. [2, Fig. 9–17].)
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waves, respectively, and the Green function GðzÞ in Eq. (1) can be written, see Section 2.1 for
details,

GðzÞ ¼ ð1� gAgBÞ
�1

X4
i¼1

Gi;0ðzÞ ¼
X4
i¼1

XN
j¼0

Gi;jðzÞ; ð2Þ

where the Gi;jðzÞ ¼ ðgAgBÞ
jGi;0ðzÞ are component Green functions.

A standing-wave (normal mode) expansion appears as the residue contributions from the p such
that gAgB ¼ 1 (e.g., Ref. [14]), whereas a travelling-wave expansion [4] appears by applying the
geometric series for ð1� gAgBÞ

�1 as indicated. The index i is intended to separate upgoing and
downgoing waves at source as well as receiver, whereas the index j is thought of as a cycle number.
The implied decomposition of Pðr; zÞ becomes, with ‘generalized ray’ components Pi;j;

Pðr; zÞ ¼
X4
i¼1

XN
j¼0

Pi;jðr; zÞ; Pi;jðr; zÞ ¼
1

2

Z
N

�N

Gi;jðz; pÞH
ð1Þ
0 ðoprÞo2p dp: ð3Þ

With accurate numerical integration, this is intended to extend to finite frequencies the field
decomposition of classical ray theory (which reappears by applying WKBJ and stationary-phase
approximations).

2.1. Technical definitions

The Green function G in Eq. (1) satisfies the depth-separated wave equation

rðzÞ½r�1ðzÞG0ðzÞ�0 þ o2x2ðzÞGðzÞ ¼ fSðzÞ: ð4Þ

Here, cðzÞ and rðzÞ define the sound-speed and density profiles, xðzÞ ¼ ½1=c2ðzÞ � p2�1=2 , while
fSðz; pÞ is the source-strength function for a vertical source array on the depth axis. The Green
function becomes uniquely defined by the boundary conditions at the surface and at the bottom
(e.g., Ref. [15, Section 3.1.1]). Let FU ðzÞ and FLðzÞ be non-trivial solutions of the homogeneous
version of Eq. (4), with vanishing right-hand side, that fullfil the boundary condition at the
surface and at the bottom, respectively. For convenience, restriction will be made to receiver
depths z below all sources, implying that GðzÞ is proportional to FLðzÞ: The uppermost source
depth is denoted zs:
The reflection coefficients gA and gB are introduced in terms of two linearly independent

solutions F�ðzÞ and FþðzÞ of the homogeneous version of Eq. (4), where F� and Fþ should be
upgoing and downgoing in some sense, respectively. Specifically, F�ðzÞ þ gAFþðzÞ is required to be
proportional to FU ðzÞ; and FþðzÞ þ gBF�ðzÞ is required to be proportional to FLðzÞ: Hence,
W ðF� þ gAFþ;FU Þ ¼ 0 and W ðFþ þ gBF�;FLÞ ¼ 0; where the notation W ðH1;H2Þ is used for the
depth-invariant Wronskian

W ðH1;H2Þ ¼ r�1ðH1H
0
2 � H2H

0
1Þ ð5Þ

involving two arbitrary solutions H1 and H2 of rðzÞ½r�1ðzÞH 0ðzÞ�0 þ o2x2ðzÞHðzÞ ¼ 0: It follows
that

gA ¼ �
W ðFU ;F�Þ
W ðFU ;FþÞ

and gB ¼ �
W ðFL;FþÞ
W ðFL;F�Þ

: ð6Þ
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To be able to proceed in terms of Wronskians, the source information contained in the function
fSðzÞ needs to be reformulated. Let FU ðzÞ and FLðzÞ be defined, for all z between the surface and
the bottom, as the two unique solutions of Eq. (4) such that FU ðzÞ ¼ 0 for z above all sources
while FLðzÞ ¼ 0 for z below all sources. Apparently, rðzÞ½r�1ðzÞF0ðzÞ�0 þ o2x2ðzÞFðzÞ ¼ 0 where
FðzÞ ¼ FU ðzÞ � FLðzÞ; and Wronskians involving F can be defined. Since receiver depths between
the source depths will not be considered, the required source information is actually carried by the
function F: To see this, note that there are numbers a and b such that GðzÞ ¼ a½F�ðzÞ þ
gAFþðzÞ� þ FU ðzÞ ¼ b½FþðzÞ þ gBF�ðzÞ� þ FLðzÞ; and solve for a and b by forming Wronskian
relations with F� and Fþ: For z below all sources, it follows that

GðzÞ ¼
W ðF� þ gAFþ;FÞ

ð1� gAgBÞW ðF�;FþÞ
½FþðzÞ þ gBF�ðzÞ�; ð7Þ

and the Green function components according to Eq. (2), behind the field decomposition (3),
become

G1;jðzÞ ¼ W�1ðF�;FþÞW ðF�;FÞg
j
A gj

BFþðzÞ; ð8Þ

G2;jðzÞ ¼ W�1ðF�;FþÞW ðFþ;FÞg
jþ1
A gj

BFþðzÞ; ð9Þ

G3;jðzÞ ¼ W�1ðF�;FþÞW ðF�;FÞg
j
Ag

jþ1
B F�ðzÞ; ð10Þ

G4;jðzÞ ¼ W�1ðF�;FþÞW ðFþ;FÞ g
jþ1
A gjþ1

B F�ðzÞ: ð11Þ

The factors F� and Fþ indicate directionality at the receiver (upwards, downwards). By
reciprocity, the factors W ðF�;FÞ and W ðFþ;FÞ can be expected to indicate directionality at the
sources (downwards, upwards). Indeed, W ðF�;FÞ and W ðFþ;FÞ will be linear combinations of
F�;F 0

� and Fþ;F 0
þ; respectively, as evaluated at the source depths. To see this, consider the case

with a single point source at depth zs and evaluate the depth-invariant Wronskians at zsþ; noting
that FðzsþÞ ¼ FU ðzsþÞ; F0ðzsþÞ ¼ F0

U ðzsþÞ where FU ;F0
U have source-strength dependent step

discontinuities at zs: The general case follows by superposition.

2.2. Directional coupling and loss of unidirectionality

It is unfortunately not possible to subdivide a field in an inhomogeneous medium into
directional components in a canonical way [16]. As a choice, directionality is assigned at particular
specification depths [9]: z� for F� and zþ for Fþ: The natural restriction is made that z�pzþ:
Considering the medium as locally homogeneous at z�; a solution close to z� of the

homogeneous version of Eq. (4) will be a linear combination of expð�ioðz � z�Þxðz�ÞÞ and
expðþioðz � z�Þxðz�ÞÞ: These governing exponentials prescribe that a locally upgoing F� should
be defined, for each p; according to F�ðz�Þ ¼ 1; F 0

�ðz�Þ ¼ �ioxðz�Þ: Likewise, an Fþ locally
downgoing at zþ should be defined by FþðzþÞ ¼ 1; F 0

þðzþÞ ¼ þioxðzþÞ: However, the upgoing/
downgoing character of F�=Fþ will in general be corrupted away from z�=zþ by internal
reflections, cf., [13, Sections 3.2,3.3,6.3]. As a result, directional coupling is anticipated, meaning
that each Pi;j will contain energy that should preferably have appeared in other components.
Different choices of specification depths produce different distributions of internal reflections and
different expansions (albeit with a common correct sum for the total field), and the field
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decomposition is inherently non-unique. Upon restriction to sound-speed profiles with exactly one
local minimum (which may be at the surface or at the bottom), one can formulate

Proposition 1. To avoid trapped modes [17], which would generate directional coupling at long

ranges, z� and zþ should both be located at the depth of minimum sound speed.

Proof. Fig. 2 a illustrates a sound-speed profile with a well-defined local minimum denoted zmin:
According to the definition of gA and gB in Eq. (6), residue or mode-type singularities appear in

Fig. 2. Sound-speed profile for an original medium (a) and some modified ones (b–d) relevant to an understanding of

possible trapped-mode contamination for the travelling-wave field components. In (b–d), the modification is indicated

by the dotted curve, which may be for a constant (as shown) or ‘1=c2 linearly decreasing’ (in the outward direction)

sound speed in a terminating half-space. A sound channel with mode trapping appears in (b) and (c), for z�ozmin and

zþ > zmin; respectively. Trapped modes do not exist for the modified media in panel (d), for which both specification
depths have been located at the point zmin of minimum sound speed.
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Eqs. (8)–(11) at points p where W ðFU ;FþÞ or W ðFL;F�Þ vanishes. The W ðFL;F�Þ ¼ 0
singularities correspond to modes for the medium modified above z� in accordance with
upper boundary conditions represented by F�: For z�ozmin; see Fig. 2b, it would support
trapped modes with mode function F�ðzÞ; and P3;0 would (by Eq. (10)) be contaminated at long
ranges by standing-wave energy that should preferably have been distributed exclusively
among higher-j components. Similarly, the W ðFU ;FþÞ ¼ 0 singularities correspond to modes
for the medium modified below zþ in accordance with lower boundary conditions represented
by Fþ: For zþ > zmin; see Fig. 2c, trapped modes would appear and P2;0 would be
contaminated.
It follows that the specification depths should be chosen such that z�Xzmin and zþpzmin:

Since z�pzþ is required, z� ¼ zþ ¼ zmin follows. The corresponding modified media are
shown in Fig. 2d. Having monotonous sound-speed profiles, they do not support trapped
modes. &

An alternative possibility for defining F� or Fþ would be to consider the profile as locally ‘1=c2

linear’ at z� or zþ: F�ðz�Þ or FþðzþÞ; respectively, could then be defined by Airy functions in order
to get a purely outgoing wave far out in the implied half-space. To avoid trapped-mode
contamination, however, the sound speed should not increase in the outward direction.

2.3. Convergence of the slowness integrals

Choosing z� ¼ zþ; as required by Proposition 1, is unfortunately not possible (unless zs ¼ z).
Remarkably, the slowness integrals in Eq. (3) would diverge at infinity.

Proposition 2. Assuming r > 0; and disregarding constant sound-speed profiles, the necessary and
sufficient condition for convergence at infinity of the integral defining P1;0 becomes

jzs � z�j þ jzþ � zjpzþ � z�: ð12Þ

Recall that zs is the uppermost source depth and that z is below all sources.

Proof. From Eqs. (3) and (8), the integrand for P1;0ðr; zÞ will be proportional to

W�1ðF�;FþÞF�ðzsÞFþðzÞH
ð1Þ
0 ðoprÞp ð13Þ

for a single symmetric point source at depth zs: For simplicity, constant density is assumed and
F�;Fþ are defined at z�; zþ by local homogeneity. It follows from the WKBJ approximation that
F�ðzþÞEFþðz�ÞEexpðopðzþ � z�ÞÞ for large p: Forming the Wronskian at z� or zþ;

W�1ðF�;FþÞE�
r
2op

e�opðzþ�z�Þ and F�ðzsÞBeopjzs�z�j; FþðzÞBeopjzþ�zj: ð14Þ

Putting things together, for large positive p; the essential integrand factor will appear as

�
r
2o
e�op½ðzþ�z�Þ�jzs�z�j�jzþ�zj�H

ð1Þ
0 ðoprÞ; ð15Þ

and condition (12) follows. The extension to a vertical source array is straightforward. &
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Assuming Eq. (12), it appears from computational tests that gA and gB are small enough to
make the remaining Pi;j well-defined and series (3) convergent. Although it remains to give a
stringent proof, theoretical arguments can also be given to make this plausible. In the propagating
regime, the reflection-coefficient character of gA and gB will make their product small. For large p

and ‘local homogeneity’ specification, smallness estimates are derivable from the WKBJ
approximation in the evanescent regime.
It may be inappropriate to choose specification depths that do not enclose the source and

receiver depths, even if Eq. (12) is fullfilled. If the sound speed increases above z�; a high-frequency
F�ðzsÞ will suddenly become very large for zs above z� when p is increased through 1=cðz�Þ: As p is
increased further, the growth of F�ðzsÞ will indeed be counteracted by the decrease of W�1ðF�;FþÞ
according to Eq. (14). However, W�1ðF�;FþÞ need not be very small for p close to 1=cðz�Þ if the
maximum sound speed between z� and zþ is at z�; and P1;0ðr; zÞ could become anomalously large.
If the sound speed increases below zþ; anomalies may likewise appear for z below zþ:

3. Recombinant travelling-wave field decompositions

The clue to resolving the conflicting requirements of Propositions 1 and 2 is to combine
terms of different i types from Eqs. (8)–(11). The notation G12;j ¼ G1;j þ G2;j; etc., is introduced
and restriction is still made to z below all sources. Three different recombinant decomposi-
tions will be considered. Concerning G12;j and G34;j it follows, since F� þ gAFþ is proportional
to FU ;

G12;jðzÞ ¼ W�1ðFU ;FþÞW ðFU ;FÞg
j
Ag

j
BFþðzÞ; ð16Þ

G34;jðzÞ ¼ W�1ðFU ;FþÞW ðFU ;FÞg
j
Ag

jþ1
B F�ðzÞ: ð17Þ

Concerning G13;j and G24;j; it follows that

G13;jðzÞ ¼ W�1ðF�;FLÞW ðF�;FÞg
j
Ag

j
BFLðzÞ; ð18Þ

G24;jðzÞ ¼ W�1ðF�;FLÞW ðFþ;FÞg
jþ1
A gj

BFLðzÞ: ð19Þ

Concerning G1234;j ¼ G1;j þ G2;j þ G3;j þ G4;j; finally,

G1234;jðzÞ ¼ W ðF�;FþÞW�1ðFU ;FþÞW ðFU ;FÞg
j
Ag

j
BW�1ðF�;FLÞFLðzÞ: ð20Þ

For the recombinant-type integrals, the notation P12;j ¼ P1;j þ P2;j; etc., is used. An important
point is that, under the conditions stated below, these quantities can be computed directly, even
when the terms of the original decomposition (3) are divergent or are anomalously large such that
loss of numerical precision by cancellation would result at an explicit addition.

Proposition 3. The condition for convergence at infinity of the slowness integrals is relaxed to

jzþ � zjpzþ � zs ð21Þ

for the P12;j; P34;j decomposition (16)–(17), and to

jzs � z�jpz � z� ð22Þ
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for the P13;j;P24;j decomposition (18)–(19). The slowness integrals for the P1234;j decomposition (20)
converge at infinity for any choice of specification depths (such that z�pzþ).

Proof. The proof of Proposition 2 is readily adapted by noting that

FU ðzÞBeopz and FLðzÞBeopðzb�zÞ ð23Þ

for all z between the surface at depth 0 and the bottom at depth zb: &

Corollary 4. Now locate both specification depths at the point zmin of minimum sound speed in
accordance with Proposition 1.

(i) The P12;j;P34;j decomposition is useful at least when z; and then also zs; are above zmin:
(ii) The P13;j;P24;j decomposition is useful at least when zs; and then also z; are below zmin:
(iii) The P1234;j decomposition is always well defined.

Proof. Proposition 3 is applied with the observation in mind that was made in the last paragraph
of Section 2.3. The implication is that zs should preferably not be above z� in connection with
Eq. (18) if the sound speed increases upwards through z�; and that z should preferably not be
below zþ in connection with Eq. (16) if the sound speed increases downwards through zþ: &

3.1. Examples

The ‘1=c2 linear’ downward refracting profile from Fig. 1 is chosen, with sound speed
decreasing from 1:500 km=s at the pressure-release surface ðz ¼ 0 mÞ to 1:480 km=s at the flat
bottom ðz ¼ 80 mÞ: Below z ¼ 80 m; there is a homogeneous fluid half-space with density
2 kg=dm3; velocity 1:5 km=s; and absorption 0:66 dB/wavelength. The source and receiver depths
are 10 and 80 m; respectively, and the frequency is 3 kHz: With the recombinant P12;j;P34;j
decomposition (16)–(17), z� and zþ can now both be located at the bottom, as prescribed by
Proposition 1. A propagator-matrix scheme [18] is used for numerical computations.
The results are nicely behaved, see Fig. 3. Each field component decreases steadily beyond its

caustic, cf., Fig. 1, at least down to levels of about�200 dB; where numerical noise appears. Thus,
the cycle 0 ðj ¼ 0Þ components drop off sharply beyond the boundary-produced caustic at 1:3 km;
the cycle 1 ðj ¼ 1Þ components beyond 3:25 km (1:3 km plus one cycle distance 1:95 km), the cycle
2 ðj ¼ 2Þ components beyond 5:2 km; etc. The only clear difference between the P12;j and P34;j
fields is a reduction of amplitude for the latter caused by reflection loss at the bottom. The
oscillations well ahead of the caustics in Fig. 3 are caused by interference among up- and down-
going waves that is not resolved when i types have been combined. However, the original
decomposition (3) with appropriately chosen specification depths works at these close ranges.
An example with a sound channel, see Fig. 4a, is also considered. The subbottom

(homogeneous half-space) and frequency ð3 kHzÞ of the previous example are retained. Source
and receiver depths are first taken at 10 and 70 m; respectively. The total-field transmission loss as
a function of range will get a peak structure caused by refraction back and forth in the sound
channel and, see Fig. 4b, the recombinant P1234;j decomposition (20) successfully distributes

S. Ivansson, J. Bishop / Journal of Sound and Vibration 262 (2003) 1223–12341230



physical ray energy into terms with appropriate cycle numbers. In accordance with Proposition 1,
both specification depths z� and zþ have been placed at the depth of minimum sound speed
ð40 mÞ: This choice is critical. With the receiver depth raised to 20 m; the recombinant P12;j;P34;j

Fig. 3. Transmission loss (re 1 m) for the recombinant-decomposition components P12;j and P34;j for the downward

refracting medium with z� ¼ 80 m (local homogeneity) and zþ ¼ 80 m (local ‘1=c2 linearity’). (a), (b) and (c) concern

the cycle numbers j=0, 1 and 2, respectively. The coherent sum P1234;j of the P12;j and P34;j field components is also

shown in each case.
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decomposition (16)–(17) can be applied (Corollary 4). The nicely behaved results are shown in
Fig. 4c and d. The peaks are displaced in range in the way expected by classical ray theory.

3.2. Leaky-mode representations of grazing-ray diffraction

By accounting for residue contributions from poles (modes) and avoiding to cross branch cuts,
the slowness integration path along the real axis for P12;j; etc., cf., Eq. (3), can be shifted into the
upper half-plane. Ignoring the typically small branch-cut integral contributions, a discrete set of

Fig. 4. An example with a sound channel. Transmission loss (re 1 m) is shown for recombinant-decomposition

components with ‘local homogeneity’ specification of F�;Fþ at z� ¼ zþ ¼ 40 m: (a) The sound-speed profile. (b) P1234;j
according to Eq. (20) for source and receiver depths at 10 and 70 m; respectively. (c and d) P12;j according to Eq. (16)

and P34;j according to Eq. (17), respectively, when the receiver depth has been changed to 20 m:
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mode contributions remains for each recombinant-type field component. The corresponding
residues series may diverge at close ranges, but the representation is valid close to and beyond the
shadow boundary. Assuming that z� and zþ are both located at the point of minimum sound
speed, trapped modes are avoided (Proposition 1) and all modes are leaky. By Eqs. (16)–(20), they
arise from zeros of W ðFU ;FþÞ and/or W ðFL;F�Þ; cf., Fig. 2d. Components with cycle number
jX1 typically have higher order poles caused by the additional singularities from gA and gB; see
Eq. (6).
For the example in Fig. 3, without W ðFL;F�Þ ¼ 0 modes, W ðFU ;FþÞ ¼ 0 modes arise from the

zeros on the negative axis for the Airy function. An infinite sequence of leaky-mode slownesses
appears in the first quadrant, starting close to the surface slowness 1=1:500 s=km and moving out
to infinity in the direction argðpÞ ¼ p=6 asymptotically. It appears [19] that some 10 leaky modes
suffice for representing each P12;j; etc., in Fig. 3 close to and beyond its shadow boundary.
Leaky modes are thus appropriate for a travelling-wave representation of these shadow-zone

fields. The strictly positive imaginary part for the modal slowness p causes an exponential decrease
with range r of the pertinent Hankel-function factor, suggesting a creeping-wave interpretation
with ray-shedding loss. The shadow boundary appears in depth where this decrease with range is
balanced by the exponential growth or decay of the leaky-mode amplitude.
For the sound channel example in Fig. 4, the crucial W ðFU ;FþÞ ¼ 0 mode slownesses will again

appear close to the grazing-ray slowness 1=1:500 s=km in the first quadrant. Again, for each
recombinant-decomposition field component, some 10 leaky modes suffice for shadow-zone
representation and for a good tie to the closer region, where the original expansion (3) is adequate.
In this case, there are W ðFL;F�Þ ¼ 0 modes as well. However, they are not related to the grazing-
ray diffraction from the surface and they are not relevant for the P12;0 component.

4. Conclusions

The terms of the traditional travelling-wave expansion of the pressure field in a laterally
homogeneous acoustic medium are not well defined, since the corresponding slowness integrals are
typically divergent at infinity. Convergent integrals appear by allowing different specification depths
for up- and down-going waves, such that the source and receiver depths are enclosed. The resulting
travelling-wave expansion is useful at close ranges for isolating generalized-ray components. It fails,
however, for weak shadow-zone fields that cannot be represented by stationary-phase (or related)
contributions, because of trapped-mode contamination at the longer ranges.
By combining the terms, recombinant expansions have been derived that allow useful travell-

ing-wave representation of the problematic shadow-zone fields, exactly as well as approximately
by a limited number of leaky modes. Up- and down-going waves can now be specified at the depth
of minimum sound speed, and trapped-mode contributions are avoided. The shadow boundary
appears where the leaky-mode amplitude is balanced by the exponential decrease with range of
the Hankel-function factor. At close ranges, the leaky-mode series for each recombinant-type field
component may diverge, but it can be tied to the corresponding generalized-ray components
there.
Apart from its intrinsic interest, a travelling-wave field representation by a limited number of

generalized-ray and leaky-mode terms is useful in connection with computation of scattered fields.
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Semi-empirical scattering rules as well as more rigorous computations can be applied term-wise. A
nice by-product of the presented analysis is a generalization of results for single grazing-ray
diffraction, as described in Refs. [1, Chapter IX; 2, Section 9-5], to multiple grazing-ray diffraction
for general sound-speed profiles.
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