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Abstract

The present work aims at contributing to the investigation of methods to solve some classes of problems
of acoustic propagation in thermo-viscous fluids, in unbounded or bounded media. The focus here is on
thermal and vortical diffusion at the boundaries, which have to be considered for an accurate description of
the acoustic field in small fluid-filled cavities and ducts. Existing boundary element or finite element
acoustic software does not include these phenomena, as they are not compatible with the basic equations
involved. A methodology is given to solve such problems when using this software, introducing a hybrid
method which combines both numerical solutions and analytical solutions (for the fields inside the
boundary layers). A detailed application is presented to validate the process using a boundary elements
method.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Acoustic propagation within a homogeneous thermo-viscous fluid-filled medium at rest,
unbounded in all directions, involves reactive and absorbing processes which can be characterized,
in the frequency domain, by a complex wavenumber, whose imaginary part is proportional to the
shear and bulk viscosity coefficients and the heat conduction coefficient (it can also include
dissipation processes due to molecular relaxation using the appropriate complex specific heat
ratio [1]).
In a bounded domain (duct or cavity), the reactive and absorbing processes at rigid boundaries

arise from interactions between the acoustic movements and both the entropic movement
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(diffusion of heat) and the vortical movement (diffusion of shear waves) which are created on the
boundary walls, pumping energy from the acoustic wave. The entropic and vortical perturbations
diffuse into the medium in direction normal to the boundary (which is a consequence of the
uniform boundary conditions), and die out before reaching the opposite wall (provided that the
local curvature and distance between the walls are large enough with respect to the boundary
layers thicknesses). In these situations, the absorption of acoustic waves outside the boundary
layers can frequently be characterized, in the frequency domain, by the imaginary part of a
complex wavenumber which, in most cases, will be proportional to the square root of the shear
viscosity coefficient as well as that of the heat conduction coefficient [1].
A somewhat different approach is needed in very small cavities and narrow ducts, where one or

two of the dimensions are of similar magnitude to the boundary layers thicknesses. In these
situations, which can be found in numerous acoustic devices (more particularly electroacoustic
devices), the heat diffusion (entropic movement) and the shear wave diffusion (vortical
movement) have amplitudes of the same order of magnitude as the acoustic wave itself (which
acts on the wall as a source for the entropic and vortical movement). In these circumstances, the
approach must involve a precise description of the particle movement inside the boundary layers.
This particle movement can be expressed in terms of a superposition of three kinds of
components: first, the original wave (which provides energy), second, thermal and viscous
dissipation in the form of correction factors added to the acoustical wave function, and third,
diffusion of heat and shear waves also described by means of additive functions [2]. Most of the
works devoted to this class of problems take an approach of dividing the cavity into separable
shapes, then providing for each an appropriate analytical solution of the basic linear differential
equations which govern acoustic, entropic and vortical movements (integral equations not being
available yet). Examples of such approaches are given in References [3,4] and in other papers
referenced in their bibliographies.
On the basis presented above, in order to secure explicit solutions of problems which need to

combine numerical (using boundary element (BEM) or finite element (FEM) commercial
software) and analytical solutions (which is the aim of the present paper), three main classes of
problems will be considered, which depend on the nature of the domain considered: (i) unbounded
domains; (ii) domains of arbitrary shape where the distance between the walls is large compared
to the boundary layers thicknesses and (iii) domains where one or two dimensions are of the same
order of magnitude as the boundary layers thicknesses. The hybrid method and its numerical
implementation presented here is applicable to both unbounded or bounded domains, the only
difference being the mesh definition when using BEM (Section 3.1). The application to a large
waveguide illustrates an example of acoustic problems of the second class, but the method and the
numerical procedure is exactly the same when applied to exterior problems. The third class
requires adapted models; the case of capillary slots and tubes is presented in Section 2.2.
The motivation to proceed with the derivation of relevant methods to solve these kinds of

problems arises from the growing demand for numerical methods for calculating acoustic fields in
a wide range of devices and for new applications. More particularly, there is a strong motivation
for introducing into the numerical modelling both the absorption and the reaction resulting from
viscous and thermal effects, especially within the boundary layers. When taking into account the
reactive and absorbing phenomena, and in the case where the geometry of the bounded domains is
not separable, an integral description of the basic equations (including Stokes–Navier equation
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and conduction of heat equation) would be desirable, especially when existing software can be
adapted.
Over the last 10 years, theoretical activities on the subject provide a relevant global formulation

which would be able to satisfy the requirements mentioned above for describing the acoustic fields
in thermo-viscous fluids. In publications which relate to this subject one finds: (i) the pioneered
works of Dokumaci which lead to both a modelling of viscous boundary layers at the boundaries
using a boundary elements method [5] and a modelling of heat conduction effects [6]; (ii) the
works of Cummings [3] and Beltman et al. [4] which uses numerical methods, based on the set of
differential equations dedicated to this kind of problem, to model thin layers of viscous fluid
trapped between parallel walls and (iii) that of Karra et al. which establishes a tridimensional
integral formulation for a non-viscous but heat conducting fluid [7,8].
The aim of the present work is to describe a procedure for solving boundary acoustic problems,

making use of existing boundary or finite element acoustic software which does not include the
viscous and thermal phenomena both in the bulk of the fluid and inside the boundary layers. The
domain considered may be either open or closed and may have, or not, dimensions of the order of
magnitude of the boundary layers thicknesses.
The basis for this formulation is a hybrid method that combines numerical and analytical

solutions. It provides both a global numerical solution and also a local (inside the boundary
layers) high-resolution analytical solution which are combined formally by matching, at the
boundary layers interfaces with the medium, to construct an accurate combined solution. For this,
the length scale for the global problem must be larger than the scale for the local problem in the
boundary layers.
The local region associated with the boundary layers is treated separately as a high-resolution

local problem to capture the small scale, rapid spatial variations. This scale separation allows the
high-resolution analytical problem to be solved with simplified geometry. Outside the boundary
layers region both solutions, the large-scale numerical solution and the high-resolution analytical
solution, must achieve a satisfactory mathematical overlap so that the transition zone between the
local and global solutions is accurate.
The method is applied in Section 3 to calculate the acoustic pressure field in a thermo-viscous

fluid-filled large tube, using a classical BEM code (used in industry) and compare with the
corresponding analytical solution, other interesting applications being beyond local available
computing capacity.

2. Acoustic fields in thermo-viscous fluid-filled bounded media

2.1. Acoustic, entropic and vortical movements

2.1.1. Basic formulation

The variables describing the dynamical and thermodynamical state of the fluid are the pressure
variation p; the particle velocity v; the density variation r0; and the temperature variation t: The
parameters which specify the properties and the nature of the fluid at rest are (i) the ambient
values of the same quantities (respectively P0; V0 ¼ 0; r0 and T0) and (ii) the coefficient of shear
viscosity m; the bulk viscosity coefficient Z; the coefficient of thermal conductivity l; the heat
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coefficients at constant pressure and constant volume per unit of mass CP and CV ; respectively,
the specific heat ratio g ¼ CP=CV ; the increase in pressure per unit increase in temperature at
constant density #b ¼ P0ð@P=@V Þr; and the adiabatic speed of sound c0: The characteristic lengths
are defined as cv ¼ ð4

3
mþ ZÞ=ðr0c0Þ; c

0
v ¼ m=ðr0c0Þ and ch ¼ l=ðr0Cpc0Þ:

The particle velocity v is written as the sum of the laminar acoustic velocity va; which includes
(or not) both viscous and thermal effects in the bulk of the domain, the laminar thermal velocity
vh and the vortical velocity vv: The thermal and vortical velocities are negligible in comparison
with the laminar acoustic velocity in the bulk of the whole domain considered, except inside the
boundary layers near the walls.
On these walls, assumed here to be perfectly rigid, the particle velocity and the temperature

variation (sum of the acoustic ta and the entropic th temperature variations) vanish, namely
va þ vh þ vv ¼ 0 and ta þ th ¼ 0; and moreover, because the thermal and vortical velocities
created on the boundaries by the acoustic perturbation are directly expressed in terms of diffusion
processes along the inward normal to the wall, these velocity components vh and vv die out over a
very short distance from the wall (i.e., the boundary layer thicknesses denoted, respectively, dh and
dv). Hence, assuming that these thicknesses are much lower than the dimensions of the domain
considered (unbounded or bounded problems of the first and second classes mentioned in the
introduction), the harmonic acoustic pressure field pa0 outside the boundary layers, of time
dependence eiot (angular frequency o), is solution of the set of equations

ðDþ k2
aÞpa0 ¼ 0 in the domain considered; ð1aÞ

@upa0 ¼ 0 on the boundaries: ð1bÞ

The dissipative effect in the bulk of the domain is included in the well-known approximate
(discarding the second order term c2vh) complex wavenumber ka ¼ k0ð1� ði=2Þk0cvhÞ (Eq. (1a)),
where cvh ¼ cv þ ðg� 1Þch and k0 ¼ o=c0:
The vortical and entropic movement being negligible in the bulk of the domain, the temperature

variations and the acoustic velocity are given, respectively, by

ta0 ¼ ½ðg� 1Þ=ðg #bÞ�pa0; ðadiabatic relationshipÞ; ð2Þ

and

va0 ¼ ½i=ðr0oÞ�=pa0; ðEuler equationÞ: ð3Þ

The acoustic pressure pa0; the temperature variation ta0 and the particle velocity va0 are
considered below as the given external boundary expressions (outside the boundary layers) for the
calculation of the velocity v and of the temperature variations t near a wall (inside the boundary
layers).

2.1.2. Equations of motion near the boundaries
The linear equations which give an accurate description of the small amplitude disturbances

inside the viscous and thermal boundary layers must satisfy several assumptions in order to avoid
overly intricate formulations, namely: (i) as the pressure variation can be assumed constant over
the thermal and viscous boundary layer thicknesses dh and dv; respectively (because the
wavelength is much greater than these thicknesses), the acoustic pressure p is approximated by its
zero order expansion pa0 (with respect to the very small admittance b equivalent to the boundary
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layers; Eq. (14b)) ðpEpa0Þ and the u-component (u inwardly directed) vu of the particle velocity v is
much lower than its component vw parallel to the wall, that is the flow is assumed to be essentially
tangential to the wall and then, in a first approximation, the Navier–Stokes equation is substituted
by the Hagen–Poiseuille equation for the vw-components tangents to the wall, the normal
component of the velocity vu being, nevertheless, taken into account in the conservation of mass
equation to assume the volume flow conservation; (ii) spatial variations in normal direction u of
both the velocity v and the temperature variation t are much greater than spatial variations in the
tangential directions and hence the spatial variations of these quantities in the tangential
directions can be neglected in the Navier–Stokes equation and in the Fourier heat conduction
equation. Therefore, the complete set of equations and boundary conditions governing the fluid
motion inside the boundary layers, involving these approximations, is straightforwardly obtained,
leading to, for a harmonic perturbation [1,9]:

for the w-component of the particle velocity v

ð1þ ð1=k2
v Þ@

2
uuÞvwðu;wÞ ¼ ði=r0oÞ=wpa0ðwÞ ð4aÞ

with

vwðu ¼ 0Þ ¼ 0 and vwðu > dvÞ ¼ ði=r0oÞ=w pa0 ð4bÞ

for the temperature variation t

ð1þ ð1=k2
hÞ@

2
uuÞt ¼ ððg� 1Þ=g #bÞpa0 ð5aÞ

with

tðu ¼ 0Þ ¼ 0 and tðu > dhÞ ¼ ððg� 1Þ=g #bÞpa0 ð5bÞ

for the u-component of the particle velocity ðu inwardly directed)

ior0 þ r0=v ¼ 0 ð6aÞ

with

r0 ¼ ðg=c20Þðpa0 � #btÞ and vuðu ¼ 0Þ ¼ 0: ð6bÞ

In these equations, kv ¼ ð1� iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0=ð2c0vÞ

p
; kh ¼ ð1� iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0=ð2chÞ

p
; and u ¼ 0 means ‘‘on the wall

considered’’ (u being normal to the wall, inwardly directed), and the time dependence eiot is
implicitly included in the factor pa:

2.1.3. Solutions for the acoustic field

The regular solutions of this set of Eqs. (4)–(6) are the appropriate results that are needed to
solve boundary problems, making use of post-processing methods to provide these results inside
the boundary layers beyond the results for the acoustic pressure pa0 obtained from a numerical
method. These solutions are straightforwardly obtained from this set of equations, step by step,
leading to simple expressions for vw; t and vu; respectively.
The w-component vw of the particle velocity v; solution of Eq. (4a) subject to the boundary

conditions (4b), is given by

vw ¼ ði=r0oÞ=w pa0ð1� e�ikvuÞ: ð7Þ
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In the same manner, the temperature variation t is solution of Eqs. (5), leading to

t ¼ ððg� 1Þ=g #bÞpa0ð1� e�ikhuÞ; ð8Þ

where the factor ðg� 1Þ=ðg #bÞpa0 is the adiabatic temperature variation ta0:
Finally, the solution for the normal component vu of the particle velocity can be obtained from

the conservation of mass equation (6a) in the following manner. First, invoking Eq. (6b) and
solution (8) for t yields

r0 ¼ ð1=c20Þpa0½1þ ðg� 1Þe�ikhu� ð9Þ

Second, the divergence operator is split into two parts =v ¼ @uvu þ =wvw; where =wvw is expressed
as, using solution (7) for vw;

=wvw ¼ ði=r0oÞ=w=wpa0ð1� e�ikvuÞ ð10Þ

and then invoking Eq. (1a), the operator =w=w; acting on pa0; is expressed either as (�k2
w) where

kw is the tangent wavenumber associated to the acoustic field pa0 or as ½�ð@2uu þ k2
aÞpa0� which is the

propagation equation (1a), depending, respectively, on it is associated or not to the factor e�ikvu

which vanishes for u > dv ¼
ffiffiffi
2

p
=jkvj (such choice permit below to obtain an expression for vu

which is solution both inside and outside the boundary layers).
Then using Eqs. (9), (10) and these last expressions for =w=w; and assuming that kaEk0; the

conservation of mass equation (6a) leads to the following differential equation for the last
unknown vu:

@u vu ¼
i

r0o
@2uupa0 �

k2
w

k2
0

e�ikvu þ ðg� 1Þe�ikhu

� �
io
r0c

2
0

pa0: ð11Þ

Taking into account that ð@upa0ÞE0 for uodv and vuðu ¼ 0Þ ¼ 0 (6b), the integration of this last
equation from u ¼ 0 to every value of u greater or lower than the viscous and thermal boundary
layers thicknesses (dh and dv) yields [2]

vu ¼
i

r0o
@upa0 �

k2
w

k2
0

1

kv

ð1� e�ikvuÞ þ
g� 1

kh

ð1� e�ikhuÞ
� �

k0

r0c0
pa0: ð12Þ

The u-component (12) and w-component (7) of the vortical ðvvÞ and thermal ðvhÞ particle
velocities are given, respectively, by the factors involving e�ikvu and e�ikhu; respectively. The sum of
the other factors represent the acoustic velocity in the thermo-viscous fluid. Especially, the u-
component of the acoustic velocity is given by

vau ¼ ði=r0oÞ@upa0 � ððk2
w=k2

0Þð1=kvÞ þ ðg� 1Þ=khÞðk0=r0c0Þpa0: ð13Þ

In the right side of this relationship, the first term is negligible inside the boundary layers and
the second one is negligible outside the boundary layers.

2.1.4. Hybrid method to solve the problem

The definition of the pressure variation pa0 (1a) implies that its normal derivative vanishes on
the boundary (@upa0 ¼ 0 for u ¼ 0). It follows that Eq. (13) is an admittance-like boundary
condition, namely

�r0c0vau ¼ bpa0; ð14aÞ
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where

b ¼ k0ðk2
w=k2

0kv þ ðg� 1Þ=khÞ ð14bÞ

is a small admittance which is appropriate to express adequately the viscous and thermal
dissipative and reactive processes near the rigid walls (the dissipative process in the bulk of the
domain being accounted for in the complex wavenumber ka). Therefore relevant fundamental
equations and solutions which govern the acoustic field (denoted pa) inside the bulk of the domain
considered can be derived from this last result by assuming that the difference ðpa � pa0Þ is one
order of magnitude lower than pa (the function pa0 can be considered as a zero order expansion of
the function pa with respect to the small quantity b) as follows:

ðDþ k2
aÞpa ¼ 0 in the bulk of the domain; ð15aÞ

ð@u � ik0bÞpa ¼ 0 on the boundaries; ð15bÞ

where

kaEk0ð1� ði=2Þk0cvhÞ; ð15cÞ

b ¼ ½�r0c0vau=pa�u¼0 ¼ k0ðk2
w=k2

0kv þ ðg� 1Þ=khÞ: ð15dÞ

Then, making use of this acoustic pressure field pa instead of the Neumann acoustic field pa0; the
acoustic field inside the boundary layers is always given by the set of Eqs. (7)–(9), where pa0 can be
replaced by pa; for the variables vw; t and r0; respectively, the solution for the normal component
of the particle velocity vu being given now by

vuðuodv; dhÞ ¼ vau þ
k2

w

k2
0

1

kv

e�ikvu þ
g� 1

kh

e�ikhu

� �
k0

r0c0
pa ð16aÞ

with

vau ¼ �ðb=r0c0Þpa; ðinside the boundary layersÞ: ð16bÞ

The set of equations and solutions (15), (7)–(9) and (16) is the fundamental problem to solve,
using numerical method to calculate pa and a post-processing process to calculate in detail the
acoustic field inside the boundary layers, when the dimensions of the domain are everywhere
greater than the boundary layer thicknesses.
Nevertheless, it is noteworthy that the small admittance b depends on the factor ðk2

w=k2
0Þ (which

characterizes the direction of the acoustic velocities on the wall for the non-evanescent modes), so
the admittance b is unknown. The best way to obtain approximate values for this factor at each
element of the discretized boundary is to solve numerically the problem given by Eqs. (15),
substituting to the factor ðk2

w=k2
0Þ its mean value ð1=2Þ; and then to calculate its real approximate

value at each element of the boundary using the numerical solution obtained previously (denoted
pm), that is,

ðk2
w=k2

0Þ ¼ �ð1=k2
0pmÞ@2wwpm: ð17Þ

Therefore, the problem considered can be solved by the procedure mentioned above, first using
numerical method to calculate pa and second using a post-processing process to calculate the
acoustic field inside the boundary layers.
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This method is adapted to express the reactive and absorbing processes, namely the thermal and
viscous effects, in the boundary layers near the rigid walls as well as in the bulk of the domain.
Especially, when the domain is a rigid walled cavity, the quality factor for the acoustic pressure pa

is realistic, which is important when the frequency is tuned to make the field resonant.

2.2. Capillary domains

When the whole domain or part of the domain has one dimension of the same order of
magnitude as the boundary layer thicknesses and much greater than the other dimensions (very
thin slots or capillary tubes, third class of problems), the model used to calculate the behavior of
the acoustic field inside the boundary layers must be slightly revised as indicated in this
subsection, the thicknesses involved being assumed to remain greater than the mean free path
(which in air at atmospheric pressure is about 0:1 mm), to ensure that the continuum hypothesis
remains valid.
In first approximation, these capillary domains can be modelled either as a very flat rectangular

slot or very thin cylindrical tube in every real situation, because the pressure variation can be
assumed uniform through the thickness of the fluid film or the fluid column.
Under these circumstances, the theory developed above in Section 2.1.2 remains valid to

describe the oscillating flow produced as the fluid is pumped back and forth, either by the forced
vibrations of the wall or the forced acoustic field at one or both ends of the capillary slot or tube.
Nevertheless, in Eqs. (4)–(6), the normal co-ordinate u must be replaced by the radial co-ordinate
r (capillary tube) or the normal co-ordinate z (capillary slot), and the boundary conditions have to
be adapted to these co-ordinates; moreover, as the wall is eventually assumed to be subject to
external (driving) forced vibrations, the associated volume velocity must be taken into account in
the right side of the conservation of mass equation. Therefore, the equations of motion of the fluid
in the frequency domain, take respectively the forms, the acoustic pressure field being denoted p;

for the capillary slot, with a thickness e

ð1þ ð1=k2
v Þ@

2
zzÞvwðz;wÞ ¼ ði=r0oÞ=wp ð18aÞ

with

vwðz ¼ 0Þ ¼ vwðz ¼ eÞ ¼ 0; ð18bÞ

ð1þ ð1=k2
hÞ@

2
zzÞt ¼ ððg� 1Þ=g #bÞp ð18cÞ

with

tðz ¼ 0Þ ¼ tðz ¼ eÞ ¼ 0; ð18dÞ

ior0 þ r0=wvw ¼ �ior0x=e; ð18eÞ

(x being the displacement, outwardly directed, of the wall z ¼ e) with

r0 ¼ ðg=c20Þðp � #btÞ and vzðz ¼ 0Þ ¼ 0; ð18fÞ
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for the capillary tube, with radius R and axis x

ð1þ ð1=k2
v Þð1=rÞ@rr@rÞvx ¼ ði=r0oÞ@xp ð19aÞ

with

vxðr ¼ RÞ ¼ 0; ð19bÞ

ð1þ ð1=k2
hÞð1=rÞ@rr@rÞt ¼ ððg� 1Þ=g #bÞp ð19cÞ

with

tðr ¼ RÞ ¼ 0; ð19dÞ

ior0 þ r0@xvx ¼ �ior0x=ðR=2Þ; ð19eÞ

(x being the displacement, outwardly directed, of the wall r ¼ R) with

r0 ¼ ðg=c20Þðp � #btÞ: ð19fÞ

The solutions of these sets of equations, which assume vz and vr to be negligible, are given by

vw ¼ ði=r0oÞ=w p½1� fv�; ð20aÞ

t ¼ ððg� 1Þ=g #bÞ p½1� fh� ð20bÞ

with

fv;h ¼ cos ½kv;hðz � e=2Þ�=cos kv;he=2; for the capillary slot ð20cÞ

fv;h ¼ J0ðkv;hrÞ=J0ðkv;hRÞ; for the capillary tube; ð20dÞ

where J0 is the zero order cylindrical Bessel function of the first kind, and w standing for the
transverse co-ordinate(s).
Integrating the solutions across the fluid layer (between the walls z ¼ 0 and z ¼ e; or r ¼ 0 and

r ¼ R) leads to mean values of vw and t which convey

/vwS ¼ ði=r0oÞ=w p½1� Fv�; ð21aÞ

/tS ¼ ððg� 1Þ=g #bÞ p½1� Fh� ð21bÞ

with

Fv;h ¼ tan ½kv;he=2�=kv;he=2; for the capillary slot; ð21cÞ

Fv;h ¼ ð2=kv;hRÞJ1ðkv;hRÞ=J0ðkv;hRÞ; for the capillary tube; ð21dÞ

where J1 is the first order cylindrical Bessel function of the first kind.
Then combining Eqs. (21b) and (18f) or Eq. (19f) yields

/r0S ¼ p=C2 ð22aÞ

with

ð1=C2Þ ¼ ðr0wT=gÞ½1þ ðg� 1ÞFh�; ð22bÞ
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and combining Eqs. (22a) and (18e) or Eq. (19e), along with relation (21a) leads to

½Dw þ w2�pðwÞ ¼ zxðwÞ ð23aÞ

with

w2 ¼ ðo2=c20Þ½1þ ðg� 1ÞFh�=½1� Fv�; ð23bÞ

z ¼ �ðr0o
2=eÞð1=ð1� FvÞÞ; for the capillary slot; ð23cÞ

z ¼ �ðr0o
2=R=2Þð1=ð1� FvÞÞ; for the capillary tube: ð23dÞ

When the displacement of the wall is not null, acoustic propagation (Eq. (23a)) is coupled to the
propagation equation of the wall, that is

ðOw þ K2ÞxðwÞ ¼ pextðwÞ � pðwÞ; ð24Þ

where pextðwÞ represents an external pressure source applied to one of the boundaries of the
domain. With a microphone, for instance, pext represents the (external) acoustic pressure to be
measured, and applied to the membrane: the operator Ow meaning then the membrane’s
mechanical operator Dw:
These last results emphasize that the whole acoustic problem for capillary slots or tubes reduces to a

complex Helmholtz equation, homogeneous ðx ¼ 0Þ or not, depending only on the one (tube) or two
(slot) tangential co-ordinates w: For a fluid layer, very thin compared to the boundary layer
thicknesses dv and dh; Eq. (21b) does not represent an adiabatic compressibility law, but an isothermal
one, and for a layer of fluid whose thickness has the same order of magnitude than the boundary layer
thicknesses, C2 is complex, having an imaginary part which contributes to the dissipative process
(polytropic law). Anyway, the solutions are given by solving Eq. (23a), assuming usual conditions at
the ends of the capillary (which involve acoustic pressure and particle velocity calculated numerically).

3. Numerical implementation of the method in rigid-walled domains

3.1. Introduction

The present analysis allows the possibility of solving numerically several classes of problems of
acoustic propagation, including those where (Fig. 1) (i) the domain considered is bounded or not,

Fig. 1. Phenomena involved in acoustics problems and the sub-domains where they occur.
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very small (cavities) or not, very narrow (ducts) or not; (ii) the bounded domain is rigid-walled,
the reactive and absorbing processes at rigid boundaries arising from vortical and entropic
processes; (iii) the reactive and absorbing processes in the bulk of the domain, characterized, in
the frequency domain, by a complex wavenumber involving the shear and bulk viscosity
coefficients, the heat conduction coefficient and also the molecular relaxation time if necessary [1],
can be included in the calculation of the acoustic field; (iv) the acoustic, the vortical and the
entropic movements inside the boundary layer are calculated in detail inside the boundary layers
and, when the dimensions of the domain are greater than the boundary layer thicknesses, the
fields satisfy continuity conditions with the acoustic field outside the boundary layers; (v) the
capillary domains are modelled from an adapted Helmholtz-type equation.
Currently, available boundary elements method packages and finite elements method packages

dedicated to acoustics rely on a simple Helmholtz equation for pressure. Therefore, they are not
compatible with the basics equations involved and described in Section 1: problems have to be
solved according to the procedure described previously, i.e. using those software packages AND
dedicated post-processings, making use of each one in turn.
Several aspects that have to be considered, whilst implementing the procedure given here when

using boundary element packaging [10] are mentioned below. In fact, most of them are not
discussed here either because they imply minor modifications of the software or because they can
be basically introduced through post-processing processes which do not require fundamental
investigations.
Nevertheless, it is noteworthy that when considering problems involving domains O with open

boundary or with closed boundary, or involving limited domains whose one (or two) dimensions
have the same order of magnitude as the thicknesses of the thermal and viscous boundary layers,
most attention has to be paid, respectively, to the shape of the boundaries which must be
adequately extended (that is artificially closed to create a small complementary domain (O�;
Fig. 2) the solution for the pressure being given finally by the pressure jump), to the irregular
frequencies (which leads to solve the problem from the calculation of the pressure jump), and to
the rule of meshing [10–12].
Besides, it still remains to present (next Section 3.2) the technique used both to secure an

approximate numerical calculation providing, on the boundary layers, the values of the thermo-
viscous impedance-like function b which depends on the properties of the unknown acoustic field

Fig. 2. Idealization (theoretical) of a boundary @O and the associated boundaries @Oþ and @O� for numerical

simulation.
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on the boundaries (see Section 2.1.4, Eq. (17)) and then to carry out the calculation of the acoustic
field in the bulk of the domain which conveys significant improvement because it takes into
account the reactive and dissipative effects of the boundary layers.
Even though the final goal of the method is to solve specific engineering complex problems (as

mentioned in Section 1), it is not the scope of the present paper to calculate acoustic fields in the
subsequent engineering systems. Nevertheless, a numerical solution is given in the last Section 3.3
in order to show improvements that can be reached using the procedure implemented. The studied
system is a rigid-walled tube closed at one end by a piston acoustic source and at the other end by
a rigid wall, whose well-known analytical solution is used as the reference. Of course, this system
is very simple, but because the calculation is performed around its first resonance frequency, it
permits emphasise of the main property of the procedure given here that is to take into account
the effect, on the acoustic field, in the bulk of the domain, of the reactive and dissipative
phenomena inside the boundary layers.

3.2. Numerical procedure to express the thermo-viscous impedance-like boundary condition

When solving a problem in a rigid-walled domain, taking into account the reactive and
dissipative processes in the viscous and thermal boundary layers, an admittance-like boundary
condition (Eqs. (15b) and (15d)), can be used. Nevertheless, the admittance b involved is unknown
because it depends on the unknown factor k2

w=k2
0 (Eq. (17), which characterizes the direction of the

acoustic velocities on the wall for the non-evanescent modes). In order to express this factor k2
w=k2

0

and then to solve numerically the problem under consideration, a three-step procedure is
suggested here.
In the first step, the problem (Eq. (15)) is solved in the considered domain O; using the main

numerical code chosen, absorbing and reactive processes being taken into account by using the
admittance-like function (Eq. (14b)) b ¼ k0ðk2

w=k2
0kv þ ððg� 1Þ=khÞÞ onto the boundaries, where

the unknown factor k2
w=k2

0 ð0ojk2
w=k2

0jo1Þ is arbitrarily set to 1/2. For each frequency, one value
of the pressure pa per node is then calculated.
According to the admittance description, the boundary layers thicknesses dv;h being negligible,

the acoustic pressure calculated on the boundary nodes is nearly equal to pressure values at
distance dv;h from the boundary (see Section 2.1.4) as illustrated in Fig. 3.
Hence, the pressure field calculated on the boundary nodes is considered as the field at the

interface between the boundary layers and the bulk of the domain. This acoustic field is
considered as a first approximation of the numerical solution; it provides an accurate spatial
acoustic pressure distribution which permits to calculate the unknown factor ðk2

w=k2
0Þ in the

expression of the admittance b; giving realistic values of this admittance b for the field of interest.
In a second step, from the pressure results calculated in the first step, the unknown factor k2

w=k2
0

(Eq. (17)) is estimated on each element, and then the value of the admittance-like function b is
calculated with a good accuracy as regards the pressure field to be finally calculated. Depending
on the numerical coding, this factor can be calculated on each element using Eq. (17) (which can
be reduced to jkwj ¼ j=wp=ik0pj for simple fields, such as a local plane wave).
This last expression can be used as long as the Shannon spatial criterion is satisfied, that is the

wavelength is much greater than the dimensions of each element and the wavenumber k0 is
constant on each element of the boundary.
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In the present application, an external C-language code (post-processing) is developed to
process the input and output files of the chosen numerical packaging. Although linear
interpolation functions over triangular elements would be accurate to calculate the tangential
derivatives ð@wpÞ on each element, the quadratic functions are chosen to ensure a good quality
interpolation. Hence, this C-language code needs the numerical model to be based on quadratic
interpolation over triangular elements and the processed files need to contain pressure results on
each node of the mesh.
In the third step, problem (15) is numerically solved with the adapted values of b on each

element of the boundary. Then, if needed, particle velocity v and temperature variation t can be
calculated in the boundary layers with a post-processing, that is another external C-language code
based on Eqs. (7), (8) and (12).
As the method presented in Sections 2.1.4 and 3.2 to calculate the impedance-like b function lies

only on the acoustic pressure near the boundaries (calculus of pressure field in the domain O is not
needed), either BEM or FEM techniques can be used (the numerical packaging chosen here,
Rayon, developed by Straco, Compi"egne, France [10] makes use of the BEM technique).

3.3. Comparison to analytical results, for a ‘‘large’’ waveguide, and conclusion

Being concerned by the efficiency of the method, we give here a simple application, yet typical
of the most important class of problems: those where the boundary layers can be considered as
very thin regarding the characteristic dimensions of the acoustic domain. In this class of problems,
the admittance-like function b is clearly adequate to express the effect of the boundary layers onto
the acoustic field. The chosen application is then a ‘‘large’’, rigid walled waveguide, ‘‘large’’
meaning that the transverse dimensions are much greater than the boundary layer thicknesses.
The waveguide is closed at one end (z ¼ 0) by a plane piston source (velocity V0) and at the other
end ðz ¼ LzÞ by a rigid wall (Fig. 4).
The frequency range of the study lie over the first axial resonance of the waveguide in order to

emphasize the role played by the dissipation process in the boundary layers. For this frequency
range, the transverse dimensions are such as the field in the waveguide is a plane wave (under the

Fig. 3. Admittance-like description and equivalence between numerical pressure results on the boundary and acoustic

pressure values at the interface between the boundary layer and the bulk of the domain, the boundary layers thicknesses

dv;h being negligible compared to the dimensions of the considered domain O:

R. Bossart et al. / Journal of Sound and Vibration 263 (2003) 69–84 81



first cut off frequency). All these requirements are here achieved using a waveguide 170 mm long
and 5 mm large (square cross-section Lx ¼ Ly) in the frequency range 900–1100 Hz:
The amplitude of the acoustic pressure in the waveguide at the end opposite to the source is

shown in Fig. 5. Curves (1) and (2) are, respectively, the analytic result and the numerical one,
taking into account only the losses which occur in the thermal boundary layers [7], and curves (3)

Fig. 4. Part (one end) of the ‘‘large’’ waveguide considered as an example and view of the meshing used.
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Fig. 5. Amplitude (dB) of pressure calculated on a numerical node at the end opposite to the source of the waveguided

considered, as function of the frequency. Analytical result (curve 1) and computed result (curve 2) when taking into

account only the thermal effects [7,8]; exact analytical result (curve 3) and computed result (curve 4) when taking into

account both thermal and viscous effects using the procedure presented Section 3.2.
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and (4) are, respectively, the exact analytic result, namely [1]

pðLzÞ ¼ 2ðk0=kz00Þr0c0ð1þ V0 cosðikz00LzÞÞ=ð2i sin kz00LzÞ;

where

k2
z00 ¼ k2

0½1þ ð1� iÞZ0�

and

Z0 ¼ ð1=
ffiffiffi
2

p
Þ 2ðLx þ LyÞ=ðLxLyÞð1=

ffiffiffiffiffi
k0

p
Þ½

ffiffiffiffiffi
c0v

q
þ ðg� 1Þ

ffiffiffiffiffi
ch

p
�

and the numerical one obtained in the present work (see a view of the meshing used in Fig. 4), that
is when considering both thermal and viscous losses inside the boundary layers.
To conclude, it can be emphasized that this simple example has highlighted the advantage of the

method in having given results when a resonance occurs in a waveguide, that is when the thermal
and viscous losses play an important and very sensitive role. Given the specificity of this example,
there is seen to be very close agreement between computational and precise analytical result,
thereby supporting the method presented in this paper for engineering problems involving
complex shape domains.
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