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Abstract

This paper presents exact solutions for vibration of rectangular plates with an internal line hinge. The
rectangular plate is simply supported on two parallel edges and the remaining two edges may take any
combination of support conditions. The line hinge is perpendicular to the two simply supported parallel
edges. The L!evy type solution method and the state-space technique are employed in connection with the
first order shear deformation plate theory (FSDT) to study natural vibration of rectangular plates with an
internal line hinge. In particular, exact vibration frequencies are obtained for rectangular plates of different
aspect ratios and edge support conditions. The influence of the internal line hinge on the vibration behavior
of rectangular plates is studied.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

Plates are one of the most important structural elements that are widely encountered in
aerospace, marine, mechanical and civil engineering structures. The vibration behavior of plates
and plate structures is one of the major concerns in designing plate type structures. Vibration
characteristics of plates have been extensively studied over the last 100 years. Plates of all sorts of
shapes, boundary conditions and subjected to various applied in-plane force distributions were
considered and the frequency parameters were documented in monographs [1–4], standard texts
[5–7], and technical papers [8–12].

In engineering applications, plates with various complications, i.e., stiffeners [13,14], interior
openings [15] and line hinge [16], are used to serve different purposes required in a structure. For
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instance, a line hinge in a plate can be used to facilitate folding of gates, or the opening of doors
and hatches. The hinge can also be used to simulate a through crack prior to the edge
misalignment. It is interesting to note that apparently there is no study found in open literature for
vibration of thick plates with internal line hinge.

The present study provides the first-known solutions based on the first order shear deformation
theory for vibration of rectangular plates with an internal line hinge. The L!evy type solution
method and the state-space technique [6,10,17–18] are employed in connection with the first order
shear deformation plate theory (FSDT) to study natural vibration of rectangular plates with an
internal line hinge. In treating a plate with an internal line hinge, a domain decomposition
technique developed [19] is applied in this study. The plate is divided into two subdomains and the
essential and natural continuity conditions along the interface of the two subdomains are
imposed. Exact vibration frequencies are obtained for six possible sets of boundary conditions
with different plate aspect ratios, plate thickness ratios, and various locations of the line hinge.
The influence of the internal line hinge on the vibration behavior of rectangular plates with two
parallel edges simply supported while the other edges having various boundary conditions is
studied. The extensive exact solutions presented in this paper may serve as reference solutions for
checking the accuracy of potential numerical solutions of thick rectangular plates with internal
hinges.

2. Formulation

Consider an isotropic rectangular plate of length aL and width L as shown in Fig. 1. The plate
is simply supported on the two edges parallel to the x-axis. An internal line hinge that is parallel to
the y-axis, exists in the plate (see Fig. 1). The origin of the co-ordinate system (x, y) is set at the
middle point of the plate bottom edge, so that 2aL=2pxpaL=2 and 0 pypL: The problem at
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Fig. 1. A L!evy plate with an internal line hinge.
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hand is to determine the vibration frequencies of the plate with an internal line hinge. We wish to
use the FSDT [6,7] to study the problem.

The plate is considered to have two spans that are separated by the line hinge. The governing
differential equations of the isotropic plate based on the first order plate theory for a span in
harmonic vibration can be written as [7]
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where the superscript i (=1, 2) denotes the ith span, h is the plate thickness, E is Young’s
modulus, G ¼ E=½2ð1þ nÞ� is the shear modulus, n is the Poisson ratio, k2 is the shear correction
factor, D ¼ Eh3=½12ð1� n2Þ� is the flexural rigidity of the plate, r is the mass density of the plate, o
is the vibration frequency of the plate, w is the transverse displacement, and fx and fy are
rotations of a transverse normal about the y and x directions, respectively.

The essential (geometric) and natural (force) boundary conditions for the two parallel edges (at
y ¼ 0 and L) in the ith span are

wi ¼ 0; Mi
y ¼ 0; fi

x ¼ 0; ð4a-cÞ

where Mi
y is the bending moment and is defined by
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The general L!evy-type solution approach is employed to solve the governing differential
equations for the ith span. The displacement fields can be expressed as
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where Fi
wðxÞ; F

i
xðxÞ and Fi

yðxÞ are unknown functions to be determined, and m (=1,2,y,N) is the
number of halfwaves in the y direction for a vibrating mode. Eq. (6) satisfies the simply supported
boundary conditions on edges y ¼ 0 and L as defined in Eqs. (4a–c).
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Substituting Eq. (6) into Eqs. (1)–(3), the following differential equation system can be derived:

dwi

dx
¼ Hiwi; ð7Þ

where wi ¼ ½Fi
w ðdFi

w=dxÞ Fi
x ðdFi

x=dxÞ Fi
y ðdFi

y=dxÞ�T and Hi is a 6� 6 matrix with the following
non-zero elements:
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A general solution of Eq. (7) can be obtained as

wi ¼ eHxci; ð18Þ

where ci is a constant column vector that can be determined by the plate boundary conditions of
the two edges parallel to the y-axis and/or interface conditions between the two spans and eHx is
the general matrix solution of Eq. (7). The detailed procedure in determining Eq. (18) has been
given by Reddy and Khdeir [10], Liew et al. [17] and Xiang et al. [18].

The two edges parallel to the y-axis at x ¼ �aL=2 and x ¼ aL=2 may have the following
boundary conditions:

Mi
x ¼ 0; Mi

xy ¼ 0; Qi
x ¼ 0; if the edge is free; ð19a-cÞ

wi ¼ 0; Mi
x ¼ 0; fi

y ¼ 0; if the edge is simply supported; ð20a-cÞ

wi ¼ 0; fi
x ¼ 0; fi

y ¼ 0; if the edge is clamped; ð21a-cÞ

where the superscript i takes the value 1 or 2, Mi
x;M

i
xy and Qi

x are bending moment, twist moment
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Mi
x ¼ D

@fi
x

@x
þ n

@fi
y

@y

 !
;

Mi
xy ¼ D

ð1 � nÞ
2

@fi
x

@y
þ
@fi

y

@x

 !
; ð22; 23Þ

Qi
x ¼ k2Gh

@wi

@x
þ fi

x

� �
: ð24Þ

Y. Xiang, J.N. Reddy / Journal of Sound and Vibration 263 (2003) 285–297288



To ensure the continuity and support condition along the internal line hinge, the essential and
natural boundary conditions for the interface between the two spans are defined as

w1 ¼ w2; f1
y ¼ f2

y; M1
x ¼ 0; M2

x ¼ 0; M1
xy ¼ M2

xy; Q1
x ¼ Q2

x: ð25a-fÞ

In view of Eq. (18), a homogeneous system of equations can be derived by implementing
the boundary conditions of the plate along the two edges parallel to the y-axis (Eqs. (19)–(21)) and
the interface conditions between the two spans (Eq. (25)) when assembling the two spans to the
whole plate [15]

K
c1

c2

( )
¼ f0g: ð26Þ

The vibration frequency o is determined when the determinant of K in Eq. (26) is equal to zero.
As the vibration frequency o is imbedded in matrix H, it cannot be obtained directly from
Eq. (26). A numerical iteration procedure was developed by Xiang et al. [18] to solve the
eigenvalue problem defined by Eq. (26) and the procedure in Ref. [18] is applied in this paper to
obtain the vibration frequency o of rectangular Mindlin plates with an internal line hinge.

3. Results and discussions

The analytical method discussed in the previous section is applied here to obtain exact vibration
solutions for rectangular plates with an internal line hinge. The vibration frequency is expressed
in term of a non-dimensional frequency parameter l ¼ ðoL2=p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
: For convenience, we

shall use letters F ; S and C to denote free, simply supported and clamped edges, respectively. A
two-letter symbol is used to describe the plate boundary conditions on the two edges parallel to
the y-axis. For instance, a CS L!evy plate has the edge AB clamped and the edge DC simply
supported (see Fig. 1). The Poisson ratio n ¼ 0:3 and the shear correction factor k2 ¼ 5

6
are used in

the calculation.

3.1. Comparison studies

Table 1 presents vibration frequencies obtained by the authors and by Wang et al. [16] for a
simply supported square plate with an internal line hinge. The results by Wang et al. [16] were
based on the thin (Kirchhoff) plate theory, and the Ritz method was used to obtain the numerical
solutions. In order to compare the present results with the ones by Wang et al. [16], the plate
thickness ratio h=L ¼ 0:01 is used to simulate a thin plate. We observe that the present analytical
solutions are in close agreement with the Ritz solutions of Wang et al. [16]. It confirms the
correctness of the present analytical solution.

3.2. Vibration of square Mindlin plates with an internal line hinge

Tables 2 and 3 present the first 10 exact frequency parameters for square Mindlin plates with
symmetric L!evy-type supporting edges (i.e., SS; FF and CC plates) and asymmetric L!evy-type
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supporting edges (i.e., SF ; CF and CS plates). The location parameter of the internal line
hinge b varies from 0.1 to 0.5 for the symmetric plates (SS; FF and CC plates) and from 0.1
to 0.9 for the asymmetric plates (SF ; CF and CC plates). The plate thickness ratios h=L ¼ 0:01
and 0.1 are used for the plates. All results in Tables 2 and 3 are presented with 6 significant
digits.

The influence of the internal line hinge and the plate thickness ratio on the frequency
parameters may be observed from Tables 2 and 3. As expected, the frequency parameters decrease

Table 1

Comparison study of frequency parameters l ¼ ðoL2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for SS square plate with an internal line hinge (h/L =

0.01)

b Source Mode sequence

1 2 3

0.1 [16] 1.9068 3.8317 4.9614

Present 1.90382 3.80991 4.95555

0.3 [16] 1.7011 3.9603 4.8047

Present 1.69719 3.95086 4.79543

0.5 [16] 1.6348 4.7356 5.0000

Present 1.63090 4.72531 4.99545

Table 2

Frequency parameters l ¼ ðoL2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for symmetric L!evy square plates with an internal line hinge

Cases h=L b Mode sequence

1 2 3 4 5 6 7 8 9 10

SS plate 0.01 0.1 1.90382 3.80991 4.95555 7.33240 7.46706 9.94774 11.1622 12.6424 13.5464 16.7066

0.3 1.69719 3.95086 4.79543 7.27309 9.73778 9.78077 12.4102 12.7881 15.2020 16.7189

0.5 1.63090 4.72531 4.99545 7.60420 7.98838 9.70361 11.1952 12.9694 16.5951 16.6301

0.10 0.1 1.81825 3.40685 4.56169 6.40675 6.51544 8.57906 9.24011 10.4759 11.1278 13.1240

0.3 1.62114 3.65973 4.40241 6.42570 8.41913 8.42499 10.3268 10.6654 12.3424 13.3317

0.5 1.55926 4.33580 4.60836 6.70711 7.07165 8.34976 9.38364 10.8093 13.1387 13.2592

CC plate 0.01 0.1 2.71926 5.48208 6.91335 9.54065 10.3276 13.0027 14.1608 15.5300 17.2034 19.8677

0.3 2.70482 5.32798 5.44718 8.45427 10.1185 12.2193 13.3455 15.0119 16.9627 19.7284

0.5 2.30503 5.12708 7.01083 9.56080 9.97574 10.0685 13.3203 14.1615 16.8293 18.4161

0.10 0.1 2.52934 4.93671 5.95326 7.98161 8.79593 10.1942 11.3476 11.9157 13.6366 14.3547

0.3 2.49830 4.77743 4.79457 7.14570 8.59887 9.83828 10.7586 11.7382 13.4272 14.4643

0.5 2.14258 4.60484 5.99924 7.98542 8.16928 8.48497 10.4379 11.3539 13.3313 13.8487

FF plate 0.01 0.1 0.971257 1.59685 3.70470 3.92117 4.66004 7.05288 7.07353 8.84712 9.60088 9.83944

0.3 0.965294 1.60460 3.16978 3.90124 4.67883 5.70215 6.95085 8.82211 9.64297 9.78045

0.5 0.963332 1.63090 2.77180 3.89845 4.72531 6.50446 7.60420 8.82380 9.70361 10.6414

0.10 0.1 0.953036 1.53509 3.42434 3.66758 4.29111 5.12983 6.27755 7.62369 7.72962 8.28533

0.3 0.946998 1.53799 2.84085 3.64484 4.29692 5.07039 6.07996 7.69518 8.18742 8.30045

0.5 0.944888 1.55926 2.52554 3.64070 4.33580 5.71208 6.70711 7.69526 8.34976 9.05350
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when a plate becomes thick due to the effect of transverse shear deformation and rotary inertia.
This effect becomes more significant for a plate vibrating in higher modes and for a plate with
higher degree of edge constraints (i.e., in the order of free to simply supported to clamped edges).

Fig. 2 shows the relationship between the fundamental frequency parameter and the location
parameter of the hinge for the three symmetric square plates (Fig. 2(a)) and the three asymmetric
square plates (Fig. 2(b)). There are 50 equi-spaced sampling points along the x-axis for curves in
Fig. 2(a) and 99 sampling points for curves in Fig. 2(b). The starting and ending points are at
b ¼ 0:01 and 0.5 for curves in Fig. 2(a) and b ¼ 0:01 and 0.99 for curves in Fig. 2(b), respectively.
It is observed that the optimal location of the hinge in increasing the fundamental frequency

Table 3

Frequency parameters l ¼ ðoL2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for asymmetric L!evy square plates with an internal line hinge

Cases h=L b Mode sequence

1 2 3 4 5 6 7 8 9 10

SF plate 0.01 0.1 1.17944 2.51224 4.16538 4.62791 5.83976 8.65324 8.81268 9.12514 10.9057 12.8255

0.3 1.16556 2.18666 4.14343 5.33910 5.54343 8.91145 9.09445 10.6205 11.6783 14.2202

0.5 1.14963 2.29980 4.11076 5.67713 5.85831 9.04624 9.17965 9.54854 10.7571 13.4143

0.7 1.14473 2.69347 4.08803 4.46971 5.96659 8.48238 9.00120 10.2552 11.0054 13.6493

0.9 1.16261 2.77981 4.11669 5.88822 6.09278 8.89361 9.02396 9.53011 10.8891 13.9835

0.10 0.1 1.14853 2.32092 3.87530 4.09382 5.25035 7.34533 7.56908 7.93605 9.24035 10.3991

0.3 1.13512 2.04281 3.85356 4.83569 4.98483 7.66626 7.90740 8.99140 9.85429 11.5463

0.5 1.12025 2.13995 3.82181 5.10093 5.30073 7.86255 7.92300 8.22738 9.10514 10.9246

0.7 1.11704 2.49201 3.80330 3.99784 5.38051 7.21697 7.82458 8.77187 9.33948 11.1663

0.9 1.13580 2.64421 3.83896 4.84089 5.35300 6.54299 7.86709 8.19462 9.28407 10.6125

CF plate 0.01 0.1 1.22112 3.16016 4.20564 6.31451 7.23400 9.15857 10.4057 11.2977 13.2276 15.4034

0.3 1.28051 2.97197 4.20994 5.81851 5.97981 9.13703 9.34764 10.9192 12.5219 14.6237

0.5 1.26971 2.58102 4.16640 5.91753 7.28607 9.08147 10.3066 10.3778 10.9561 14.1510

0.7 1.24394 2.99688 4.13260 5.31502 6.32836 9.02801 9.06092 11.2952 12.2140 14.4803

0.9 1.25657 3.32858 4.16020 6.28131 6.86010 9.04851 9.66393 10.4129 11.1789 15.3586

0.10 0.1 1.18313 2.93688 3.90351 5.61999 6.32253 7.95510 8.70283 9.49069 10.5871 12.2352

0.3 1.23756 2.73248 3.90420 5.19975 5.29298 7.91616 7.93244 9.14914 10.3691 11.7153

0.5 1.22842 2.37231 3.86204 5.25014 6.29664 7.88150 8.57886 8.66272 9.19700 11.2458

0.7 1.20607 2.70423 3.83454 4.64130 5.60353 7.55250 7.83820 9.48074 9.86558 11.5026

0.9 1.21998 3.08103 3.87007 5.03396 5.61537 7.26012 7.88018 8.63953 9.43337 10.8584

CS plate 0.01 0.1 2.21604 5.18244 5.79699 8.67880 10.1330 11.4427 13.5194 14.1945 17.0650 18.2219

0.3 2.31282 4.59602 5.09580 7.75921 9.9715 10.2875 12.7916 13.3982 16.8607 18.4243

0.5 1.94563 4.90690 5.71618 8.62362 9.10394 9.82889 12.3739 13.4822 16.7235 17.5473

0.7 1.91116 4.90107 4.95277 7.95945 9.89318 11.4158 12.9333 14.1924 16.0577 16.8018

0.9 2.20059 4.34688 5.16777 7.98521 8.53336 10.0949 12.1093 13.0926 15.4064 17.0210

0.10 0.1 2.11457 4.73762 5.20686 7.49888 8.69791 9.41664 11.0671 11.3384 13.5850 13.6897

0.3 2.18322 4.17085 4.63178 6.72742 8.53093 8.78176 10.5019 10.9796 13.3934 14.0408

0.5 1.83580 4.46066 5.14851 7.46318 7.59897 8.41392 9.97201 11.0560 13.2941 13.5134

0.7 1.80104 4.37674 4.50626 6.85203 8.47459 9.39838 10.5787 11.3682 12.7301 13.3613

0.9 2.05540 3.80671 4.70556 6.80949 7.18863 8.65591 9.74040 10.6770 12.0400 13.4476
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parameter is at bE0:2 for the CC and CS plates, b ¼ 0:01 for the FF ; SS and SF plates, and
bE0:35 for the CF plate, respectively. The frequency parameters have a very small variation for
the FF plate when the location parameter of the hinge changes from 0.01 to 0.5.

It is evident from Tables 1 and 2 and Fig. 2 that the inclusion of the internal line hinge decreases
the frequency parameters of the plates. For instance, the fundamental frequency parameter for a
simply supported thick square plate (h=L ¼ 0:1) without the line hinge is 1.93. The frequency
parameter for the same plate decreases to 1.82, 1.62 and 1.56 when the line hinge is placed in the
plate at the location of b ¼ 0:1; 0.3 and 0.5, respectively. We observe that the optimal location of
the internal line hinge in maximizing the frequency parameters varies from plate to plate and from
mode to mode.

Figs. 3 and 4 present the modal shapes of the first three modes for SS and CF square plates
with an internal line hinge at various locations. The discontinuity of rotation fx along the hinge is
evident for all cases in Figs. 3 and 4.

3.3. Vibration of rectangular Mindlin plates with an internal line hinge

Tables 4 and 5 show the first 10 exact frequency parameters for thick rectangular plates with
symmetric edges (i.e., SS; FF and CC plates) and asymmetric edges (i.e., SF ; CF and CS plates).
The plate aspect ratio a is taken equal to 2 and 3. The influence of the internal hinge and the plate
thickness ratio on the vibration behavior of the plate may be observed from the results presented
in Tables 4 and 5.

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

0 0.2 0.4 0.6 0.8 1
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

0 0.1 0.2 0.3 0.4 0.5
Location Parameter of Hinge, b Location Parameter of Hinge, b 

Fr
eq

ue
nc

y 
Pa

ra
m

et
er

 λ
 =

 (
ω

L
2 /π

2 )(
ρh

/D
)1/

2

(a) (b)

Fig. 2. Fundamental frequency parameters l ¼ ðoL2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
versus the location parameter of the internal line

hinge b for (a) symmetric plates: B, SS plate; n, FF plate; &, CC plate and (b) asymmetric plates: B, SF plate; n, CF

plate; &, CS plate.

Y. Xiang, J.N. Reddy / Journal of Sound and Vibration 263 (2003) 285–297292



        Mode 1     Mode 2                            Mode 3 b 

0.1 

  0.3 

  0.5 

Fig. 3. The first three modal shapes for SS square Mindlin plate with an internal line hinge (a ¼ 1; h=L ¼ 0:1).
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           Mode 1                             Mode 2    Mode 3 b 

0.3 

  0.5 

  0.7 

Fig. 4. The first three modal shapes for CF square Mindlin plate with an internal line hinge (a ¼ 1; h=L ¼ 0:1).
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4. Conclusions

In this paper, the first known analytical solutions based on the FSDT for the natural vibration
of rectangular plates with an internal line hinge are presented. Rectangular plates with two
parallel edges simply supported while the other having a combination of free, simply supported
and clamped boundary conditions are studied. The L!evy solution method and a domain
decomposition technique are employed to investigate the vibration behavior of rectangular plates
with an internal line hinge. The influence of the line hinge and its location and the effects of
transverse shear deformation and rotary inertia on the vibration behavior are studied. It is noted
that the optimal location of the line hinge in maximizing the frequency parameters varies from
mode to mode and from plate to plate. The increase of plate thickness ratio, on the other hand,
always decreases the frequency parameters in plates. The analytical solutions tabulated in the
paper may serve as benchmark values for checking the validity and accuracy of numerical
solutions of thick rectangular plates with internal hinges.

Table 4

Frequency parameters l ¼ ðoL2=p2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for symmetric L!evy rectangular plates with an internal line hinge

Cases a h=L b Mode sequence

1 2 3 4 5 6 7 8 9 10

SS plate 2 0.01 1/3 1.19500 1.85048 3.24808 4.18422 4.36965 4.89344 6.24290 6.61480 7.60378 9.14930

1/2 1.18286 1.99927 2.80691 4.16892 4.99545 4.99545 5.97187 6.25433 7.98838 9.12931

0.1 1/3 1.16467 1.78163 3.07621 3.89448 4.03669 4.50595 5.65797 5.94863 6.71465 7.95850

1/2 1.15234 1.93169 2.65000 3.87919 4.60836 4.60836 5.39497 5.63583 7.07165 7.94018

3 0.01 1/3 1.08653 1.39316 1.99927 2.56196 3.53515 4.07065 4.39678 4.99545 4.99545 5.64805

1/2 1.08062 1.44406 1.85192 2.77637 3.40896 4.06183 4.44085 4.89802 4.99545 5.77171

0.1 1/3 1.06330 1.35533 1.93169 2.43658 3.32206 3.79922 4.08503 4.60836 4.60836 5.14166

1/2 1.05719 1.40819 1.78179 2.64905 3.20011 3.79037 4.13026 4.50923 4.60836 5.26556

CC plate 2 0.01 1/3 1.31869 2.14871 3.88849 4.24263 5.08688 5.35235 6.69932 7.54215 8.33046 9.18658

1/2 1.28399 2.39445 3.34267 4.21960 5.23013 5.93399 6.36860 7.31663 8.71101 9.16085

0.1 1/3 1.27527 2.03560 3.58517 3.93628 4.63830 4.75939 5.95839 6.56329 7.15867 7.97857

1/2 1.24111 2.26844 3.08104 3.91447 4.77263 5.28386 5.65390 6.35547 7.50842 7.95640

3 0.01 1/3 1.12220 1.49965 2.24141 2.93821 3.92077 4.08732 4.45674 5.14312 5.57429 5.89472

1/2 1.11130 1.57786 2.05749 3.14608 3.83891 4.07597 4.51145 5.03119 5.60568 6.01759

0.1 1/3 1.09543 1.44878 2.14002 2.74845 3.62362 3.81129 4.12750 4.71283 5.03267 5.30990

1/2 1.08439 1.52725 1.95790 2.95296 3.54048 3.80026 4.18165 4.60211 5.05345 5.43282

FF plate 2 0.01 1/3 0.975832 1.17408 1.71388 2.48683 3.94040 4.15569 4.21921 4.80640 5.74668 5.76605

1/2 0.975409 1.18286 1.63090 2.80691 3.70925 3.94172 4.16892 4.72531 5.97187 6.25433

0.1 1/3 0.957060 1.14381 1.63825 2.34181 3.68218 3.86635 3.90440 4.41390 5.18133 5.20410

1/2 0.956534 1.15234 1.55926 2.65000 3.43073 3.68373 3.87919 4.33580 5.39497 5.63583

3 0.01 1/3 0.982095 1.07567 1.34966 1.73677 2.49836 3.24720 3.95670 4.05432 4.13326 4.35748

1/2 0.982252 1.08062 1.31357 1.85192 2.32053 3.40896 3.95830 4.06183 4.07900 4.31844

0.1 1/3 0.963450 1.05216 1.30888 1.66645 2.37701 3.04078 3.69888 3.78306 3.82797 4.04219

1/2 0.963617 1.05719 1.27270 1.78179 2.20089 3.20011 3.70088 3.77270 3.79037 4.00305
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