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Abstract

An asymptotic method of Bolotin, for the computation of eigenvalues of self-adjoint problems on
rectangular domains, is extended to the shallow shell equations for the vibrating circular cylindrical shell.
These same eigenfrequencies are then computed using the Legendre-tau spectral method. The asymptotic
and numerical results are seen to be in good agreement and, as expected, approach those of the flat plate as
the curvature tends to zero.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Resonant eigenfrequency analysis is essential to the design and control of vibrating structures.
In this paper we estimate the vibration spectrum of the equations for the shallow (and thin)
circular cylindrical shell, on a rectangular domain and with strongly clamped boundary
conditions. The equations modelling shell vibration constitute a system of a partial differential
equations with order higher than those for membranes (order 2) and plates (order 4).
Consequently, analysis of the spectrum is much more challenging.

Several authors have studied the vibration of cylindrical shells (see, e.g., Refs. [1-8]). However,
these studies treat shells which are closed in the circumferential direction, allowing for the
assumption of waveforms which automatically satisfy the conditions of smoothness in the
circumferential variable. Further, as we explain in Section 2, some of these authors apply the
shallow shell equations to these closed shells, despite the limitations implicit in the assumption of
shallowness.
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In this work, we treat the shallow cylindrical shell without the assumption that it is closed. Our
mathematical analysis is based on a method of Bolotin [9], which has been shown to be equivalent
to the wave method of Keller and Rubinow [10] in the case of the vibrating Kirchhoff thin plate
(see, Ref. [11]). We suspect that they are equivalent for shallow shells, as well. Therefore, it is our
opinion that the level of mathematical rigor in this approach is quite high.

Even though we treat only the case where the shall is strongly clamped, our methods generalize
to all combinations of energy-conserving boundary conditions (simply supported, roller
supported and free) and, further, to more complicated models for the cylindrical shell. This
paper provides benchmark data, both asymptotic and numerical, for comparison with future
experimental results.

The outline of this paper is as follows: in Section 2 we provide a brief discussion of the model
for the shallow cylindrical shell; in Section 3 we apply a generalization of Bolotin’s asymptotic
method to estimate the shell’s vibration spectrum; in Section 4 we apply the Legendre-tau spectral
method to this same problem; and in Section 5 we present benchmark data and a comparison of
the results.

2. Model: the shallow shell equations for the circular cylindrical shell
The classical partial differential equations describing the deflection of a thin circular cylindrical

shell (e.g., according to Timoshenko [12] and Donnell [13]), neglecting rotary inertia and shear
deformation, are

1 —v I +v v (1 —?)
Ux“c U, I/X’__W‘C:_— X
wh T Uyt Ve g En !
1+v I —v 1 (1 —v?)
2 et et e =T
h? 1 1 y 1 —?
S AW WV — Uy =—g.. 1
R4 TR TR TR En E D

where x and y are the independent variables (y is the circumferential variable, while x varies along
each generator); U, V" and W are the x, y and z direction deflections, respectively; ¢, ¢, and ¢.,
the loads in the positive x, y and z directions, respectively (with z increasing from “inside” to
“outside” the shell); and the shell constants R,v, E and & are the shell’s radius, Poisson ratio,
modulus of elasticity and thickness. Finally,

2 2\ 2
A2 — 6_ + a_
ox2  0y?
is the biharmonic operator.

Now, in order to compute the shell’s vibration spectrum, one must replace each load by the
corresponding inertia term. Then, assuming (as we do throughout this paper) that the wave
numbers are sufficiently large, we may neglect the u- and v-inertia terms (see Refs. [9,14]). A few
authors [3,4,7] have used this model to calculate the vibration spectrum for the closed cylindrical
shell. However, a very nice presentation of the equations of shallow shell theory can be found in
Ref. [15], and it can be shown quite easily that this model leads to the partial differential equations
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(1) in the case of the circular cylinder. Therefore, any study based on these equations must be
considered subject to the limitations of the shallowness assumption. For example, Ref. [16] states
that a cylindrical shell is shallow if “‘its radius is greater by one order of magnitude than (its) linear
dimensions.” Thus, in some circumstances, it may not be appropriate to use PDEs (1) for closed
cylindrical shells.

To be precise, then, let us give the dimensional version (with signs adjusted) of those equations
in Ref. [15] which we need. In terms of the forces-per-unit-length N;;, the moments-per-unit-length
M, the strains Ej;, the changes-of-curvature Kj;, and the displacements U, J and W, we have

equilibrium equations:

Nllx + NlZy = —{x, N12x + N22y = —{qy,
1
Mi1xx + 2M oy + My, + Esz = —q:; (2)

strain—displacement relations:

1
En=U, Enp=V,——W, Ep=%3U+Vy),

R
Ky =— W\'x: Ky = _Wyya Ky = _I/ny; (3)
constitutive relations:
Eh Eh Eh
Ni=-—=(En+vEpn), Npn=-—>(En+vEn), Np=-——En,
1 —v 1 —v 1+v
My = D(Ky1 +vKy»), My = D(Kn +vKy1), My = D(l+v)Ki. 4)

Here, D = ER?/[12(1 — v?)] is the shell’s flexural rigidity. Our domain is the rectangle 0 <x<a,
0<y<b and the boundary conditions are

U=V=W=W,=0. (5)

Now, in order to compute the vibration spectrum, we let

4x=¢,=0, q.= D Wi,

where p is the constant mass-per-unit-volume of the shell. Then we have a number of choices. For
example, we may

1. Substitute relations (3) and (4) into the equilibrium equations (2), resulting essentially in the
PDE:s (1), then separate out the time variable. This approach turns out to be more complicated
than the approach we actually take.

2. Decouple W from the other variables, using either Donnell’s equations [13] or the stress
function approach [9], resulting in the PDE

Eh h
AW 4+ W =~ 220,
in W alone. This approach has the serious disadvantage that there are only two W-boundary
conditions along each edge, and no apparent way of obtaining two more from the U- and V-
boundary conditions.
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3. Introduce the stress function F, resulting in two PDEs in the unknowns W and this stress
function, separate out time, and use the U- and V'-boundary conditions to derive two boundary
conditions in F along each edge. It is this last approach that we choose to take.

To this end, we assume there is a stress potential F(x, y, ) which satisfies
Fyy:Nlly Exx:NQQ; _E‘cy:N12-

Then it is easy to show that W and F will satisfy the well-known equations

1 h
AZW_ EF)(); == _% Wlla
AF +— W, =0, O<x<a, O0<y<b. (6)

R

As for boundary conditions, consider the edge y = 0 (the other edges are treated similarly). There
we have

U(x,0) = V(x,0) = W(x,0) = W,(x,0) =0, 0<x<a. (7
So we have two W-boundary conditions along each edge:
W(x,0) = W,(x,0) = W(x,b) = W,(x,b) =0, 0<x<a,
W(,y) = Wx0,y) = W(a,y) = Wi(a,y) =0, 0<y<b. (8)
We must now replace the U- and V-conditions with two conditions involving F. First, we note
that U(x,0) = 0 implies that
Ux(x,0) = Usx(x,0) = Urx(x,0) = -+ =0,

and, similarly, for V', W and W,. Now,

Eh Eh v
Fyy = Ni = W(Ell +vEpn) = m[l]x +vb), — 7 W},
Eh Eh 1
Foo=Np = [ (Ex +VvEnN) = W{Vy - R W+ va}
and
Eh Eh
F.,=—-Np=——Ep=—"—(U,+ V).
y S IR 2(1+v)( e
Along y = 0, we then have
Ehvy Eh
Pw=1"0Vr Pe=1"aW
which gives us our first F-boundary condition:
Fyy(x,0) = vF(x,0) =0, 0<x<a. )

Further, we have

(1-v%)

1 v—1
Eh Fxxy = Vyy _E Wy""VUxf :T(ny+ Vxx)
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and
1—? v
E—thyy = Uy +vV), - R w,.
Therefore, along y = 0,
- v—1
g Feo =Vt vly=—7—Uy
and
1 — v2
Do = Uy + 9V,
from which follows our second F-boundary condition
Fyyy(x,0) + (2 + v)Fr(x,0) =0, 0<x<a. (10)

Similarly, we have
Fyy(x,b) — vF(x,b) = F)(x,0) + 2 + v)Fyy(x,0) =0, 0<x<aq,
Fxx(oa y) - VFyy(O, y) = Fxxx(oay) + (2 + V)EYyy(O: y) =0, OSySb,

and
Fi(a,y) — VFyy(aay) = Fo(a,y)+ 2+ V)nyy(aay) =0, 0<y<hb. (11)

3. Bolotin’s method applied to the problem

Our problem now consists of the two PDEs (6) and the boundary conditions (8)—(11). First, we
separate time from the other variables:

W(x,y,0) = e“wx,y), F(x,y,0)=e"f(x,).

The PDEs (6) then become

h
w— fm—p w,

A2f+?hwm =0. (12)

The separated boundary conditions are identical to the ones we have, but with w(x, y) replacing
W(x,y,t) and f(x,y) replacing F(x,y,?).

Now, Bolotin’s asymptotic method [9] entails finding solutions of the form sink;(x — &) -
sin k>(y — &,) on the interior of the domain, then, since these solutions generally do not satisfy the
boundary conditions, of finding certain‘‘corrective solutions’ near each of the edges and, finally,
of “connecting” these solutions.

To this end, we let

w(x, y) = sinki(x — &) sinka(y — &)
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and
S(x,py) = Asinki(x — &) sinka(y — &)

for constants ki,k,¢,& and A. Then, substituting these into PDEs (12), we arrive at the
following relation between the eigenfrequencies A and the wave numbers k| and k;:

2
ph 2 232 C4k?
Al =k +5) +———, 13

where ¢* = Eh/(R?D).
Next, we find the corrective solutions of the form e sin ki(x — &;) near the boundary y =0
(and, similarly, near y = b). Specifically, we find those constant values of r for which
w(x,y) =e”sinki(x — &)
and
S(x,y) = Be”sinki(x — &;) (14)

satisfy the PDEs (12), with the intention of finding linear combinations of these solutions which
satisfy the boundary conditions at y = 0. Here, the constant B, may be different for different
values of r.

Substituting Eq. (14) into Eq. (12) leads to the 8th degree polynomial equation, given in Ref. [9]
(and with typos corrected)

(7 + k[ — 2k} + k)]

Akt
=2k + ki — ——55| = 0. (15)
(k} + k3)

Therefore, we have the five physically admissible roots

2
. / C
r = ilkz, - 2k12 + kz, —kl lim (16)

Here, we have made the further assumption that 1 — ¢?/(k} + k3) > 0, about which we shall say
more in Section 5.
So the corrective solution near the edge y = 0 is of the form

w = |:C01 sin kzy + Cpo cos kzy + Copze VvV 2k +k3y

+ Cpe PV IHE/EHDY | coeRiy 1(02/(k12+k§))y] sin ki (x — &),

f= [Dm sin k»y + Dg; cos kyy + Dyze™ V Aty
+ D04eikl A/ 1+(62/(k%+k§))y + Dosefk] A/ 1(62/(kf+k§))y:| Sln kl(x _ 51) (17)

(To get the corrective solution near y = b, we use constants Cj; and Dp;, and we replace y
everywhere by b — y).
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Now, we apply the boundary conditions at y = 0 to these solutions (17), resulting in
Coz + Coz + Cog + Cps = 0,

2 2
ks Cor — /2K + k3 Co3 — kg |1+ ——— Coa — kg |1 = ——— C
2Co1 1 T k5C03 1 +k%+k§ 04 1 k%—kk% 05

(sz k%)Doz + [(2 + V)kz + k ]D03
2

2
+k2<l+v+ >D04+k2<1+v—67>D05=0,
: Kk} + i3 : k3 + k3
kalks 4 (2 + v)ki1Do1 — £/ 23 + K3(vA; — k3)Do3
6‘2 6‘2
— k1 l4+v————|D
e e k2< i k%+k§> 04

2 2
e 1—C—<1+v+ )D05:0.
! kt + k3 k2 + k3

Further, applying the second PDE in Eq. (12) gives us the additional five equations
Eh

(k2 + k ) Dy — k%C()l =0,
h

(k3 + k3)* Doy — —k2 Cor =0,

(k3 4 k3)* Do3 —E—hk 2Cp3 =0,
*ki h 5

@i R =0
ki Eh ,

WDOS - ?k1C05 == 0

341

We may eliminate all but two of the variables and, after a lengthy computation, we arrive at

aCo1 + fCp2 =0
and, similarly,
aCp1 + fCpo = 0.
Here, we have
o = azcidy — azcrdy + aready — aycady + ayjcrds — areyd,
B = bycidy — bycady — bicsdy + bycad,
with
a1 = c*kikalks + (2 + vk,

(18)
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by =4/1 ¢ <1+v+ ¢ >w?+ﬁf
1= — 797 . 79 PR )
kt + k3 k+k3)

¢ =by + ¢ty [2K2 + IA(KE — vi),

cz 2
di=by — |1 +——|1 k3 + k3
1=b1—4/ +k%+k§< +v— e kz)( +k3),

2
ay :k2 |:<1 + v+ k k2> (k% + k%)4 _ C4k%(k§ + (2 + V)k%):| s
2
:,/2k%+k§[c4k]2(ka—k§)—<1+v+k >(k2+k)],

2
2 2 71233 ] ¢
d2 - —2C kl(kl +k2) l+m,
CZ
as =da 1+V—m ,
472002 12 ¢ ¢
by = MRk — k2) 1_W< e k2>
2
4 / 2 2 4
— C k] 2k% +k§(\)kl —k2)<1 +v —m>,

2 2
472572 2 ¢
c3=¢ kl[kZ +(2+V)kl] — l—m<l +v +k k2>

C2
— C4k1\/ 2k% + k%(Vk% — k%)(l +v— m),

2

c 2
dy =1 = 5— k3 + k3
: kf+k§< TeTR k2>( )’

S O (O (k2+k)
ki + k3 K +i3 '

Finally, Bolotin’s idea is to ‘“‘connect” these two corrective solutions via

Co1 sinkry 4+ Cpp cos kry = Cpy sin ky(b — y) + Cpy cos ka(b — ),
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which leads to

kb = tan™! +mn, m=1,2, ... (19)

p-a

Eventually, we will solve this equation simultaneously with the equation resulting from the
corrective solutions near x = 0 and « for the wave numbers k| and k.

So, let us now treat the boundary condition x = 0 (and, similarly, x = @). As before, we find
those values for r for which

w(x,y) =€ sinka(y — &)
and
f(x,y) = Be™sinky(y — &)

satisfy the PDEs (12). Proceeding as before, we arrive at the following 8th degree polynomial
equation in r:

4 2 2
( + kDA 18 — (kT + 4k + k3 | 247 + 5k3 + M i
(k3 + k3)
4k2
K kf+2k§+(kzc+7]1€2)2]}:0 20)
1 2

or, in Bolotin’s [9] notation,
(r* + kDA@G?) = 0.

We need, in turn, to find the roots of the cubic equation

A(x) =0
for which we turn to Cardan’s formula. The roots are found to be
k% + 4k§
X1 =r+s+—->7=
3
) k]2 + 4k§
Xy =r + w's + 3
k? + 4k3
X3 :w2r+ws+% (21)

27/3 and r and s are given by

(o

Hk3Q2K2 + k3)
(k2 + k3)°

where w = e

Here, we have

p =50 + k)’ +
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and
41.2(1-2 2
5 3 c*k3(ky + 2k3)
q:—2—27(k1+k§) +%W:

and, therefore,

VU At S L) + St + )

<q>2 N (1;)3 _ k(KT + k)

2 3.3
2k2 k2 kz
= M[\/: AUIN/)

33

where n; = k;/(k? + k3), i = 1,2, and f is a polynomial satisfying f(1;,1,) = O((n? + 13)%).
Then,

{r} B \3/(1{% R 10+ 2D | R R
- Y - 1> 112

¢ 77 3 k+k T 33
It + k3 i
:LTJVuﬁJ%%Hﬂwwﬁ

where the polynomial g(n,,1,) = O(3(n? + 13)). Therefore,

r B4k .
{ ' } =2 IF V3 i+ 06R0; + 1)

:kf+k2$c_2i k3 P i3 '
3 V3K + 1 (k3 + k3)*

Finally, neglecting the terms of O(k3/(k? + k%)z), the roots of A(x) are, from Eq. (21),
X = k% + 2k2,

2 a
”:@Q+P:F>
1 2

K21 e
B < ‘k%+k§>

and the five physically admissible roots of Eq. (20) are

2
r= tiky, —\/k2 +2k2,—k2,/1i7k21k2.
1 2

Proceeding as above, we arrive at the nine equations

Coz + Coz + Cos + Cops = 0,
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2 2
1 Cor — /]2 + 22 Cos — oy | 1+ 5 Coa — oy [1 = 5 C.
1Co1 1 T 2k5 Cos 2 +k%+k§ 04 2 k%+k§ 05

2
(vk3 — k})Doa + [k} + (2 + k3] Dos + K3 (1 i k2> Dos

2
R(14+v——"_\Dys =0,
" < o k%+k§> 0

ki [kt + 2+ v)k3]| Doy + \/ k3 + 2k2(ki — vk3)Dos

3 6’2 62
—k2 1+W<I+V—W>DO4
B L4V 45—y < VD5 =0
? I+ 3 KR+k2)7® "

Eh
(k3 + k3)* Doy — ikfcm =0,

Eh
(k3 4 k3)* Dy — — k2 Co =0,

(k3 + k3)* Do3 -I- (k2 +2k3)Co3 = 0,

474 Eh 2
s Do4+?k§<l +07>C04 =0,

(kf + K3)* ki + k3

*k3 Eh -
— "2 pes+ k2< —) Cos = 0.
iy " K+i) "

We note that the asymmetry in the x and y directions shows up in the last three equations.
Again, proceeding as above, we reduce this system to an equation relating Cy; and Cy,, do the
same for C,; and C,, at the edge x = a, and connect via

Corsinkx + Cppcoskix = Cyy sinki(a — x) + Cypp cos ki(a — x).
After a lengthy computation, we arrive at

-1

2
kia = tan ﬂzﬂmn, n=1,2, .., (22)

— 2
where o and f are again given by Eq. (18). However, here we have

a; = ISk + 2+ v)k3),
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2 \? 2 ,
b1:k§< e k2> <1+v+k2 k2>(k + k3,

1 = by 4 A3 + 26313 — Vi),
b s 2 3/2 2 k2 k
c? i& 2 204 ¢
=kl ———= ki 4k 1 —_—
I k%+k5) wi i ”*k%wc%)
473172 2 ¢ 472 3/2,1.2 2 ¢
kik 2 W1 — 55—, =—c(k 2k3 ky — vk —
+ ¢ 1[ 1+( +V) 2] k%—{—k%’ C( + ) ( 2) k%-‘—k%
: 5 2 3/2 ) 2
_1/k1+2k2<1_k%+k§> (K +k)< —|—v—|—k2+k2>
2 2 3/2 2
1+ l+v———=—=
k%+k5< k%+k§) ( ' k%+k§>

2 2 3/2 2
1+ 1 - l+v+——=
kt + k3 kt 4 k3 I3+ K2

2

C
k? + k3

= k(3 + I3)*

a3:c4k13<1+v— >[k2+(2+v)k]

> 2
472 2 2 ¢ <
b= = it vk 1~ (1 )

2

c 2
3= — 4(k2+2k){k2[k2+(2+v)k] g k2< +v +k2 k2>

2
+ (k7 — vk?) k2+2k2<1 +v—7)},
1 2 1 2 k% + k%
c? e ? e
kz(k2+k)< ) <1+v—7> 14+ -—5—
k} + k3 k3 + i3 k3 + i3
LS o ¢
k3 + k3 K+ k2|
The final step is to solve Egs. (19) and (22) simultaneously for the wave numbers k| and k,, for

all pairs of n and m, then substitute each pair (k1, k) into Eq. (13) to determine the corresponding
eigenfrequency.
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4. The Legendre-tau spectral method applied to the problem

The Legendre-tau spectral method [17] may be applied to problems with domain —1<x<1,
—1<y<1, and entails approximating the functions involved with truncated sums of products of
Legendre polynomials, as is seen below.

We must transform our eigenvalue problem consisting of the PDEs (12) and the boundary
conditions in w and f into a problem on the above domain. To this end, we let

) = (504 D30 D)
and
Y(x,y) =f<%(x+ 1),§(y+ 1)), —1<x<1, —1<y<l,

in which case our original system transforms to the PDEs
16 32 16 1

4 d)m‘cx W ¢xxyy + F d)yyyy - E; l/jxx =4 (ba (23)
16 32 16 Eh 4
4 lpmxx 2b2 lpxxyy—i_ﬁlpyyyy 2 ¢xx =0, —-l<x<l, —l<y<l], (24)

and the boundary conditions

¢(x9_1):¢y(x7_1):¢(xa 1):¢y(xal):03 _1<x<19

d)(_l’y):d)x(_l’y):d)(l’y):d)x(lay)zo’ —1<J’<1,

1 \J 1 24+
ﬁ l//yy(xa _1) - ; wxx(xﬂ _1) = b_3 l/]yyy(x9 _1) + Tb kpxxy(x’ _1)
1 v 1 24v
_ﬁwyy(x’l)_gwxx(x’l) :Elpyyy(xa 1) 2b lprxy( 1) =0, —-l<x<l,
1 v 2+v
;l//xx(ilsy) - Ewyy(il 3 w\‘m( 1 y) +— 2 l//xyy( 1 J/)

1 v
:;wxx(l,y)_ﬁlpyy(l’y):;l/jxx’c(lay)—i_ml/j,\yy(lay):Oa _1<y<1 (25)

Here 1 = \/(ph/D)J.

Now, for the Legendre-tau spectral method, we approximate ¢ and y using the functions

N M
(b% qu,M(X,y) = Z Z anmPn(x)Pm(y)a
n=0 m=0
N M
VR YN (60) =D D bunPu(X)Pu(y), (26)

n=0 m=0
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where by Ziv:o Zfl\fzo 'C,;» we mean the sum Zfz\f:o Zf:o C,m with the terms Cyy, Co1, Cio and
C11 neglected (since the PDEs and boundary conditions involve only second and higher order
derivative terms of ).

We now proceed as in Ref. [18]. Substituting ¢y, and y ,, into the PDEs (23) and (24) and
comparing coefficients of Pi(x)Pi(y), i=0,...,N -4, j=0,1,...,M — 4, leads to the 2(N —
3)(M — 3) equations

— Pay + Z Z i+3)(q+3)lalg + D — i + DIp( + 1) — qg + Dlay,

q=i+2  p=q+2
q+z even p+geven

a2b2 Z Z i+3

p=i+2  gq=j+2
p+ieven g¢+jeven

[P+ D) — i(i + Dllg(q + 1) = jG + Dlayg + Z Z J+(a+Y

q=j+2  p=q+2
q+j even p+q even

4 N
la(g + 1) = jG + DIp( + 1) = 4q + Dlap = o > (i) + 1) = ili+ Dby =0
p=i+2
p+ieven

and

N=2

16 > Z i+3)(q+3)alg+ 1) =i+ Dlp( + 1) — q(qg + Dby

q=i+2  p=q+2
g+ieven p+qeven

a2,,z Z Z i+3) 4+ D@+ 1) = i+ Dllglg + D) = jG + Dby

=i+2  g=j+2
p+1 even ¢-+jeven

Z Z J 4+ (g +Dlgg + 1) = jG + DI + 1) — g(q + Dby

q=j+2  p=q+2
q+j even p+q even

4Eh L .
+ R Z (l +§)[p(p+ 1) —i(i + D]a, =0,
p=i+2
p+ieven
where (here and below) we use the well-known properties of Legendre polynomials (see, e.g.,
Ref. [17]).

Next, we substitute ¢, and  ,, into the boundary conditions (25) and compare coefficients
of Pi(x),i=0,1,...,N,or P(y),j=0,1, ..., M, resulting in 8N + 8 M + 16 additional equations.
However, it is not hard to show that these equations are not linearly independent and, in fact, that
there are eight “dependency relationships™ at each corner (x,y) = (+1, +1). Therefore, from
these we choose 8N + 8 M — 16 linearly independent equations.
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Finally, as we have too many equations, we remove four additional equations (we have chosen
to remove the equations from Eq. (24), for i=N -5, N —4,j=M — 5, M — 4, although we
have experimented with many different rows and have found the results to be stable).

Now, we have a square system in the unknowns a,,, and b,,,, and the eigenvalue 4, which we can
write as

(J’A+ Bw=0
for [2(N + 1)(M + 1) — 4] x [2(N 4+ 1)(M + 1) — 4] matrices A and B.

5. Computational results

In this final section, let us compute the eigenfrequencies for specific cases. We are restricted by
the following assumptions:

ﬁ,—<0.1 (shallowness assumption [16]),
R R
2

W<l (thinness assumption [5, 13]),

2
@ V12=V) 2 e 27)

Rh
This last assumption, as mentioned earlier, ensures that the root

C2

r=—kiy|l———0
ki + k3

is a negative real number, thereby ensuring that we do not have, in Bolotin’s terminology, an edge
effect which degenerates. We have been led, in our choice of values for ¢2, by our knowledge of the
wave numbers of the corresponding flat plate (see, e.g., Refs. [18,19]). We should mention here,
though, that there obviously are many situations where a shell is shallow and thin, but where
Eq. (27) is violated. Although we do not include such cases in this paper, these degenerate
problems are of sufficient importance to warrant further investigation.

Now, the Bolotin calculations in this paper again involve solving simultaneously Egs. (19)
and (22), for the wave numbers k; and k;. To this end, we have used the IMSL subroutine
DNEQF [20].

As for the spectral calculations, we have used the IMSL routine DGVCRG, which solves the
generalized eigenvalue—eigenvector problem

AAv = Bu. (28)

All computations were performed on the DEC Alpha mainframe at Fairfield University.

In every case, we have taken v = 0.3 for the value of Poisson’s ratio. In Table 1, we look at the
first 30 frequencies for the case a = b = 1 and ¢* = 625. More specifically, we list the wave-cell
numbers n and m, the wave numbers k| and &, (calculated using Bolotin’s method), the Bolotin
estimates for the frequencies and, finally, the spectral estimates for the frequencies. For the
spectral computations, we have used N = M = 22 and, comparing results for N = M = 20 and
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Table 1

A comparison of the first 30 eigenfrequencies for a 1 x 1 segment of a shallow cylindrical shell, using Bolotin’s method
and the Legendre-tau spectral method, including the wave-cell numbers, n and m, and the wave numbers, k; and k»

Frequency
n m ky ky Bolotin Spectral
1 1 4.4263 4.5698 40.5476 42.4722
2 1 7.6674 3.8910 74.0361 74.1276
1 2 3.8648 7.7093 74.3763 76.8294
2 2 7.3583 7.3748 108.5602 110.1033
3 1 10.8970 3.6141 131.8841 132.1857
1 3 3.6092 10.9087 132.0272 134.1390
3 2 10.6913 7.1077 164.8589 165.4702
2 3 7.1021 10.6990 164.9156 166.1317
4 1 14.0788 3.4910 210.4524 210.6038
1 4 3.4896 14.0828 210.5036 211.8771
3 3 10.4788 10.4826 219.7043 220.7867
4 2 13.9392 6.9324 242.3929 242.4160
2 4 6.9305 13.9428 242.4364 244.4315
4 3 13.7729 10.3060 295.9237 296.5930
3 4 10.3041 13.7750 295.9305 296.8665
5 1 17.2407 3.4206 308.9791 309.0493
1 5 3.4200 17.2422 308.9906 310.0026
5 2 17.1425 6.8161 340.3522 340.6740
2 5 6.8149 17.1440 340.3601 341.2982
4 4 13.6161 13.6175 370.8448 372.3674
5 3 17.0133 10.1708 392.9158 392.9889
3 5 10.1700 17.0147 392.9302 394.5137
6 1 20.3935 3.3742 427.3087 427.3723
1 6 3.3740 20.3943 427.3108 428.0507
2 6 6.7333 20.3222 458.3314 458.0217
6 2 20.3216 6.7339 458.3334 459.3059
4 5 13.4822 16.8807 466.7335 467.4201
5 4 16.8800 13.4832 466.7408 467.5568
3 6 10.0676 20.2215 510.2673 510.7043
6 3 20.2213 10.0686 510.2923 511.0504

¢ =625and v=0.3.

N= M = 22, we have found that the frequencies have converged to at least three decimal places.

Also, for the subroutine DNEQF, the error is defined to be

20,8,
ERROR(n,m) = |tan~! —22Px
o

where oy, B, and oy, f3, are the quantities o,  from Egs. (22) and (19), respectively. For the Bolotin

results in Table 1, the greatest error is ERROR(7,4) = 1.1 x 1076,
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Table 2
A comparison of the first 30 eigenfrequencies for a 5 x 2 segment of a shallow cylindrical shell, using Bolotin’s method
and the Legendre-tau spectral method, including the wave-cell numbers, n and m, and the wave numbers, k; and k»

Frequency
n m ki k> Bolotin Spectral
1 1 0.7731 2.3904 6.3145 6.8589
2 1 1.4565 2.3096 7.4772 7.7782
3 1 2.1132 2.1839 9.2857 9.5293
4 1 2.7633 2.0582 11.9414 12.2018
5 1 3.4086 1.9600 15.5332 15.7847
1 2 0.6812 3.9183 15.8170 15.7950
2 2 1.3573 3.8824 16.9163 16.8978
3 2 2.0259 3.8285 18.7665 18.7859
6 1 4.0491 1.8906 20.0371 20.2764
4 2 2.6872 3.7665 21.4178 21.4782
5 2 3.3420 3.7042 24.9062 24.9991
7 1 4.6859 1.8414 25.4075 25.6158
6 2 3.9915 3.6465 29.2492 29.3620
1 3 0.6631 5.4917 30.5986 30.6276
8 1 5.3201 1.8053 31.6136 31.7164
2 3 1.3249 5.4721 31.6989 31.8009
3 3 1.9845 5.4416 33.5495 33.5813
7 2 4.6365 3.5956 34.4476 34.5690
4 3 2.6412 5.4037 36.1774 36.2216
9 1 5.9527 1.7778 38.6382 38.7909
5 3 3.2946 5.3619 39.6087 39.6687
8 2 5.2779 3.5516 40.4939 40.6161
6 3 3.9449 5.3192 43.8619 43.9327
10 1 6.5840 1.7562 46.4711 46.7495
9 2 5.9166 3.5140 47.3778 47.4968
7 3 4.5921 5.2775 48.9473 49.0290
1 4 0.6547 7.0647 50.3378 50.3369
2 4 1.3088 7.0525 51.4510 51.4558
3 4 1.9620 7.0332 53.3160 53.3311
8 3 5.2365 5.2382 54.8690 54.9580

¢*=16and v=0.3.

In Tables 2 and 3 we do the same, but fora =5, b =2 and ¢* = 16 for Table2anda =2,h =5
and ¢* = 16 for Table 3. Each spectral calculation here converges to at least 6 decimal places,
comparing N =M =20 and N = M =22. Further, the greatest error in DNEQF is
approximately 1.0 x 1077,

We see from Tables 1-3 that agreement between the two methods is nearly as good as in the
case of the flat plate (see Ref. [18]). Further, this agreement suggests that both methods capture
the full range of the spectrum.

Also interesting is a comparison between the 5 x 2 and the 2 x 5 cases, where it is seen—more
easily with the spectral data than Bolotin’s—that the frequencies in the former case are
alternatively greater than and less than those of the latter.
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Table 3
A comparison of the first 30 eigenfrequencies for a 2 x 5 segment of a shallow cylindrical shell, using Bolotin’s method
and the Legendre-tau spectral method, including the wave-cell numbers, n and m, and the wave numbers, k; and k»

Frequency

n m ky k> Bolotin Spectral
1 1 2.3114 0.8016 6.2455 6.9924
1 2 2.2551 1.4766 7.3996 7.5346
1 3 2.1533 2.1263 9.2134 9.1629
1 4 2.0427 2.7714 11.8741 11.8171
1 5 1.9526 3.4134 15.4718 15.4545
2 1 3.9106 0.6821 15.8770 16.2412
2 2 3.8730 1.3589 16.9405 17.2194
2 3 3.8205 2.0278 18.7731 18.9552
1 6 1.8870 4.0519 19.9818 19.9842
2 4 3.7606 2.6889 21.4135 21.5283
2 5 3.7002 3.3435 24.8948 24.9740
1 7 1.8395 4.6876 25.3585 25.3704
2 6 3.6439 3.9926 29.2332 29.2958
3 1 5.4902 0.6632 30.6451 30.8441
1 8 1.8042 5.3212 31.5706 31.5827
3 2 5.4698 1.3252 31.7312 31.9131
3 3 5.4392 1.9849 33.5713 33.7255
2 7 3.5939 4.6373 34.4291 34.4835
3 4 5.4016 2.6416 36.1912 36.3211
1 9 1.7772 5.9533 38.6007 38.6159
3 5 5.3602 3.2951 39.6161 39.7270
2 8 3.5505 5.2786 40.4743 40.5239
3 6 5.3179 3.9453 43.8641 43.9584
1 10 1.7558 6.5845 46.4382 46.6003
2 9 3.5133 59171 47.3582 47.4047
3 7 5.2765 4.5925 48.9456 49.0297
4 1 7.0642 0.6547 50.3703 50.4912
4 2 7.0518 1.3089 51.4771 51.5948
4 3 7.0324 1.9621 53.3367 53.4488
3 8 5.2375 5.2368 54.8644 54.9411
¢*=16and v=0.3.

We remark that, as the curvature of the cylinder —0 (i.e., as R— o0), the PDE system (6)
becomes

AW = _ph W,, A°F =0,
D
which, of course, describes the vibration of the Kirchhoff thin plate. In Table 4, we include the
Bolotin frequencies for the 1 x 1 shell for various decreasing values of ¢* and, in the last column,
those for the plate. We see that, for each mode, the shell frequency decreases monotonically and
approaches that of the plate (as expected, of course). And, of course, as ki, k»— oo, the
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Table 4
A comparison of the first 30 eigenfrequencies for a 1 x 1 segment of a shallow cylindrical shell, with v = 0.3, for various
values of ¢* approaching 0

=450 ¢t =300 ¢t =200 =100 =50 A =10 =1 =01 Plate
39.083 37.795 36.918 36.023 35.567 35.194 35.105 35.094 35.092
73.719 73.454 73.279 73.100 73.010 72.925 72.905 72.902 72.902
73.954 73.598 73.365 73.132 73.017 72.931 72.908 72.904 72.902
108.257 107.998 107.824 107.650 107.562 107.490 107.472 107.470 107.470
131.821 131.766 131.728 131.682 131.658 131.635 131.629 131.629 131.629
131.915 131.818 131.755 131.687 131.663 131.641 131.632 131.629 131.629
164.736 164.618 164.545 164.470 164.430 164.396 164.388 164.387 164.387
164.768 164.636 164.557 164.472 164.431 164.398 164.389 164.387 164.387
210.434 210.417 210.404 210.384 210.370 210.363 210.362 210.362 210.362
210.464 210.430 210.407 210.389 210.376 210.368 210.364 210.362 210.362
219.598 219.510 219.449 219.388 219.358 219.332 219.325 219.325 219.325
242.342 242.298 242.268 242.233 242215 242.200 242.197 242.197 242.197
242.371 242.312 242.274 242.234 242.218 242.203 242.198 242.197 242.197
295.857 295.802 295.772 295.737 295.718 295.702 295.698 295.698 295.698
295.866 295.806 295.773 295.737 295.719 295.703 295.699 295.698 295.698
308.968 308.959 308.949 308.939 308.928 308.929 308.929 308.929 308.929
308.974 308.959 308.953 308.945 308.934 308.933 308.931 308.930 308.929
340.314 340.294 340.280 340.263 340.250 340.245 340.244 340.244 340.244
340.329 340.300 340.282 340.266 340.254 340.248 340.245 340.244 340.244
370.784 370.743 370.716 370.688 370.674 370.662 370.659 370.659 370.658
392.885 392.857 392.838 392.818 392.806 392.798 392.796 392.796 392.796
392911 392.861 392.839 392.818 392.808 392.799 392.796 392.796 392.796
427.303 427.295 427.290 427.285 427.283 427.280 427.281 427.281 427.280
427.306 427.300 427.296 427.291 427.288 427.283 427.282 427.281 427.280
458.309 458.299 458.290 458.280 458.276 458.270 458.270 458.269 458.269
458.317 458.300 458.292 458.284 458.279 458.272 458.270 458.270 458.269
466.698 466.670 466.652 466.633 466.623 466.615 466.613 466.613 466.613
466.700 466.674 466.652 466.634 466.624 466.616 466.613 466.613 466.613
510.241 510.225 510.214 510.199 510.193 510.189 510.189 510.189 510.189
510.247 510.227 510.215 510.200 510.195 510.190 510.189 510.189 510.189

The last column lists the same frequencies for the 1 x 1 Kirchhoff thin plate.

frequencies in each column approach those of the plate, as well (from Eq. (13)). (We note that this
last statement will not necessarily hold if either of the edges y = constant is free because, in this
case, ky = 0 is a wave number, and, as a result, the right side of Eq. (13) equals k} + ¢*.)
Lastly, in Fig. 1 we provide plots of the first eight eigenmodes (including multiplicities) for the
function W, for the data which are used in Ref. [5] (in their treatment of inextensional vibrations
of cylindrical shells). Specifically, we have R = 33.0 mm, /4 = 0.155 mm, p = 3.23 x 10° kg/m3,
E = 69.0 GPa and v = 0.3, and we have computed the function ¢y ,, in Eq. (26) at 41 x 41 =
1681 grid points. The coefficients a,,, correspond to the first (N + 1)(M + 1) = (20 + 1)(20 + 1)
entries of the generalized eigenvector v in Eq. (28), and the graphics were performed using
MATLAB. The corresponding frequencies are given in Table 5. Also, we have provided, next to



354 M.P. Coleman | Journal of Sound and Vibration 263 (2003) 335-356

+
;',,M AR (D
@.3) e
+
+ -
(4)
- | +
+
(5.6) i
6 ®
+ ||t il
(7,8) + -
— + — —
+

Fig. 1. The first eight eigenmodes, including multiplicities, and corresponding nodal patterns for the function W, using
the data given in Ref. [5]: R = 33.0 mm, 4 = 0.155 mm, p = 3.23 x 10’ kg/m’, E = 69.0 GPa and v = 0.3. These modes
correspond to the frequencies given in Table 5. Note that, in the nodal figures, “4”" represents those regions where
W >0; “—", where W <0. The modes are given by the numbers in parentheses.
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Table 5

The first eight eigenfrequencies for a 1 x 1
segment of a shallow cylindrical shell, using
Bolotin’s method, for the data given in Ref. [5]

N

m Frequency

1 35.098
1 72.903
2 72.906
2 107.470
1 131.629
3 131.631
2 164.387
3 164.388

N W — W N = N =

These frequencies correspond to the eigen-
modes shown in Fig. 1. Again, n and m are the
wave-cell numbers.

2

each eigenmode, a bird’s-eye view of the figure with the nodal lines, and with “+” and “—
representing those regions where W >0 and W <0, respectively.

Although we do not include them here, we plotted the eigenmodes for the Kirchhoff thin plate
and have found, not surprisingly, that, at the resolution we have used, the modes for the plate and
those for the shell are virtually indistinguishable.

It is interesting to note in Table 5 (as well as in Tables 1 and 4) that there are numerous ‘“‘almost
paired” frequencies. These pairs, of course, correspond to frequencies of the plate which have
multiplicity 2. As a result, the 2nd and 3rd eigenmodes essentially will be reflections of each other
through the domain’s diagonal; the same is true for the 7th and 8th modes. Why, then, are the 5th
and 6th modes so different from each other? The answer is that we can find two different linear
combinations of these two modes which will exhibit the same symmetry as do the other paired
modes.
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