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Abstract

This paper is devoted to the development of a novel approximate and numerical method for the solutions
of linear and non-linear oscillatory systems, which are common in engineering dynamics. The original
physical information included in the governing equations of motion is mostly transferred into the
approximate and numerical solutions. Therefore, the approximate and numerical solutions generated by
the present method reflect more accurately the characteristics of the motion of the systems. Furthermore,
the solutions derived are continuous everywhere with good accuracy and convergence in comparing with
Runge–Kutta method. An approximate solution is developed for a linear oscillatory problem and
compared with its corresponding exact solution. A non-linear oscillatory problem is also solved numerically
and compared with the solutions of Runge–Kutta method. Both the graphical and numerical comparisons
are provided in the paper. The accuracy of the approximate and numerical solutions can be controlled as
desired by the number of terms in the Taylor series and the value of a single parameter used in the present
work. Formulae for numerical computation in solving various linear and non-linear oscillatory problems
by the new approach are provided in the paper.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is usual to express an oscillatory system by an ordinary differential equation in the form

.x þ 2c ’x þ o2x ¼ f ðt; x; ’xÞ; ð1Þ

where the coefficients c and o are the physical properties of the system and f ðt; x; ’xÞ can be either a
linear or a non-linear function of time, displacement and velocity of the oscillator considered. In
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solving the above equation by the existing numerical methods such as Euler’s method, Taylor
series method and Runge–Kutta method [1,2], conventionally, the second order differential
equation shown in Eq. (1) is transformed into a system of first order differential equations. On the
basis of the first order differential equations, a recurrence relation for numerical calculation is
then developed in the form

xi ¼ F ðxiþ1; ’xiþ1Þ: ð2Þ

Obviously the numerical solution given by the above equation can only be discrete, and the
solutions at the ith point, xi; rely upon the initial conditions and the calculated solutions
corresponding to the discrete points i ¼ 1; 2; 3;y; i � 1: In addition, due to the mathematical
operations such as linearization and Taylor expansion, the physical meaning implied in the
original equation of motion is lost in the mathematical manipulations.

In this paper, a new approach namely the P-T method for approximately and numerically
solving the linear and non-linear oscillatory problems is developed. The numerical results
calculated by using the P-T method are presented and compared with the results generated by
Runge–Kutta method which is probably the most popular numerical method in solving various
linear and non-linear differential equations [2–4]. With the introduction of a piecewise-constant
argument ½Nt�=N; where ½Nt� represents the greatest-integer function and N an integer parameter,
together with Taylor series expansion, the numerical solution of Eq. (1) is so developed that a
linear oscillatory system is established between the two points ½Nt�=N and ð½Nt� þ 1Þ=N:
Therefore, unlike the discrete solutions produced by the existing numerical methods, the
approximate and numerical solutions produced by the P-T method are continuous everywhere on
the entire time range from zero to t for any given value of N:

In numerically solving the oscillatory problems by the P-T method, the major portion of the
corresponding original differential equations remains unchanged. Therefore, the solutions derived
by the P-T method are more accurate than the existing numerical methods such as Runge–Kutta
method. Most significantly, the P-T method reveals the actual physical behavior of the oscillatory
systems to the maximum possible level in comparison with Runge–Kutta method and the other
numerical methods with discrete solutions.

Since the numerical technique presented in this paper is based on a single-step method, and the
step length for numerical calculations can be varied freely for each time interval, a step size
control technique becomes possible.

2. Derivation of approximate and numerical solutions

Piecewise-constant arguments of form ½�� have been widely used in the analysis on the
delay differential equations [5,6]. To approximately or numerically solve non-linear
dynamical problems, Dai and Singh [7,8] recently reported a piecewise-constant technique in
which the piecewise-constant argument ½Nt�=N was introduced for solving the vibration problems.
It was demonstrated in Refs. [7,8] that the following condition is satisfied as N approaches
infinity:

lim
N-N

½Nt�
N

¼ t: ð3Þ
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Consequently, the approximate solutions produced by a piecewise-constant technique employing
the argument ½Nt�=N were proved to become the corresponding accurate solutions when N tended
to infinity. In numerically solving a dynamical problem by the piecewise-constant technique, N
was a chosen finite number and used as a factor to control the accuracy of the numerical results.
The piecewise-constant technique produces reasonably accurate results. In order to further
improve the efficiency of the numerical calculation based on the piecewise-constant technique,
employment of Taylor series expansion seems to be a natural choice.

Taylor series expansion is essentially an expression, which can generally be used to approximate
any function to any desired degree of accuracy. In considering this, a more accurate numerical
solution may be anticipated if a linear or a non-linear governing equation can be replaced by a
second order ordinary differential equation together with a power series of finite terms.

Making use of the piecewise-constant argument ½Nt�=N and Taylor series expansion of order n;
Eq. (1) can be approximately expressed as follows:

.xi ¼ gi þ g0
it þ

1

2!
g00i t2 þ?þ

1

n!
g
ðnÞ
i tn; ð4Þ

where g ¼ f ðt; x; ’xÞ � 2c ’x � o2x; and the subscript i ¼ 1; 2; 3;y represents an arbitrary time
interval of ½Nt�=Nptoð½Nt� þ 1Þ=N; and further

gi ¼ g
½Nt�
N

; xi

½Nt�
N

� �
; ’xi

½Nt�
N

� �� �
; ð5Þ

g0i ¼
d

dt
gðt; xi; ’xiÞ

� �
t¼½Nt�=N

; ð6Þ

g00i ¼
d2

dt2
gðt; xi; ’xiÞ

� �
t¼½Nt�=N

; ð7Þ

^

g
ðnÞ
i ¼

dn

dtn
gðt;xi; ’xiÞ

� �
t¼½Nt�=N

: ð8Þ

The solution to Eq. (4) is given by

xiðtÞ ¼ di þ vit þ
1

2!
git

2 þ
1

3!
g0

it
3 þ?þ

1

ðn þ 2Þ!
g
ðnÞ
i tnþ2: ð9Þ

This solution may be used for numerical purpose if it is expressed in the form

xiþ1ðtÞ ¼ di þ vi

1

N
þ

1

2!
gi

1

N2
þ

1

3
g0

i

1

N3
þ?þ

1

ðn þ 2Þ!
g
ðnÞ
i

1

Nnþ2
; ð10Þ

where the displacement and velocity of the system at t ¼ ½Nt�=N are given as

di ¼ xi
½Nt�
N

� �
; vi ¼ ’xi

½Nt�
N

� �
: ð11Þ

The numerical solution calculated by Eq. (10) is similar in principle to that given by the numerical
method of Taylor series of order n upon which the popular Runge–Kutta method is developed
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[1,9]. The accuracy of the solution depends on the order n or the number of terms n þ 1 in Eq. (4).
Making use of the piecewise-constant technique, the accuracy of the numerical calculation is, in
addition, controlled by the parameter N.

A better numerical solution may be expected if the governing equation (1) is expressible in a
form such that a portion of it is made analytically solvable. For instance, consider

.x þ 2c ’x þ o2x ¼ jðtÞ þ cðt;x; ’xÞ: ð12Þ

In the above equation, the left-hand side together with the first term jðtÞ on the right-hand side is
a non-homogeneous ordinary differential equation for which an analytical solution is readily
available. In order to numerically solve this equation, cðt;x; .xÞ is expressed as a function of t by
Taylor series expansion, such that

.xi þ 2c ’xi þ o2xi ¼ jiðtÞ þ ci þ ’cit þ
1

2!
.cit

2 þ?þ
1

n!
cðnÞ

i tn; ð13Þ

which is valid on an arbitrarily small ith time interval, ½Nt�=Nptoð½Nt� þ 1Þ=N: In comparison
with Eq. (4), the above equation contains much more of the original physical information
embedded in the governing equation (1), it is likely to have a solution closer to the accurate
solution to Eq. (1).

For a numerical technique, it is important to ensure that the convergence of the numerical
solution with the original dynamical system is satisfied. To analyze the convergence of the
numerical solutions derived through the present technique and the truncation error caused by the
P-T method, the governing equation of the oscillatory problem in a general form of Eq. (12) can
be considered. With the P-T method, the solution of this system within the interval
½Nt�=Nptoð½Nt� þ 1Þ=N; can be obtained by the following governing equation:

.xi þ 2c ’xi þ o2xi ¼ jðtÞ þ c
½Nt�
N

; xi

½Nt�
N

� �
; ’xi

½Nt�
N

� �� �
: ð14Þ

Thus, within this interval, the difference between the continuous system with solution xðtÞ to
Eq. (12), and the system governed by this equation of piecewise-constant system is expressible as

.x þ 2c ’x þ o2x � jðtÞ � c
½Nt�
N

; xi

½Nt�
N

� �
; ’xi

½Nt�
N

� �� �
¼ RN : ð15Þ

Usually, the truncation error RN is not zero. Employing Taylor expansion, the derivatives shown
in the above equation can be given as

.xðtÞ ¼ .x
½Nt�
N

� �
þ x000 ½Nt�

N

� �
t �

½Nt�
N

� �
þ 0 t �

½Nt�
N

� �2
 !

; ð16Þ

’xðtÞ ¼ ’x
½Nt�
N

� �
þ .x

½Nt�
N

� �
t �

½Nt�
N

� �
þ 0 t �

½Nt�
N

� �2
 !

ð17Þ

and

xðtÞ ¼ x
½Nt�
N

� �
þ ’x

½Nt�
N

� �
t �

½Nt�
N

� �
þ 0 t �

½Nt�
N

� �2
 !

: ð18Þ
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From Eq. (12),

.x
½Nt�
N

� �
þ 2c ’x

½Nt�
N

� �
þ o2x

½Nt�
N

� �
� f

½Nt�
N

� �
� c

½Nt�
N

; x
½Nt�
N

� �
; ’x

½Nt�
N

� �� �
¼ 0: ð19Þ

Thus,

RN ¼ x000 ½Nt�
N

� �
þ 2c .x

½Nt�
N

� �
þ o2 ’x

½Nt�
N

� �� �
t �

½Nt�
N

� �
þ 0

1

N

� �2
 !

; ð20Þ

whereas jt � ½Nt�=N jp1=N:
Utilizing the conclusion indicated in Eq. (3) and the proof in Ref. [8], the truncation in the

above equation is zero as N-N and the time integral step tends to zero, such that the difference
between the exact solution and the numerical solution is vanished correspondingly.

In the proof above, c and o are bounded, as N-N; .xð½Nt�=NÞ- .xðtÞ; ’xð½Nt�=NÞ- ’xðtÞ;
xð½Nt�=NÞ-xðtÞ; jð½Nt�=NÞ-j tð Þ; and cð½Nt�=N;xð½Nt�=NÞ; ’xð½Nt�=NÞÞ-cðt; x; ’xÞ; hence, the
piecewise-constant system becomes the cotinuous system.

3. Solution of a linear system

To elucidate the above point more clearly, consider the following equation of motion
representing a damped linear oscillatory system:

.xðtÞ þ 2c ’xðtÞ þ a2xðtÞ ¼ bxðtÞ ð21Þ

for which an analytical solution is available. Based on the discussion above, this equation is
replaced by the following equation with Taylor expansion for the term bxðtÞ:

.xiðtÞ þ 2c ’xiðtÞ þ a2xiðtÞ ¼ bdi þ bvi t �
½Nt�
N

� �
; ð22Þ

which is valid on the ith interval ½Nt�=Nptoð½Nt� þ 1Þ=N: In this equation, only the first two
terms of the Taylor series expansion are considered and the rest of the higher order terms are
neglected.

Solution of Eq. (22) is expressible as

xi ¼ e�c t�½Nt�=Nð Þ B1 cos x t �
½Nt�
N

� �� �
þ B2 sin x t �

½Nt�
N

� �� �� �
þ A1 þ A2 t �

½Nt�
N

� �
ð23Þ

in which

x2 ¼ a2 � c2; ð24Þ

A2 ¼
1

a2
; A1 ¼

1

a2
ðbdi � 2cA2Þ; ð25Þ

B1 ¼ d1 � A1; B2 ¼
1

x
ðvi þ cB1 � A2Þ: ð26Þ

It may be noted in Eq. (23) that the displacement xðtÞ and velocity ’xðtÞ are continuous in the
time interval. Because of the continuity of x and ’x on tA½0;NÞ, the following conditions must be
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satisfied:

xi
½Nt�
N

� �
¼ xi�1

½Nt�
N

� �
and ’xi

½Nt�
N

� �
¼ ’xi�1

½Nt�
N

� �
: ð27Þ

The above conditions of continuity lead to the recurrence relations

diþ1 ¼ e�c=N B1 cos
x
N

þ B2 sin
x
N

� �
þ A1 þ

A2

N
; ð28Þ

viþ1 ¼ �ce�c=N B1 cos
x
N

þ B2 sin
x
N

� �
þ e�c=N �xB1 sin

x
N

þ xB2 cos
x
N

� �
þ A2: ð29Þ

With Eq. (23) and recurrence relations (28) and (29), a numerical solution can be obtained
through a step-by-step procedure.

In order to compare the accuracy of this solution with that of the results calculated by using the
existing numerical methods such as Taylor series and Runge–Kutta methods, the solution given
by Eq. (23) is expanded by Taylor series into the power series form

xi ¼ di þ vi t �
½Nt�
N

� �
� ða2 � bÞ

di

2
þ cvi

� �
t �

½Nt�
N

� �2

þ
cdi

3
ða2 � bÞ �

vi

6
ða2 � b � 4c2Þ

� �
t �

½Nt�
N

� �3

þ
di

24
ða2 � bÞða2 � 4c2Þ þ

cvi

6
a2 �

b

2
� 2c2

� �� �
t �

½Nt�
N

� �4

þ?: ð30Þ

The exact solution for Eq. (21) has a closed form [10]. Employing the piecewise-constant
argument ½Nt�=N; the exact solution of Eq. (21) can also be expressed into a power series form on
the ith time interval, such as

xi ¼ di þ vi t �
½Nt�
N

� �
� ða2 � bÞ

di

2
þ cvi

� �
t �

½Nt�
N

� �2

þ
cdi

3
ða2 � bÞ �

vi

6
ða2 � b � 4c2Þ

� �
t �

½Nt�
N

� �3

þ
di

24
ða2 � bÞða2 � b � 4c2Þ þ

cvi

6
ða2 � b � 2c2Þ

� �
t �

½Nt�
N

� �4

þ
1

120
�4cða2 � bÞða2 � b � 2c2Þdi

	
þ ½ða2 � bÞ2 � 4c2ð3a2 � 3b � 4c2Þ�vi



t �

½Nt�
N

� �5

þ?: ð31Þ

It can be seen from Eqs. (4) and (9) that the first two terms on the right-hand side of Eq. (4) are
necessary for obtaining the solution of third order in Eq. (10), which is developed by the method
of direct Taylor series expansion [1]. All the other terms in Eq. (10) that are higher than the third
orders are neglected. The numerical solution given by Eq. (23) is a closed-form solution to
Eq. (22) that also retains two terms of Taylor series expansion. However, in contrast to the
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solution shown in Eq. (10), all the higher order terms are still available in the solution given by
Eq. (30) which is based on Eq. (23). The first four terms in Eq. (30) are identical to those of the
exact solution presented in Eq. (31), hence, the accuracy equivalent to that of the Taylor series
method of order three is ensured. Significantly, the other higher order terms appearing in Eq. (30)
are very close to the corresponding terms in Eq. (31) of the exact solution. Therefore, the
numerical solution generated by Eq. (30) must be a better approximation to the exact solution. In
comparing with the exact solution in Eq. (31), the difference between the solution provided by
direct Taylor series expansion in Eq. (10) and the solution provided by Eq. (30) is significant, and
the difference is independent of the parameter N:

It is clear, if the higher order terms of the Taylor expansion for the term bx are further
considered in Eq. (22), that a more accurate numerical solution may be obtained. Through the
same procedure as discussed above, a numerical solution to the following equation of motion
containing one more higher order term can be derived:

.xðtÞ þ 2c ’xðtÞ þ a2xðtÞ ¼ bdi þ bvi t �
½Nt�
N

� �
þ

b

2!
ðbdi � 2cvi � a2diÞ t �

½Nt�
N

� �2

: ð32Þ

This equation has a theoretical solution in the closed form similar to Eq. (23). Also, the solution
for Eq. (32) is continuous and can be expressed in the following Taylor series expansion form for
the convenience of comparison with the exact solution:

xi ¼ di þ vi t �
½Nt�
N

� �
� ða2 � bÞ

di

2
þ cvi

� �
t �

½Nt�
N

� �2

þ
cdi

3
ða2 � bÞ �

vi

6
ða2 � b � 4c2Þ

� �
t �

½Nt�
N

� �3

þ
di

24
ða2 � bÞða2 � b � 4c2Þ þ

cvi

6
ða2 � b � 2c2Þ

� �
t �

½Nt�
N

� �4

þ
1

120

(
� 4cða2 � bÞða2 �

b

2
� 2c2Þdi

þ ½a2ða2 � bÞ � 4c2ð3a2 � 2b � 4c2Þ�vi

)
t �

½Nt�
N

� �5

þ?: ð33Þ

In comparing with the exact solution in Eq. (31), this solution corresponding to the governing
equation (32) has an accuracy equivalent to that of the Taylor series method of order four in terms
of displacement x; or of order three in terms of velocity ’x: Again, the coefficients in the fifth order
term in Eq. (33) are very close to the corresponding terms in the exact solution of Eq. (31).
Eqs. (30) and (31) are actually the continuous approximate solutions to the governing Eq. (21).
For numerical calculation, the recurence relations corrsponding to Eq. (32) can be determined by
its solution together with the conditions of continuity demonstrated in Eq. (27). Also, it can be
shown that the solution with an accuracy of order four in velocity can be developed in a similar
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manner if the third order term

b

3!
½2cða2 � bÞdi � ða2 � b � 4c2Þvi� t �

½Nt�
N

� �3

ð34Þ

is added on the right-hand side of the equal sign in Eq. (32).
As can be seen from the above discussion, the main idea of the present approach in solving

oscillatory problems is to maintain as much as possible the original physical information of the
governing equation. The piecewise-constant procedure applied as less as possible to the terms in
the governing equation allows a greater portion of the original information to be kept intact in the
numerical calculation. In return, a higher accuracy solution is developed. The piecewise-constant
argument ½Nt�=N; which has the obvious advantage of bridging the continuous and piecewise-
constant systems, is also a contribution to simplifying the procedure of deriving the numerical
solutions discussed above. One may note that the numerical method discussed above is actually a
technique combining the idea of piecewise-constant technique [7,8] and Taylor series method. It is
therefore called the P-T method hereafter.

With the approximate solutions provided by the P-T method, numerical solutions can be easily
generated by the recurrent relations developed via the approximate solutions and the conditions
of continuity. The Runge–Kutta method of fourth order is probably the most popular numerical
method in solving the oscillatory problems, and it is a method better than the other numerical
methods such as Taylor’s expansion and Euler’s method for solving the oscillatory problems [1].
In order to compare the results produced by the P-T method with those generated by the existing
numerical methods in analyzing oscillatory problems, both the P-T method and Runge–Kutta
method with the identical order of accuracy are used for solving an oscillatory system governed by
the equation

.x þ 0:2 ’x þ 10x ¼ x: ð35Þ

Eq. (35) is linear and its exact solution is readily available for comparison. One may probably note
that the Runge–Kutta method provides numerical solutions at discrete points, therefore, a
continuous solution in Taylor series expansion form as those shown in Eqs. (30) and (31) is not
available.

Comparison of P-T and Runge-Kutta methods
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Fig. 1. Comparison of numerical results generated by the P-T method of fourth order and Runge–Kutta method of

fourth order for the governing equation .x þ 0:2 ’x þ 10x ¼ x; with xð0Þ ¼ 1 and ’xð0Þ ¼ 2: The curve denotes the

error of the P-T method and the curve represents the error of the Runge–Kutta method.
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Fig. 1 exhibits the numerical solutions for Eq. (35) plotted with the numerical data generated by
both the P-T method and Runge–Kutta method of the fourth order. The vertical axis denotes the
difference between a numerical solution and the exact solution of Eq. (35), the horizontal axis
represents the time, and the two curves represent the errors of the P-T method of fourth order and
Runge–Kutta method of fourth order, respectively. It can be visualized from Fig. 1; the fourth
order P-T method supplies a more accurate numerical solution in comparison with the Runge–
Kutta method of order four.

It should be noted that the exact solution used for the figure is precisely the analytical solution
of Eq. (35). The errors of the numerical solutions obtained through the P-T and Runge–Kutta
methods are calculated with respect to the exact solution. The errors of the numerical solutions
are caused by the local truncation errors and the roundoff errors due to the finite-digit arithmetic
of the computing system as most of the other numerical methods.

The speed of numerical calculation of the P-T method is slightly faster than that of the Runge–
Kutta method. To compare the speed of the two methods, the CPU times of the actual
calculations for solving Eq. (35) are tabulated in Table 1.

4. Solution of a non-linear system

Evidently, the P-T method can also be applied to non-linear dynamical systems in providing
approximate or numerical solutions. The following governing equation is typical for a non-linear
or linear oscillatory system:

.xðtÞ þ 2c ’xðtÞ þ a2xðtÞ ¼ f ðx; ’x; tÞ: ð36Þ

By the P-T method, expand function f ðx; ’x; tÞwith Taylor series to the desired order of accuracy
on an ith time interval ½Nt�=Nptoð½Nt� þ 1Þ=N; such that

.xiðtÞ þ 2c ’xiðtÞ þ a2xiðtÞ ¼ f½Nt�=N þ f
0

½Nt�=N t �
½Nt�
N

� �

þ
1

2!
f 00
½Nt�=N t �

½Nt�
N

� �2

þ
1

3!
f

000

½Nt�=N t �
½Nt�
N

� �3

þ?: ð37Þ

Table 1

Comparison of the CPU times for solving .x þ 0:2 ’x þ
10x ¼ x: For both the methods of P-T and Runge–

Kutta of fourth order, the initial conditions are xð0Þ ¼ 1

and ’x(0)=2; with a time range from 0.0 to 20 000; and

step length 0.3

Method CPU time (s)

P-T 8.31

Runge–Kutta 8.33
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A complete solution for Eq. (37) is then readily available with the desired order of accuracy, and
the recurrence relation for numerical calculation can be consequently developed through the
procedure as demonstrated previously for the linear system.

In order to have an approximate solution with the same accuracy as that of the Runge–Kutta
method of fourth order, employ the first four terms in Eq. (37) for the function f ðx; ’x; tÞ and
truncate the higher order terms. The approximate solution in ½Nt�=Nptoð½Nt� þ 1Þ=N can be
developed for Eq. (37) as

xi ¼ e�cðt�½Nt�=NÞ B1 cos x t �
½Nt�
N

� �� �
þ B2 sin x t �

½Nt�
N

� �� �� �
þ A1

þ A2 t �
½Nt�
N

� �
þ A3 t �

½Nt�
N

� �2

þA4 t �
½Nt�
N

� �3

; ð38Þ

where

x2 ¼ a2 � c2; A4 ¼
1

6a2
f 000
½Nt�=N ; ð39; 40Þ

A3 ¼
1

a2
1
2

f 00
½Nt�=N � 6cA4


 �
; A2 ¼

1

a2
ðf 0
½Nt�=N � 4cA3 � 6A4Þ; ð41; 42Þ

A1 ¼
1

a2
ðf½Nt�=N � 2cA2 � 2A3Þ; ð43Þ

B1 ¼ di � A1; B2 ¼
1

x
ðvi þ cB1 � A2Þ: ð44Þ

It should be noted that the above formulae developed for the P-T method are suitable for
solving any linear or non-linear dynamic problems in a general form as exhibited in Eq. (36).

To compare the numerical results of the P-T method and Runge–Kutta method, a non-linear
system governed by the following equation is considered.

.xðtÞ þ 2c ’xðtÞ þ a2xðtÞ ¼ bx3: ð45Þ

The recurrence relations of the P-T method for numerical solution of this non-linear system can be
generated by simply substituting f ðxÞ ¼ bx3 into Eqs. (36) and (37) with the following
differentiations of f ðxÞ together with the conditions of continuity demonstrated in Eq. (27), such
that

f½Nt�=N ¼ bd3
i ; f 0

½Nt�=N ¼ 3bd2
i vi; ð46Þ

f 00
½Nt�=N ¼ 6bdiv

2
i þ 3bd2

i G1; where G1 ¼ bd3
i � 2cvi � a2di; ð47Þ

f 000
½Nt�=N ¼ 6bdiv

3
i þ 18bdiviG1 þ 3bd2

i viG2; where G2 ¼ f 0
½Nt�=N � 2cG1 � a2vi: ð48Þ

Fig. 2 exhibits the comparison of the numerical solutions for an example calculated by both the P-
T method and Runge–Kutta method. Numerical solution by the Runge–Kutta method for the
governing equation (45) is obtained by the conventional Runge–Kutta method of fourth order to
compare with the solution by the P-T method of the fourth order. In Fig. 2, the dashed line and
the line connceted with small triangles are the curves representing the solutions by the P-T method
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and Runge–Kutta method, respectively. The step length for the numerical calculations of both the
solutions of the P-T and Runge–Kutta methods is kept to be 0.3.

As can be seen from the figure, and also as discussed previously, the solution of Runge–Kutta
method is discrete whereas the solution of the P-T method is continuous and smooth everywhere.
Combining the continuous solutions within the time intervals and the continuity conditions
shown in Eq. (27), the dashed line is actually continuous and smooth in the entire time range
considered. In fact, for each time interval of a chosen step length, there is a continuous oscillatory
solution corresponding to it. The oscillatory behavior of the system is governed by Eq. (38) in
which the original physical information is maintained and protected to the utmost level.

It is well known that a smaller step length may yield a more accurate numerical solution [1,2].
Employing Runge–Kutta method of fourth order, with a much smaller step length of 0.003 unit, a
more accurate numerical solution is obtained and represented by the solid line in Fig. 2. This
solution can be considered as the one with an accuracy of very high level in comparison to the
solution with a step length a hundred times larger. As can be observed from the figure, the
solution of the P-T method with step length 0.3 matches very well with that of the Runge–Kutta
method with step length 0.003, the two curves are overlapped almost everywhere. On the other
hand, the Runge–Kutta method with step length 0.3 provides a discrete solution with significantly
lower accuracy in comparison with that of the P-T method of the same step length. Clearly, the P-
T method provides a solution with higher accuracy in comparison with the Runge–Kutta method.
In addition, the solution calculated by the P-T method is continuous in the entire time range
considered.

Although the solid curve seems smooth, the curve is in fact formed by short straight lines
connecting the end points at t ¼ ½Nt�=N and t ¼ ð½Nt� þ 1Þ=N; no matter how small the step length
is taken. It is also significant to note that the curve segment generated by the P-T method,
corresponding to a step length of 0.3 unit, yielded by the solution of Eq. (38) that reflects the
physical characteristics of the oscillatory system, has the same shape as the corresponding curve
segment of the solid curve of the Runge–Kutta method with higher accuracy. Evidently, the

Comparison of P-T and Runge-Kutta Methods
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Fig. 2. Comparison of numerical results generated by the P-T method of fourth order and Runge–Kutta method of

fourth order for the governing equation .x þ 0:2 ’x þ 10x ¼ x3; with xð0Þ ¼ 1 and ’xð0Þ ¼ 2: In the figure, the dashed line

represents the P-T method with step length 0.3; the line represents the Runge–Kutta method with step length 0.3

and the solid line designates the Runge–Kutta method with step length 0.003.
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solution by the P-T method is a good approximation to the motion of the governing equation.
Solution of the P-T method not only generates a continuous curve, as against a straight line to
connect the two points of a time interval, but also provides a curve that represents the actual
physical behavior of the original non-linear oscillatory system.

Even though the difference between the dashed curve and the solid curve is hardly
distinguishable by naked eyes, the numerical values corresponding to the two curves are actually
different. To demonstrate the difference between the two curves, the detailed numerical data
calculated by the P-T and Runge–Kutta methods corresponding to the curves are listed in Table 2.
From Fig. 2 and the table, one may again conclude that the solution given by the P-T method is
more accurate in comparison with Runge–Kutta method as expected. The high accuracy of the
P-T method evidently is related to the advantage that the maximum possible original physical
information is kept from variation when developing the equations for the approximate and
numerical analysis via the P-T method.

Table 2

Accuracy comparisons for forth order P-T method and Runge–Kutta method of the same order in solving for .xðtÞ þ
2c ’xðtÞ þ a2xðtÞ ¼ bx3: The initial conditions are xð0Þ ¼ 1 and ’x(0)=2

Time P-T Runge–Kutta Runge–Kutta

Step 0.3 Step 0.3 Step 0.003

8.1 0.347724 0.281461 0.343268

8.4 0.517027 0.473953 0.518208

8.7 0.267069 0.28183 0.272421

9.0 �0.18254 �0.1204 �0.17695

9.3 �0.45882 �0.40096 �0.45817

9.6 �0.35455 �0.34717 �0.35839

9.9 0.027678 �0.02265 0.021947

10.2 0.364802 0.298642 0.362458

10.5 0.390918 0.362595 0.393205

10.8 0.1028 0.135726 0.107953

11.1 �0.25117 �0.18411 �0.24755

11.4 �0.3827 �0.33687 �0.38347

11.7 �0.20041 �0.2129 �0.20458

12 0.132724 0.072054 0.128444

Table 3

Comparison of the CPU times for solving .x þ 0:2 ’x þ
10x ¼ x3: For both the methods of P-T and Runge–

Kutta of fourth order, the initial conditions are xð0Þ ¼ 1

and ’x(0)=2; time range from 0.0 to 20 000; and step

length 0.3

Method CPU time (s)

P-T 8.36

Runge–Kutta 8.37
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The CPU times spent for the calculations employing both the P-T method and the Runge–
Kutta method are shown in Table 3.

Note that the CPU time of 8.37 s shown in Table 3 for the Runge–Kutta method is obtained
with step length of 0.3. The CPU time will be enormously longer than 8.37 s for the Runge–Kutta
method if the step length of 0.003 is considered.

5. Conclusions

It can be seen from the above discussion that the P-T method is an efficient approximate and
numerical technique, which provides sufficiently accurate results with good convergence for both
the linear and non-linear oscillatory problems. In comparison with the Runge–Kutta method and
the other existing approximate and numerical methods, the following characteristics of the
approximate and numerical computations with the P-T method need to be stated.

The approximate solutions derived by the P-T method are continuous in the length-adjustable
interval ½Nt�=Nptoð½Nt� þ 1Þ=N and the entire time range for t > 0: Theoretically, in the case of
linear systems, the difference between the approximate solution produced by the P-T method and
the exact solution will vanish as the parameter N of the piecewise-constant argument ½Nt�=N
approaches infinity.

Most existing numerical methods provide the solutions only at discrete points. The solution
corresponding to the time interval in between the discrete points is usually not available. In
contrast to these numerical methods, the numerical solution derived by the P-T method, such as
the solutions shown in Eqs. (23), (33) and (38) are continuous everywhere in the entire time range
for any finite value of N: Owing to the properties of the piecewise-constant argument ½Nt�=N; the
equation of the system and the corresponding recurrence relations can be numerically solved for
the desired time range.

In numerically solving the oscillatory problems, usually, a second order differential equation
has to be transformed into a system of two first order differential equations. Numerical solutions
corresponding to the first order differential equations are then developed by employing
mathematical operations such as linearization or Taylor expansion [1,11]. In doing so, the
physical meaning implied in the original equation of motion is quite often lost in the
manipulations of the pure mathematical expressions. However, the P-T method attempts to
keep the form of the equation and the physical information involved in the original governing
equation unchanged as much as possible during the process of the approximations or numerical
calculations. As a result, a solution generated by the P-T method makes much more physical sense
in dynamic systems. This is significant especially when dynamical systems of high non-linearity are
considered. In addition, the P-T method gives a higher accuracy in comparison with the existing
numerical methods. Due to the maintenance of the original physical information and the
piecewise argument, the continuous solution given by the P-T method can also be used as an
approximate solution to the exact or accurate solution on the time interval and over the time
range desired. The accuracy of the solution is controlled by the number of terms expanded by
Taylor series and the value of N:

The P-T method and Runge–Kutta method both rely on the Taylor expansion [11]. Similar to
the Runge–Kutta method, the P-T method can be applied to solve systems of differential
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equations or the systems of multi-degrees of freedom. In fact, the P-T method to solve systems of
difference equations is the generalization of the method for the single differential equation as
presented previously.

Iteration is a major operation for the numerical calculations of many numerical methods. When
the local initial conditions are given, the iteration must be repeatedly carried out to obtain the
numerical solution at the end of the time interval. However, there is no iteration involved in the
numerical calculations by using the P-T method. Once the local initial conditions are available,
the solution at the end of the time interval and at any point within the time interval can be directly
calculated by the formulae derived with employment of the P-T method.

The numerical technique presented is based on a single-step method with freely variable step
length; a step size control technique can be easily applied to further increase the accuracy and
efficiency of the numerical calculations with the P-T method.

References

[1] S. Nakamura, Applied Numerical Methods with Software, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[2] D.W. Zingg, T.T. Chisholm, Runge–Kutta methods for linear ordinary differential equations, Applied Numerical

Mathematics 31 (1999) 227–238.

[3] M.I. Abukhaled, E.J. Allen, A class of second-order Runge–Kutta methods for numerical solution of stochastic

differential equations, Stochastic Analysis and Applications 16 (1998) 977–992.

[4] A. Iserles, G. Ramaswami, M. Sofroniou, Runge–Kutta methods for quadratic ordinary differential equations,

BIT—Numerical Mathematics 38 (1998) 315–336.

[5] K.N. Jayasree, S.G. Deo, On piecewise constant delay differential equations, Journal of Mathematical Analysis

and Applications 169 (1992) 55–69.

[6] K.L. Cooke, J. Wiener, Stability regions for linear equations with piecewise continuous delay, Computers and

Mathematics with Applications 12A (1986) 695–701.

[7] L. Dai, M.C. Singh, On oscillatory motion of spring–mass systems subjected to piecewise constant forces, Journal

of Sound and Vibration 173 (1994) 217–233.

[8] L. Dai, M.C. Singh, An analytical and numerical method for solving linear and nonlinear vibration problems,

International Journal of Solids and Structures 34 (1997) 2709–2731.

[9] L. Dai, M.C. Singh, Periodic, quasiperiodic and chaotic behavior of a driven Froude pendulum, International

Journal of Nonlinear Mechanics 33 (1998) 947–965.

[10] W. Weaver Jr., S. Timoshenko, D.H. Young, Vibration Problems in Engineering, Wiley, New York, 1990.

[11] M. Friedman, A. Kandel, Fundamentals of Numerical Analysis, CRC Press, London, 1994.

L. Dai, M.C. Singh / Journal of Sound and Vibration 263 (2003) 535–548548


	A new approach with piecewise-constant arguments to approximate and numerical solutions of oscillatory problems
	Introduction
	Derivation of approximate and numerical solutions
	Solution of a linear system
	Solution of a non-linear system
	Conclusions
	References


