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Abstract

The moment Lyapunov exponents of a two-dimensional system under bounded noise parametric
excitation are studied in this paper. The method of regular perturbation is applied to obtain weak noise
expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the
small fluctuation parameter.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Loadings imposed on structures are quite often random forces, such as those arising from
earthquakes, wind and ocean waves, which can be described satisfactorily only in probabilistic
terms. Under the action of such loadings, the parameters that describe the motion of the structure
will fluctuate in a stochastic manner. The response of the structure is governed by stochastic
differential equations, in which the parameters or coefficients are stochastic processes.
Investigations of stability under parametric stochastic excitation have become increasingly
important.

The dynamic stability behaviour of the following dimensionless, parametrically excited, two-
dimensional system is of interest:

d? d
O gD | (03— (@) = . 0

where 7 is the time variable, ¢(t) the generalized co-ordinate, f the damping constant, wg the
circular natural frequency of the system, ¢, >0 a small fluctuation parameter, and #5(t) the
parametric noise process.
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The sample or almost-sure stability of the trivial solution of system (1) is determined by the
Lyapunov exponent, which characterizes the average exponential rate of growth of the solutions
of system (1) for 7 large, defined as

. _—
Aq = lim —logllq(o)ll 2)
where q(t) = {¢(7),¢'(t)}" and || - || denotes the Euclidean vector norm. Depending on the initial

conditions ¢(0) and ¢'(0), there are two Lyapunov exponents for system (1). The trivial solution of
system (1) is stable with probability one if the top Lyapunov exponent is negative, whereas it is
unstable with probability one if the top Lyapunov exponent is positive.

On the other hand, the stability of the pth moment, for any real values of p, of the trivial
solution of system (1), E[||q(?)|], is determined by the moment Lyapunov exponent

1
Ago(p) = lim —log ETllq()I], (3)

where E[-] denotes expected value. If A,)(p)<0, then E[||q(?)|[’']—0 as t— oo.

The pth moment Lyapunov exponent A,)(p) is a convex analytic function in p with A,)(0) =
0 and A;(T)(O) equal to the top Lyapunov exponent /,). The non-trivial zero d ) of Ayq)(p), 1.e.
Ay)(04r)) = 0, 1s called the stability index.

However, suppose the top Lyapunov exponent 4,y is negative, implying that system (1) is
sample stable, the pth moment typically grows exponentially for large enough p, implying that the
pth moment of system (1) is unstable. This can be explained by large deviation. Although the
solution of the system [|q(t)||— 0 as — oo with probability one at an exponential rate 44, there is
a small probability that ||q(t)|| is large, which makes the expected value E[||q(7)|[’] of this rare event
large for large enough values of p, leading to pth moment instability.

To have a complete picture of the dynamic stability of system (1), it is important to study both
the sample stability and the pth moment stability for all real values of p, and to determine both the
top Lyapunov exponent and the pth moment Lyapunov exponent.

A systematic study of moment Lyapunov exponents is presented in Ref. [1] for linear It
systems and in Ref. [2] for linear stochastic systems under real-noise excitations. The connection
between moment Lyapunov exponents and the large deviation theory was studied by Baxendale
[3], Arnold and Kliemann [4], and Baxendale and Stroock [5]. A systematic presentation of the
theory of random dynamical systems and a comprehensive list of references can be found in
Ref. [6].

Although the moment Lyapunov exponents are important in the study of dynamic stability of
stochastic systems, the actual evaluations of the moment Lyapunov exponents are very difficult.
Very few results on the moment Lyapunov exponents have been published. Using the analytic
property of the moment Lyapunov exponents, Arnold et al. [7] obtained expansions in terms of
gp under both white and real-noise excitations. However, for system (1), moment instability
usually occurs for large values of p. This makes the results obtained by Arnold et al. [7]
inappropriate for determining the stability index. Khasminskii and Moshchuk [8] obtained an
asymptotic expansion of the moment Lyapunov exponent of system (1) under white-noise
parametric excitation in terms of the small fluctuation parameter ¢y, from which the stability index
was obtained.



W.-C. Xie | Journal of Sound and Vibration 263 (2003) 593-616 595

In a recent study, Xie [9] applied a procedure similar to that employed in Khasminskii and
Moshchuk [8] to obtain weak-noise expansions of the moment Lyapunov exponent, the Lyapunov
exponent, and the stability index of system (1) under real noise excitation in terms of the small
fluctuation parameter &;. The real-noise excitation #(t) is characterized by an Ornstein—Uhlenbeck
process given by [11]

dn(z) = —oon(r) dt + good W (1),

where W(t) is a standard Wiener process. It is well known that 5(t) is a normally distributed

random variable, which is not bounded and may take arbitrarily large values with small

probabilities, and hence may not be a realistic model of noise in many engineering applications.
In this paper, the noise 7(t) in system (1) is considered as a bounded noise given by

n(t) = cos [vot + a9 W (1) 4 0], 4

in which 0 is a uniformly distributed random number in (0, 27x). The inclusion of the phase angle
0 in Eq. (4) makes 5(t) a stationary process. The mean square stability, i.e., the pth moment
stability with p =2, of system (1) under the bounded noise excitation (4) was studied by
Dimentberg [10].
Eq. (4) may be written as
n(t) = cos Z(1),
dZ(7) = vo dt + gged W(7), (5)

where the initial condition of Z(7) is Z(0) = 6. The correlation function of #(t) is given by

2
E[n(t)n(t2)] = R(ti — 12) = $cos vo(t — 2) exp (20 It — T2|>,

and the spectral density function of #(z) is

+ 00 ) 02(w2+v2+la4)
S(a)):/ R(t) e dt = - 4
—0 2[(w — vo) +Z;(70][((U+VO) +Z‘70]

It may be noted that the mean-square value of the bounded noise process 5(t) is fixed at E[3*(1)] =
%. The spectral density function can be made to approximate the well-known Dryden and von
Karman spectra of wind turbulence by suitable choice of the parameters v, o9, and &y. In the limit
as o( approaches infinite, the bounded noise becomes a white noise of constant spectral density.
However, since the mean-square value is fixed at %, this constant spectral density level reduces to
zero in the limit. On the other hand, in the limit as oy approaches zero, the bounded noise
becomes a deterministic sinusoidal function.

The bounded noise process (4) was first employed by Stratonovich [12] and has since been
applied in certain engineering applications by Dimentberg [13], Wedig [14], Lin and Cai [15], and
Ariaratnam [16].
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It is advantageous to remove the damping term in Eq. (1) by applying the transformation
q(t) = x(7) e " to yield

2
d x(;) + [w? — & cos Z(1)] x(z) = 0,

dz
dZ(t) = vo dt + good W (1), (6)

where o? = o} — .
Eq. (6) can be further simplified by employing the time scaling 1 = wt to give

2
T 41— scos L0120 =0,
di(?) = vdt + aod W (1), @)

where ¢ = &/w?, v = vo/w, ¢ = ¢/ \/6, and W(t) is a standard Wiener process in time ?.

From the definitions of the Lyapunov exponent (2) and the moment Lyapunov exponent (3), it
can be easily shown that the Lyapunov exponents and the moment Lyapunov exponents of
systems (1), (6), and (7) are related as follows:

lgr)y = =B+ x) = — B + ©x),

Aq(r)(p) = _pﬁ + Ax(r)(p) = _pﬁ + wa(t)(p)- (8)
Without loss of generality, the moment Lyapunov exponent of system (7) is studied in the
remaining part of this paper.

2. Formulation

Considering the two-dimensional system (7) under bounded noise parametric excitation, the
generator of process {(z) is

o’ &* 0
G=——+v=—. 9
Letting x; = x, x, = X, the two-dimensional system may be written in the form of a state
equation:
oaolMl ao=| 0 ! (10)
o[ x|’ | =1+ecos¢ 0]
Apply the Khasminskii transformation [17]
1 :%:cos ®, szzgzsin@, a=|x|| = (3 +x)2, (11)

and denote s = {s1, s2}' = {cos ¢, sin@}'. From the general theory of moment Lyapunov
exponents [2], it is well known that the moment Lyapunov exponent A (p) of system (10) is the
principal simple eigenvalue of the infinitesimal operator L(p)

LT s) = AT (Ls),  Lp) = £+ pO((,9), (12)
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where
L =G+ hTi
oS

0(,s) = sTA(()s = gcos { cos ¢ sin @,

h({,s) = (A() — O, 9)D s = { —ecos{ cos’psin ¢ + sin ¢ }

(=1 4 gcos {) cos ¢ — £cos { cos ¢ sin’@

The generator G of the bounded noise {(7) is strongly elliptic, which is a required condition for the
validity of Eq. (12) and the uniqueness of its solution. Since
0

i*—sin — i*cos i
ds; ¢ o’ Osy ¢ op’

one has

0 0 0 0
h' == h—+ h—=(—1 20)—
s 1651+ 2257 (=1 +¢ecoscos q))a(p,

and the infinitesimal operator L(p) is obtained as

2 02 0 0 .
L(p) _C+(_l +scochosz<p)%+sp cos { cos ¢ sin ¢. (13)

225
The infinitesimal operator L(p) of the eigenvalue problem (13) for the pth moment Lyapunov
exponent can also be derived using a more straightforward approach without resorting to the
general theory of moment Lyapunov exponents. This approach was first applied by Wedig [18] to
derive the eigenvalue problem for the moment Lyapunov exponents of a two-dimensional linear
It stochastic system.
Egs. (7) may be considered as a three-dimensional system.

X1 X2 0
dd x p =< (—=14+ecosx; pde+< 0 ,dW.
¢ v o

Apply the Khasminskii transformation (11) and define a pth norm P = «¢”. The 1t6 equations for P
and ¢ can be obtained by It0’s lemma:

dP =¢pPcos{cospsinpds, do = (—1+&cos(cos® ¢)dr. (14)
Applying a linear stochastic transformation,
S=T¢e)P, P=T ' 9)S, -w<{<mw, 0<p<n,
the It6 equation for the new pth norm process S is given by, from It6’s lemma,
ds = [% azng +vT +(—1+ 5cochoszqo)Tq, +epcos{cospsinpT|Pdt+oT;PdW. (15)

For bounded and non-singular transformation 7°({, ¢), both processes P and S are expected to
have the same stability behaviour. Therefore, T'({, ) is chosen so that the drift term of the It
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differential equation (15) is independent of the noise process () and the phase process ¢ so that
dS = ASdt +oT;T'SdW. (16)

Comparing Egs. (15) and (16), it is seen that such a transformation T({,¢) is given by the
equation

%02T¢C+vTC—|—(—1+scochosz<p)Tq,+£pcochos<psin(pT:AT,
— wo<{<ow, 0<p<m, (17)

in which T'({, ) is a periodic function in ¢ of period = and is bounded when {— + 0. Eq. (17)
defines an eigenvalue problem for a second order differential operator with A being the eigenvalue
and T({, ) the associated eigenfunction. From Eq. (16), the eigenvalue A is seen to be the
Lyapunov exponent of the pth moment of system (7), 1.e., 4 = Ay (p). It is obvious that the
differential operator in the eigenvalue problem (17) is the same as the infinitesimal operator L(p)
given by Eq. (13).

In the following section, for the case when ¢ is not small so that the eigenvalue problem (12) is
not singular, the method of regular perturbation is applied to obtain a weak-noise expansion of
the moment Lyapunov exponent for system (7).

3. Weak-noise expansion of the moment Lyapunov exponent

For weak-noise excitation, i.e., small ¢, the infinitesimal operator L(p) can be written as

L(p) = Lo(p) + eL1(p), (18)
where
o’ 0 o 0 0
o(p) e + vaC o0 1(p) = cos C(cos 0] 20 + p cos ¢ sin (p)

Applying the method of regular perturbation, both the eigenvalue A, (p) and the eigenfunction
T(, ¢), a periodic function in ¢ of period =, are expanded in power series of ¢ as

Axy(P) =D & Ap), TCo) =D & T, 0), (19)
k=0 k=0
in which T;3(¢, ), i = 0,1, ..., are periodic functions in ¢ of period .

Substituting Egs. (18) and (19) into the eigenvalue problem (12) and equating terms of equal
power of ¢ yields the equations

zeroth order: LoTy = AgTy,

k
kth order: LoTi+ LiTko1 = Y AwThom k=1,2,... . (20)

m=0
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3.1. Zeroth order perturbation

The equation for the zeroth order perturbation is
LyTy = AoTo 21

or

Applying the method of separation of variables and letting Ty({, @) = Zy({)Po(¢) results in
0'2 Zo ZO @l
— v A==k
27 " Vz, TN,
Solving the equation for @, yields @(¢) = Ae*?. For &(¢p) to be a periodic function, it is
required that k£ = 0 and hence ®((¢) can be chosen as 1.
The equation for Zy({) becomes

%0'220 + VZO — AoZy = 0. (22)
From the property of moment Lyapunov exponent, it is known that
Axn(0) = A9(0) + e41(0) + -+ + &" 4,(0) + - =0,

which results in 4,(0) = 0. Since the eigenvalue problem (22) does not contain p, the eigenvalue
Ag(p) is independent of p. Hence, 4¢(0) = 0 leads to Ay(p) = 0.
Eq. (22) can be easily solved to yield

Zo(() = Cy+ Crexp <—§C>, —w<{<ow.

For Zy({) to be bounded, it is required that C; = 0 and hence Zy({) can be taken as 1. Therefore,
Ao(p) =0,  To(C, @) = Zo(O)Po(e) = 1. (23)
Since Ay(p) = 0, the associated adjoint differential equation of Eq. (21) is
> PTy 0Ty OTy
22 " T
Applying the method of separation of variables and letting T({, ¢) = Z§()P(¢) leads to
I

—_—— = y—

2z ZE T oF

LiTE = 0. (24)

K.

The equation for @} yields ®}(p) = Be *?. For ®{(¢) to be a period function, k = 0 and &}(¢p)
can be taken as

1

which is the probability density function of a uniformly distributed random variable ¢ between 0
and 7.
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The equation for Z becomes

o*Zy —vZs = 0. (26)

N—

Eq. (26) can be easily solved to give
2v
Z5(0) = Dy + Dy exp < C>, —o0 <{< 0.

For Z¥({) to be bounded, it is required that D; = 0 and hence Z§({) = Dy, a constant. Note that
{()y=vt+ oW(t) + 0, which is a linear function v¢ with superimposed noise ¢ W (¢), and {()
appears as an angle of a sinusoidal function cos {, which is a periodic function of period 27.
Hence, after folding, the angle {(¢) may be considered as taking values between 0 and 27. Z({)
may then be chosen as

1
ZO =5 0<i<am (27)

which is the probability density function of a uniformly distributed random variable between 0
and 2.

Hence T§((, ) = ZE()Pj(¢p) represents the joint stationary probability density function of the
independent random variables { and ¢, in which { is uniformly distributed between 0 and 2z and
¢ 1s uniformly distributed between 0 and 7.

3.2. First order perturbation

The first order perturbation equation is
LoT) = N Ty — L Ty. (28)

Since the homogeneous equation Ly7y) = 0 has a non-trivial solution as given by Eq. (23), for
Eq. (28) to have a solution it is required that, from the Fredholm alternative,

(M Ty — LTy, Tg) = 0, (29)

where T{({, @) is the solution of the adjoint equation (24) as obtained in Section 3.1, and (S}, S>)
denotes the inner product of functions Si({, ) and S»>((, ¢) defined by

2n n
S5 = [ [ sicosceodod

o Jo
From Eq. (29), the first order perturbation of the moment Lyapunov exponent is

Ay = (L Ty, T})), (30)
because (7y, 7)) = 1.

It is easy to show that
, 0T .
LTy = cos{| cos q)%—kpcosgosmq)To fcos (@) cos

where f cos, 1(¢) = p cos ¢ sin @. Hence, using Egs. (25), (27), and (30) results in
Ay = (L1 To, T§) = 1) 1 (9)Elcos {] = 0, (31)

Ccos,
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where
I B
@) = / o) do
T Jo

denotes the expected value of the random variable a(¢), in which ¢ is the uniformly distributed
random variable between 0 and 7 as defined in Eq. (25), and

1 2
EbO] =7
7
denotes the expected value of the random variable A({), in which { is the uniformly distributed
random variable between 0 and 27 as defined in Eq. (27).
Hence, Eq. (28) becomes

b(Q) d¢

LoTy = g%, |(p)cos , (32)
where gfi))s’ (@) = —fc(;z (@) = —pcos ¢ sin ¢. Eq. (32) is of form (A.1) and the solution is given in
Appendix A by Eq. (A.16) as

T @) = G ((@)sin{ + G\ ((¢)cos, (33)

where

G0 ()= - /0 o0 W = i — 9)dr,

2pv[4(v* — 4 4 {o*) sin 2¢ — 812 cos 2¢]
16v* + (804 — 128)v2 + 68 + 320% + 256

¢ () = /0 o8O W — e — 9 dr,
:p[402(v2 + 4+ Jo%) sin 2 + 16(v* — 4 — Jo*) cos 2¢]
16v% + (80% — 12802 + o8 + 3207 + 256

in which s;(r —s) and c¢i(r —s) are as defined in Eq. (A.17) of Appendix A, and ¢ — s = ¢,
s— — oo have been employed after integration.

3.3. Second order perturbation

The equation for the second order perturbation is
LyT, = ATy — L Tj. (34)
From the Fredholm alternative, for Eq. (34) to have a solution it is required that
(ATo — LiTh, Ty) = 0, (35)

where

oT .
LT =cos C<c052 (pa—l + pcos @ sin @ T1>
@

=f12(0) + 152 (@) sin 20 + £2) () cos 20,
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(2) (2 d (2) : b ith m =2
ﬁ) (q)) f()s 2((70)3 an f‘sm z(q)) fos Z(Q)) are glven Ys w1 m =z,

1 ’ . 1
f(;’fi () = 1|cos?pG™ D (@) + pcospsinpG™ Y (9], (36)
o om—1 o om—1

COS} Ccos Cos

in which the prime denotes differentiation with respect to ¢. Hence, since E[sin 2{] = E[cos 2{] =
0, from Eq. (35) one obtains

2)S(2
= (T, T = 7 =PI, G7)
where
204 442 41 54
S0 =L AT),
2[2 4 vy + 102 — v)* + 104
is the spectral density function S(w) with w = 2 of the bounded noise {(¢).
Eq. (34) becomes
LyT> = g5 (@) + g, »(@) sin 20 + g5, 5() cos 24, (38)
where
95 (@) = A2 = [ (@) 950 2(@) =~/ (@) Gk, 2(0) = ~fior 2(@).
From Appendix A, the solution of Eq. (38) given by Egs. (A. 15) and (A.16) is
Tl ) = G (9) + Gl 5(9) sin 2L + G\ 5(¢) cos 20, (39)
where Gf)z)((p) is given by, with m = 2,
6o = [ abw—nar (40)

Sm 2(go) and G OS 2(go) are given by, with m =j =2,

(m) _ m ¢i(r —s) 4 B —s;(r —s)
G{zi)r;}jj((p) _/ [gsm ](w ){ ( _ )} Yeos, /(‘// ){ Cj(I’—S) }] dr, (41)

where s;(r — s), ¢j(r — s) are as defined in Egs. (A.17) of Appendix A, and y —s = ¢ and s—> — o
are taken after integration.

3.4. Higher order perturbation
Based on the results obtained in Sections 3.1-3.3, the method of mathematical induction can be

applied to determine the moment Lyapunov exponents of higher order perturbations.
For the (2n)th order perturbation, n = 1,2, ..., the perturbation equation is

n
LyT>, = Z Aok Top—ok — L1 Top1, (42)
=
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because Ag = A} = A3 = --- = Ay, = 0. From the Fredholm alternative, for Eq. (43) to have a
solution, it is required that

n
Z A (Toy—2ic, T) — (L1 Tou—1, Tg) = 0. (43)
k=1
Since L;T»,—; is of the form

LiTon 1 =f(0) + Y [ia(@)sin 2k + fiat o (p)cos 2],
k=1

where

5 2n—1) ! . 2n—1
J(g) = eos G2 () + p cos o sin oGt ()],

F2, (p) and £, (¢) are given by Eq.(36) with m =2n, f2" (¢) and fZ",(¢), for k =

sin, 2n cos, 2n S co

1,2,...,n— 1, are given by, with m = 2n, j = 2k,

m—1 4 —1 /
Gislin; ((,0) + (‘;?ﬂsﬂinl)_Jrl (90)]

cos’ -1 cos’

Siin, (@) ={ 0

cos’?

~+p cos ¢ sin @
cos}’]‘71 {cos}’/

Gl @+ GG 1((,,)],} (44)
and

k
Tl 0) = G@) + D 1G5, (@)sin 2ml + G, (@)cos 2m{].

m=1

Eq. (43) leads to

n—1

Aoy =Ly Tonr, TG — Z Ao (Ton—2, Tg)
=1

n—1
=10) = A GS (o). (45)
k=1
Eq. (42) is then of the form

LoTa = g5 (@) + Y [g5n) (@) sin 2k + g&or) () cos 2k, (46)
k=1
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where

95" (@) = Z Aom G§2"(0) = 12(0), GY() =1,

m=1

4% (p) = ZA G%’fﬁ"”() ff:ff (@) k=12 ..n-1,

{cos} 2k {eos! cos
2 2
din @) =15 (@)
{cos”2 cos’2

From Egs. (A.15) and (A.16), the solution of Eq. (46) may be obtained as

Tou(l, ) = G5 () + Z[Giiigk«p) sin 2k + Glaw 5 () cos 2k,

where G( () is given by Eq. (40) with m = 2n, and Gim (@), G 5(@), fork=1,2, ...,

Cos,

given by Eq. (41) with m = 2n, j = 2k.
For the (2n + 1)th order perturbation, n = 0, 1, ..., the perturbation equation is

n
LoTon1 = Z Ao Top—2kc11 + Azup1 To — L1 Ty
k=1
From the Fredholm alternative, for Eq. (48) to have a solution, it is required that
n
Aswst = (L1 Ton, T§) = Y A Ton- 2111, T3).
k=1

Since L; T, is of the form

LiToy =Y [f3050 (@)sin 2k + DI+ £or), (@)cos 2k + 1)),

where
2n+1 2, . 2,
F5 (@) = HeospG, (@) + pcos g sin @ Gy ()],

JE (@) = cos o[ Gy () + 1§ G o(@)] + p cos ¢ sin 9[G (@) + 1 Gt ()],
et (q)) nd fom ). (@) are given by Eq. (36) with m = 2n+ 1, fi2'3) () and £t |

sin, 2n+1 cos, 2n+1

k=12,. — 1, are given by Eq. (44) with m =2n+1, j =2k + 1, and

k
Tot(Co@) = Y [Gony 1 (@) sin @m + DL+ Gy, 41 (@) cos (2m + 1)),

Eq. (49) leads to
A1 = 0.
Eq. (48) is then of the form

LoToer = Y [g5m51 () sin 2k + DL+ glonty) () cos (2k + 1)(],
k=0

(47)

n, are

(48)

(49)

(@), for

(50)

(51)
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where
n—k
gD () = Ay G215 () _f{(2n+1) (@), k=0,1,...,n—1,
1

‘Sm},2k+1 {sm.72k_~_1 sm‘,2k+1

tcos m= cos’ cos’

(2n+1) _ _ @+
g{gg;},zn+1("’) f{gg;},znﬂ("’)

From Egs. (A.15) and (A.16), the solution of Eq. (51) may be obtained as

n

Tons1 (L) = > [Goh, (@) sin 2k + D) + Ganly) (@) cos 2k + DX, (52)
k=0

where, fork = 0,1, ...,n, Gg;g}{)ﬂ((p) and Giiﬁlelgﬂ((p) are given by Eq. (41) withm =2n+1, j =
2k + 1.

The algebraic manipulation of higher order perturbations can be performed using a symbolic
computation software such as maple so that higher order approximations can be easily obtained.
Following this procedure, a weak-noise expansion of the moment Lyapunov exponent is obtained as

Axn(p) = &8 Ay + &* Aq + O(0), (53)
where A, is given by Eq. (37) and

e PP 2FING £ p(p + 2N o
4 = D(4) > ( )
in which the values of NS, N, and D are given in Appendix B.

The Lyapunov exponent for system (7) can be obtained from Eq. (53) by using the property of

the moment Lyapunov exponent,

dA,
}»x(,) = ﬂ = 82)»2 + 8414 + 0(86), (55)
where
5(2) 262NY
Iy =—— A4=—
8 D@

Ay 1s the same as the well-known result obtained using the standard stochastic averaging method
for a more general rapidly fluctuating noise, namely,

Ja = tof SQuy),

with wy = 1, where S(w) is the spectral density function of the noise process (see, e.g., Eq. (10.44)
of Ref. [12, p. 288)).

3.5. Stability index

As mentioned in the introduction, the stability index is the non-trivial zero of the moment
Lyapunov exponent. For system (7), the moment Lyapunov exponent is given by Eq. (53). It is
seen that p = 0 and —2 are the two values that lead to A, (p) = 0, and hence the stability index
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For system (1) with parametric excitation (4), the moment Lyapunov exponent is
Ayr)(p) = —pP + 0 A0 (p),
and the stability index 4 is given by the non-trivial zero of A,x)(p), 1.€.,
AvBy0) — £ By = 0, (56)
where £2f = f/w.
Expanding the stability index d,() in power series of ¢ as

0
Ogx) = Z & o, (57)
=0

substituting Egs. (53) and (57) into Eq. (56), expanding and equating terms of equal power of ¢
yields the equations

(2)
2, 5, (00 +2)0’Ng” |
& 0o [—ﬁ—i— DO =0,

= 2(80 + 1)a2N?
3. 0 i
R e e
4 ps, o 20002+ D+ 562NP  S0(S0 + 20’ [Ng” + S0(d0 + NP .
g — for+ DO — 0 —0,
(58)
These equations can be easily solved for 9;, i =0,1, ..., to result in

fD®

0g= —24+—=7
(2

o2N, )

o1 =0,

52 — E[D(Z)]Z {0_4[N(()2)]2N(()4) _ 2BO_ZD(2)N(()2)N](74) + [}Z[D(z)]le(f)}/{06D(4)[N(()2)]4}, (59)
where f§ = p/(62w).

4. Numerical results and conclusions

In this paper, the moment Lyapunov exponents of a two-dimensional system under bounded
noise parametric excitation are studied. The method of regular perturbation is applied to obtain a
weak noise expansion of the moment Lyapunov exponent in terms of the small fluctuation
parameter. Weak noise expansions of the Lyapunov exponent and stability index are also obtained.

Typical results of the moment Lyapunov exponents A (p) for system (7) given by Eq. (53) are
shown in Figs. 1 and 2 for v = 1.0, 2.0, respectively, ¢ = 1.0, and various values of ¢&. The moment
Lyapunov exponents A, (p) are shown in Figs. 3, 4, and 5 for ¢ = 0.3, 1.0, 2.0, respectively,
¢ = 0.5, and various values of v.
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Fig. 1. Moment Lyapunov exponent: ¢ = 1.0, v = 1.0.
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In the absence of noise perturbation, i.e., when g9 = 0, the two-dimensional system (1) under
bounded noise parametric excitation (4) reduces to the Mathieu’s equation. It is well known that
parametric resonance occurs when v /(2ay) is in the vicinity of 1, %, %, %, -+--. For system (7), if the
noise fluctuation parameter ¢ = 0, the primary parametric resonance occurs in the vicinity of
v = 2, while the secondary parametric resonance occurs in the vicinity of v = 1. From Eq. (37), it
is seen that A, is singular at v = 2 when ¢ = 0. However, from Eq. (54), A4 is singular at v = 2 and
1 when ¢ = 0. Hence the effect of the primary parametric resonance appears in the second order
perturbation results; whereas the effect of the secondary parametric resonance is noticeable only
in the fourth order perturbation. The effects of higher order parametric resonance can be
observed only in the higher order perturbation results.

When the noise fluctuation parameter ¢ is not zero, the bounded noise is a sinusoidal function
with noise superimposed. The larger the value of o, the noisier the bounded noise cos {(¢),
resulting in a smaller effect of the parametric resonance. This is clearly seen by comparing Figs. 3,
4, and 5.

Typical results of the Lyapunov exponent 4, for system (7) given by Eq. (52) are shown in
Figs. 6 and 7 for ¢ = 0.3, 1.0, respectively, and various values of v and ¢. The effects of parametric
resonance when v is in the vicinity of 2 and 1 can be clearly seen.

Typical results of the stability index d,¢) given by Eqs. (57) and (59) are shown in Fig. 8 for
p =0.05, wy = 1.0, 69 = 1.0, and various values of ¢y and v,. The stability indices are shown in
Figs. 9 and 10 for o9 = 1.0, 2.0, respectively, wg = 1.0, &y = 0.5, and various values of  and v.
From the definition of the stability index, it is clear that the larger the value of the stability index,
the more stable the system is in the sense of moment stability. From Fig. &, it is seen that the
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stability index decreases with the increase of the amplitude of excitation gy. As expected, it is seen
from Figs. 9 and 10 that the stability index increases with the increase of the damping parameter
po- By comparing Figs. 9 and 10, it is also seen that the effect of parametric resonance diminishes
with the increase of the noise fluctuation parameter ay.

It should be noted that the application of the method of regular perturbation in determining the
moment Lyapunov exponent is based on the assumption that the noise fluctuation parameter o is
not small so that the infinitesimal operator L(p) is not singular. Hence, the results obtained in this
research cannot be used to deduce the results for the Mathieu’s equation by setting ¢ to zero. In
the case of small noise fluctuation, i.e. ¢ is small, a method of singular perturbation has to be
employed to determine the moment Lyapunov exponent, which will be studied in future research.
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Appendix A. Solution of LyT((, p) = f({)g(p)
Consider the partial differential equation LoT'({, @) = f(0)g(¢p), or

=tV

0?0 0
200 oL op

) T o) = fOyl0). (A1)
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Introducing an auxiliary time 7 to Eq. (A.1) leads to

o a0 0
(245 S+ D) 1o =10ue) (A2)

Applying the transformation = 2(t + @), s= 2(l —@), or ' =y+s, o=y —s, Eq.(A.2)
becomes

0 o 82 a
<& Ny 2 GCZ >T(C ¥, 9) =f(Og( — 9). (A.3)

Applying Duhamel’s principle [19], the solution T({,y,s) to Eq. (A.3) is given by
TC9) = [ VEbsndn (A4)
0

where V({,y,s;r) is the solution of the homogeneous equation
o o> 0
— 4 = f >
<5S+28C2 a(:>V(Ctﬁsr) 0 fors>r,
V&, rr) =f(Qgly —r) fors=r. (A.5)
To solve Eq. (A.5), consider the equation
o a0 0
(5+76_8+v8_C>P(S’C’Z,Z)_O, s<t,
P(1,(t,2) = 1i%n P(s,(51,2) = 0(z = D). (A.6)
sTt

Eq. (A.6) is Kolmogorov’s backward equation for the transition probability function P(s, {; 1, z),
which is the probability density function of random variable z(¢z) conditioned on {(s), ¢ > s.
Eq. (7) can be integrated to yield
z(t) = {(s) + v(t — ) + o[ W (1) — W(s)], (A7)

which Eq. (A.7) implies that, given the initial condition {(s), the random variable z(¢) is normally
distributed with mean value p_,, and variance af(t) given by

Uy = C+v(E—9), af(t) = 0% (1 — ). (A.8)
Hence, the transition probability function is
1 P
P(s,{31,z) = ————exp {—M} (A.9)
V210 2020
From Egs. (A.5) and (A.6), the solution V({,y,s;r) to Eq. (A.5) is given by
VEwsn =g -0 [ fOPsEndz, (A.10)

where

E[f ()] = / SOPe, G2 s,
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is the expected value of the random variable f(z(r)) with z(r) being the normally distributed

random variable as defined in Egs. (A.8) and (A.9).
Combining Egs. (A.4) and (A.10), the solution to Eq. (A.3) is given by

T ,s5) = /O gy — DEI ()] dr. (A.11)

The solution T({, ) to Eq.(A.1) is obtained by replacing ¢ = — s and passing the limit
s> — 0.
For the special cases when f({) = sin a{ or cos a{, one has

sin az(r) 1 +t [ sinaz [z — ,uz(,‘)]2
E = / exp{ ——=—— ¢ dz
cos az(r) V2164 J oo cos az 202,

Sin Clﬂz( )
=exp [—%azag(r)]{ cos (r) } (A.12)
Z(\r

in which the integral formulas

+oo 5o sinfp(x + )] _ﬁ <_i> sin pA
/OO exp( qx){cos[p(x+/1)]}dx_ q exp 44 ) | cospi |’

as given in Egs. (1) and (2) of Ref. [20] have been employed. Substituting Eq. (A.8) into (A.12)

results in
sin az(r) sin al cosal
E = c,(r —9) + s.(r —5) . , (A.13)
cos az(r) cos al —sin al
in which the following notations are used
Sqa(r — 8) — expl % azo'%(r) sin av(r — ) ‘ (A.14)
ca(r—s) - cosav(r — s)

Substituting Eqgs. (A.13) into Eq. (A.11), one obtains the solution of Eq. (A.1) as, when f({) =
sin al,

T Y, s) = sinal /s g — r)eq,(r — s)dr + cos al /S g — ns,(r—s)dr, (A.15)
0 0
and, when f({) = cos a(,

T Y, s) =cosal /OS g — r)cq,(r — s)dr — sinal /OS gy — ns,(r—s)dr.  (A.16)
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Appendix B. Values of N'Y, N ), and DY

NS =8{4096v'® + 256(1030* — 656)v'® + 512(1336" — 11220* + 4440)v'* + 32(28195"2
— 204800® + 147 8166 — 463 360)v'? + 16(3971¢'® — 13 2166' + 178 6564°
— 1166 5280* + 3211 264)v'* + (20 4436%° + 88 4645'% — 63 84002 — 8 108 0324°
+ 38510 5920% — 89 653 248 — 4(616%* — 104416%° + 95 508¢'° + 279 00802
— 699 392¢% + 15458 3046 — 11272 192)v® — (198267 + 24 944¢°* + 53 391672
— 35836160'° —2536601605'> — 73 089 0246° — 136 904 7046* — 79 691 776)v*
— 2(c* + 16)*(2426%* + 14786 + 313506 + 2223862 + 130 4966° + 253 4405*
+ 196 608)v> — o*(a* + 1)(c* + 16)*(37¢® + 2716* + 384)[(6? + 2)* — 467]},

NS =*{—3840v'° — 5632(3¢* + 1)v'* — 32(9036° + 4005 + 4408)v'> — 64(3635"°
— 12816% — 11 1206* — 53 552)v'° — (7467¢'® — 249 28042 — 2 750 2404°
—45250560* + 15237 120)v® 4 2(4266°° + 1227 850"'® 4 1622 656¢' + 2 767 4244°
— 75530240* 4 12369 920)v® + (11820%* + 102 5226 + 1 532477¢'® 4 3306 1126'2
— 13751 8086° — 4587 5200* — 18 808 832)v* + 2(¢* + 16)(1386%* + 687162
+ 386616'% — 6773862 — 169 568¢° + 1152006* + 253 952)v?
+ (6* 4+ D2(6* + 16)°21e® — 560 — 128)[(0? + 2)> — 46°]},

D® =2097 152 + aM[(v + 1> + ¢*[(v — 1> + ¢*][(v + 2)* + o*][(v — 2)* + 6*]
X [(v+2)° + L' Pl — 2" +16*T.
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