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Abstract

Impedance and admittance matrices of a piezoelectric annular actuator with segmented electrodes are
presented for the analysis of the disk-type piezoelectric ultrasonic motors (USM). Equations of motion and
the conjugate parameters for the impedance and admittance matrices are derived using the variational
principle. In the derivation, the electric field in the piezoelectric layer is assumed to be constant over the
area covered by a particular electrode, and the effects of both shear deformation and rotary inertia are
taken into account. The resonance and antiresonance frequencies and the vibrating modes are calculated
for the various resonance modes and boundary conditions, and the results are compared with those by the
three-dimensional finite element methods. They are in excellent agreement with each other. It is expected
that the derived impedance matrix can be effectively applied to the analysis and the design of the USM.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Ultrasonic motors (USM), compared to conventional electromagnetic motors, have high stall
torque, output torque at low speed, simple construction, and high resolution of displacement
control. For this reason, USM are suitable to special applications such as auto-focus camera
lenses, actuators for robots and rovers, watch motors, etc. [1–5]. To generate output torque, USM
use two energy conversions: electrical energy from the power supply generates the elliptic motion
on the stator surface by the piezoelectric effect, then the microscopic vibration of the stator is
converted to the macroscopic motion of the rotor by the friction between the stator and the rotor.
Piezoelectric annular actuators with segmented electrodes are used in the disk-type traveling wave
USM to generate elliptic motion on the stator surface. Generally, the piezoelectric motor stators
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are designed to operate at the resonance frequency above 20 kHz where shear deformation and
rotary inertia have significant effects on the vibration characteristics of the stator.

After the traveling wave USM was first developed by Sashida [6] and industrially produced by
Canon for auto-focus lenses [4], many investigations were made into the dynamic behavior of the
traveling wave USM. Yamabuchi and Kagawa [7] and Maeno et al. [8] calculated the vibration
mode of the ring-type stator and simulated dynamic response of piezoelectric motors using the
three-dimensional finite element method (FEM), and the analysis is extended to the transient
response [9]. Hagedorn et al. [10,11] presented mathematical model of the stator and investigated
the effects of the rotary inertia on the vibration characteristics of the stator using finite difference
method. FEM and finite difference method can take into account the detailed geometry of the stator
and the effects of shear deformation and rotary inertia; however, they are computationally too
expensive as a design tool. Hagood et al. [12] employed the Rayleigh–Ritz assumed mode energy
method to model dynamic behavior of the stator, and Hagedorn et al. [13], based on the approach
suggested by Hagood, simulated steady state dynamic behavior of the USM in the frequency
domain considering the rotor flexibility. However, shear deformation and rotary inertia was not
considered in the analysis. Using the thin plate theory, Friend et al. [14] calculated the dynamic
behavior of the piezoelectric motor stator of constant thickness in the radial direction and predicted
the resulting motion of the teeth. Hirose et al. proposed the usage of the antiresonance mode for
USM because antiresonance state can provide the same mechanical vibration level with less heat
generation [15–16]. The impedance matrices are often used in the analysis of the piezoelectric or
non-piezoelectric structures since the lumped parameters conveniently describe the electromecha-
nical behavior and make it easy to visualize the interactions of the compound structures with
external systems, such as electrical driving devices and wave propagation medium [17–19].

In this paper, impedance and admittance matrices of the piezoelectric annular actuator with
segmented electrodes in harmonic vibration are presented for the analysis of the disk-type
piezoelectric motor stator. Motional equations and the conjugate parameters for the impedance
and admittance matrices are derived using the variational principle, and both shear deformation
and rotary inertia have been considered. The electromechanical responses of the piezoelectric
actuator in harmonic vibration are calculated using the derived matrices, and the results are
compared with those by the three-dimensional FEM.

2. Equations of motion and boundary conditions

The configuration of the piezoelectric annular actuator under consideration is shown in Fig. 1.
The inner radius, the outer radius, and the thickness of the metal plate and the pth piezoelectric
layer are denoted by ra; rb; hs; and hðpÞ; respectively; the superscript (p) denotes either a top layer
(t) or a bottom layer (b). The piezoelectric actuator has segmented electrodes, which are driven in
a repeating pattern: cosot; sinot; �cosot; �sinot; as shown in Fig. 1, and an electrode segment
covers a quarter wavelength of the generated standing wave. A traveling wave is generated within
the stator by the two temporally and spatially orthogonal standing waves that are excited by the
electrode A and B, respectively. The stiffness of the electrode is neglected, and the actuator is
considered as an annular plate in radial and circumferential flexural motion with constant
thickness. A perfect bonding is assumed between the piezoelectric layer and the metal plate. Top
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and bottom piezoelectric layers are connected in parallel to generate the flexural motion of the
stator. Neglecting the normal stress and strain components in the z direction and the r and y
directional electric fields, piezoelectric constituent equations for the point group 6mm
piezoceramics can be written as [2]

Trr ¼ c11Srr þ c12Syy � e31Ez;

Tyy ¼ c12Srr þ c22Syy � e31Ez;

Tyz ¼ c44Syz;

Trz ¼ c55Srz;

Try ¼ c66Sry;

Dz ¼ e31ðSrr þ SyyÞ þ e33Ez: ð1Þ
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Fig. 1. (a) Configuration and electrode pattern of the piezoelectric actuator for L � l traveling wave excitation; L ¼ 4

and (b) the voltage applied at electrode A for a standing wave excitation.
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The material properties in Eq. (1) have the following relationships:

c11 ¼ c22 ¼
1

sE
11ð1� n2Þ

; c12 ¼ nc11; c44 ¼ c55 ¼ c66 ¼
1

sE
44

;

e31 ¼
d31

sE
11ð1� nÞ

; e33 ¼ eT33 �
2d2

31

sE
11ð1� nÞ

: ð2Þ

Tij and Sij in Eq. (1) are the stress and strain components, Dz and Ez are the z directional
electric displacement and field, respectively, cij and sE

ij are the elastic stiffness and compliance
under the constant electric field, d31 and e31 are the piezoelectric strain and stress constant; eT33 and
e33 are the dielectric constant under constant stress and constant strain, respectively, n denotes a
planar Poisson ratio.

The steady state behavior of the piezoelectric actuator under harmonic excitation is consi-
dered here, therefore, the mechanical and electrical responses as well as the applied voltages
and loads are supposed to be in harmonic motion with a common angular frequency o and the
time dependency of all the variables, which can be denoted by ejot; is omitted in the follow-
ing analysis. The displacements, based on the first order shear deformation theory, are supposed
to be

urðr; y; zÞ ¼ �zcr; uyðr; y; zÞ ¼ �zcy; uzðr; y; zÞ ¼ uzðr; yÞ; ð3Þ

where the extensional motion of the neutral plane due to the asymmetry of the actuators in the
thickness direction is neglected. In Eq. (3), cr and cy are the rotation of the normal about the r-
and y-axis, respectively. Strain–displacement relationships can then be expressed as

Srr ¼ �zcr;r; Syy ¼ �
z

r
ðcr þ cy;yÞ; ð4aÞ

Syz ¼ �cy þ
1

r
uz;y; Srz ¼ �cr þ uz;r; ð4bÞ

Sry ¼ �
z

r
cr;y þ

z

r
cy � zcy;r: ð4cÞ

Assuming that the thickness of each piezoelectric layer is relatively thin compared with the total
thickness of the actuator, the electric field is approximated to be constant through the thickness of
the piezoelectric layer

EðpÞ
z ðyÞ ¼

V ðpÞðyÞ
hðpÞ ; ð5Þ

where V ðpÞðyÞ is the electric potential difference between the top and bottom electrode segments of
the piezoelectric actuator and the function of the y; as shown in Fig. 1(b). Internal energy W of
the piezoelectric actuator in harmonic vibration with an angular frequency o can be written as
follows:

W ¼
1

2

Z Z
u

Z
f�ro2u2

r � ro2u2
y � ro2u2

z þ TrrSrr þ TyySyy

þ TrySry þ TrzSrz þ TyzSyz � DzEzgr dr dy dz; ð6Þ
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where u denotes the total volume of the piezoelectric actuator and r is the mass density. Applying
the variational principle yields

dW ¼ �
Z Z

fðrMrrÞ;r � Myy þ Mry;y þ rRrz þ rRo
2rcrgdcr dr dy

�
Z Z

fMyy;y þ ðrMryÞ;r þ Mry þ rRyz þ rRo
2rcygdcy dr dy

�
Z Z

fðrRrzÞ;r þ Ryz;y þ rho
2ruzgduz dr dy

þ
Z 2p

0

rMrrdcr

���rb

ra

dyþ
Z 2p

0

rMrydcy

���rb

ra

dyþ
Z 2p

0

rRrzduz

���rb

ra

dy

�
1

hðtÞ

Z Z Z
ðtÞ

rDðtÞ
z dV ðtÞ dr dy dz �

1

hðbÞ

Z Z Z
ðbÞ

rDðbÞ
z dV ðbÞ dr dy dz; ð7Þ

where rh and rR indicate the mass density and the rotary inertia per unit area. Moments Mrr; Myy;
Mry and shear forces Rrz; Ryz in Eq. (7) are

Mrr

Myy

Mry

Rrz

Ryz

0
BBBBBB@

1
CCCCCCA

¼

D11 D12 0 0 0

D12 D11 0 0 0

0 0 D66 0 0

0 0 0 G44 0

0 0 0 0 G44

2
6666664

3
7777775

cr;r

ðcr þ cy;yÞ=r

ðcr;y � cyÞ=r þ cy;r

uz;r � cr

uz;y=r � cy

0
BBBBBBB@

1
CCCCCCCA

þ

M�ðyÞ

M�ðyÞ

0

0

0

0
BBBBBB@

1
CCCCCCA
; ð8Þ

where the equivalent flexural moment M�ðyÞ due to the applied voltage is defined as

M�ðyÞ ¼
Z

e31Ezz dz ¼ zðtÞc e
ðtÞ
31V ðtÞðyÞ þ zðbÞc e

ðbÞ
31 V ðbÞðyÞ; ð9Þ

where zðpÞc denotes the z directional center co-ordinate of the pth piezoelectric layer with respect to
the neutral axis, i.e., z ¼ 0; which is determined from the conditionZ

c11z dz ¼ 0: ð10Þ

The state of the flexural moments and the shear forces are shown in Fig. 2. The stiffness Gij and
Dij in Eq. (8) is defined as

ðGij;DijÞ ¼
Z

ðkcij ; cijz
2Þ dz; ð11Þ

where k is a shear correction factor (k ¼ p2=12). Using Fourier series expansion, the rotations cr;
cy; the displacement uz; and the applied voltage at the pth piezoelectric layer V ðpÞðyÞ can be
expressed as follows:

crðr; yÞ ¼
XN
m¼1

CR
mðrÞ cos my; ð12aÞ
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cyðr; yÞ ¼
XN
m¼1

CY
mðrÞ sin my; ð12bÞ

uzðr; yÞ ¼
XN
m¼1

UmðrÞ cos my; ð12cÞ

V ðpÞðyÞ ¼ V
ðpÞ
0

XN
m¼1

gm cos my: ð12dÞ

For the applied voltage V ðpÞðyÞ; as shown in Fig. 1, gm in Eq. (12d) can be determined as follows
using the Fourier transform

gm ¼
1

pV
ðpÞ
0

Z 2p

0

V ðpÞðyÞ cos my dy ¼
4L

mp
sin

mp
4L

; m ¼ L; 3L; 5L; :::;N;

0 otherwise;

8<
: ð13Þ

where L denotes the circumferential mode number of the traveling wave that the actuator is
designed to excite. For other piezoelectric actuators, where a standing wave is generated by two
electrode segments [12–14], gm becomes

gm ¼
4Le

mp
sin

mp
2L

; m ¼ L; 3L; 5L; :::;N;

0 otherwise;

8<
: ð14Þ
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Fig. 2. The flexural moments Mrr; Mry; Mrr and the shear force Rrz; Ryz acting in the positive directions on the edges.
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where Le is L=2� 1 or L=2 according to the existence or absence of the sensor. Using Eqs. (8), (9),
(12) and (13), moments Mrr; Myy; Mry; and shear forces Rr; Ry can be expressed as follows:

Mrrðr; yÞ ¼
XN
m¼0

MRR
m ðrÞ cos my; ð15aÞ

Myyðr; yÞ ¼
XN
m¼0

MYY
m ðrÞ cos my; ð15bÞ

Mryðr; yÞ ¼
XN
m¼0

MRY
m ðrÞ sin my; ð15cÞ

Rrzðr; yÞ ¼
XN
m¼0

RRZ
m ðrÞ cos my; ð15dÞ

Ryzðr; yÞ ¼
XN
m¼0

RYZ
m ðrÞ sin my; ð15eÞ

where

MRR
m ðrÞ ¼ D11

dCR
mðrÞ
dr

þ D12
CR

mðrÞ þ mCY
mðrÞ

r
þ gme

ðtÞ
31zðtÞc V

ðtÞ
0 þ gme

ðbÞ
31 zðbÞc V

ðbÞ
0 ; ð16aÞ

MYY
m ðrÞ ¼ D12

dCR
mðrÞ
dr

þ D22
CR

mðrÞ þ mCY
mðrÞ

r
þ gme

ðtÞ
31zðtÞc V

ðtÞ
0 þ gme

ðbÞ
31 zðbÞc V

ðbÞ
0 ; ð16bÞ

MRY
m ðrÞ ¼ D66 �

mCR
mðrÞ
r

�
CY

mðrÞ
r

þ
dCY

mðrÞ
dr

� �
; ð16cÞ

RRZ
m ðrÞ ¼ G44

dUmðrÞ
dr

�CR
mðrÞ

� �
; ð16dÞ

RYZ
m ðrÞ ¼ G44 �

mUmðrÞ
r

�CY
mðrÞ

� �
: ð16eÞ

Using Eqs. (1), (4), (12) and (13), and the orthogonality of the sine and cosine function, the last
term in Eq. (7) can be expressed as follows:

1

hðpÞ

Z Z Z
ðpÞ

rDðpÞ
z dV ðpÞdr dy dz ¼

XN
m¼0

QðpÞ
m þ CðpÞV

ðpÞ
0

 !
dV

ðpÞ
0 ; ð17Þ
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where QðpÞ
m is the generated charge at the pth piezoelectric layer due to the displacement of mth

circumferential mode and can be expressed as follows:

QðpÞ
m ¼ pgme

ðpÞ
31 zðpÞc raCR

mðraÞ � rbCR
mðrbÞ � m

Z rb

ra

CY
mðrÞ dr

� �
: ð18Þ

In Eq. (17), CðpÞ is the clamped capacitance of the pth piezoelectric layer and defined as

CðpÞ ¼
peðpÞ33

hðpÞ

r2b � r2a
2

: ð19Þ

Using Eqs. (15) and (17), and the orthogonality of the sine and cosine function, Eq. (7) finally
yields

dL ¼
XN
m¼0

prMRR
m ðrÞdCR

mðrÞ
��rb

ra
þ
XN
m¼0

prMRY
m ðrÞdCY

mðrÞ
��rb

ra
þ
XN
m¼0

prRRZ
m ðrÞdUmðrÞ

��rb

ra

�
XN
m¼0

QðtÞ
m þ CðtÞV

ðtÞ
0

 !
dV

ðtÞ
0 �

XN
m¼0

QðbÞ
m þ CðbÞV

ðbÞ
0

 !
dV

ðbÞ
0 ð20Þ

with the flexural equilibrium equations for the mth circumferential mode

dMRR
m ðrÞ
dr

þ
m

r
MRY

m ðrÞ þ
1

r
ðMRR

m ðrÞ � MYY
m ðrÞÞ þ RRZ

m ðrÞ þ rRo
2CR

mðrÞ ¼ 0; ð21aÞ

dMRY
m ðrÞ
dr

�
m

r
MYY

m ðrÞ þ
2

r
MRY

m ðrÞ þ RYZ
m ðrÞ þ rRo

2CY
mðrÞ ¼ 0; ð21bÞ

dRRZ
m ðrÞ
dr

þ
m

r
RYZ

m ðrÞ þ
RRZ

m ðrÞ
r

þ rho
2UmðrÞ ¼ 0: ð21cÞ

If the displacement components CR
mðrÞ; C

Y
mðrÞ are expressed in terms of the potentials FmðrÞ and

HmðrÞ [20]

CR
mðrÞ ¼

dFmðrÞ
dr

þ
m

r
HmðrÞ; CY

mðrÞ ¼ �
m

r
FmðrÞ �

dHmðrÞ
dr

; ð22Þ

and Eq. (16) is substituted into Eq. (21), the following coupled motional equations can be
obtained:

d

dr
r2FmðrÞ �

G44 � rRo
2

D11
FmðrÞ þ

G44

D11
UmðrÞ

� �
þ

1� n
2

m

r
ðr2 � k2ÞHmðrÞ ¼ 0; ð23aÞ

r2FmðrÞ �
G44 � rRo

2

D11
FmðrÞ þ

G44

D11
UmðrÞ

� �
þ

1� n
2

r

m

d

dr
ðr2 � k2ÞHmðrÞ ¼ �bm; ð23bÞ
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r2UmðrÞ � r2FmðrÞ þ
rho

2

G44
UmðrÞ ¼ 0; ð23cÞ

where the differential operator r2 and the parameter k are defined as

r2 ¼
d

dr2
þ

1

r

d

dr
�

m2

r2
; k2 ¼

2

1� n
G44 � rRo

2

D11

� �
: ð24Þ

In Eq. (23), the parameter bm is the function of applied voltage and can be written as follows:

bm ¼
gm

D11
ðeðtÞ31zðtÞc V

ðtÞ
0 þ e

ðbÞ
31 zðbÞc V

ðbÞ
0 Þ: ð25Þ

Notice that the differential Eq. (23b) is non-homogeneous due to the applied voltages at the
piezoelectric layer. HmðrÞ may be separated from FmðrÞ and UmðrÞ by differentiation, addition, and
subtraction of Eqs. (23a) and (23b):

r2ðr2 � k2ÞHmðrÞ ¼ 0; ð26aÞ

r2 r2FmðrÞ �
G44 � rRo

2

D11
FmðrÞ þ

G44

D11
UmðrÞ

� �
¼

m2

r2
bm: ð26bÞ

Using Eqs. (23b), (23c) and (26a), the potential Fm can be expressed in terms of Um:

FmðrÞ ¼
D11

G44 � rRo2
r2UmðrÞ þ

G44

D11
þ

rho
2

G44

� �
UmðrÞ þ bm

� �
: ð27Þ

Then, decoupled differential equations for Um and Hm can be obtained using Eqs. (26) and (27):

ðr2 � k2ÞHmðrÞ ¼ 0; ð28aÞ

ðr2 þ l21Þðr
2 � l22ÞUmðrÞ ¼

m2

r2
bm; ð28bÞ

where the parameters l1 and l2 are the functions of the angular frequency o; each defined as

l21 ¼
1

2

rho
2

G44
þ

rRo
2

D11

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

rRo
2

D11
�

rho
2

G44

� �2

þ
rho

2

D11

s
; ð29aÞ

l22 ¼ �
1

2

rho
2

G44
þ

rRo
2

D11

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

rRo
2

D11
�

rho
2

G44

� �2

þ
rho

2

D11

s
: ð29bÞ

The general solutions of Eq. (28) can be written as

HmðrÞ ¼ A1mImðkrÞ þ A2mKmðkrÞ; ð30aÞ

UmðrÞ ¼ U1
mðrÞ þ U2

mðrÞ; ð30bÞ
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where

U1
mðrÞ ¼ A3mJmðl1rÞ þ A4mYmðl1rÞ þ

p
2

m2bm

l21 þ l22
Jmðl1rÞYI

mðrÞ �Ymðl1rÞJImðrÞ
� �

; ð31aÞ

U2
mðrÞ ¼ A5mImðl2rÞ þ A6mKmðl2rÞ þ

m2bm

l21 þ l22
Imðl2rÞKI

mðrÞ �Kmðl2rÞIImðrÞ
� �

; ð31bÞ

where JmðrÞ and YmðrÞ are the Bessel functions of the first and second kind of order m;
respectively. ImðrÞ and KmðrÞ are the modified Bessel functions of the first and second kind of order
m; respectively. In Eq. (31), the following abbreviations are used for notation brevity:

JImðrÞ ¼
R r

ra
Jmðl1rÞ=r dr; YI

mðrÞ ¼
R r

ra
Ymðl1rÞ=r dr

IImðrÞ ¼
R r

ra
Imðl1rÞ=r dr; KI

mðrÞ ¼
R r

ra
Kmðl1rÞ=r dr:

ð32Þ

Using Eqs. (27), (28) and (30), the potential Fm in Eq. (27) can be rewritten as follows:

FmðrÞ ¼ a1U1
mðrÞ þ a2U2

mðrÞ þ
D11

G44 � rRo2
bm; ð33Þ

where

a1 ¼ 1�
D11

G44 � rRo2
l22; a2 ¼ 1þ

D11

G44 � rRo2
l21: ð34Þ

when the applied voltages are zero, i.e., for the case of free vibration of the actuator under short
circuit condition, and the actuator is a circular type, the coefficients A2m; A4m; A6m; and bm

become zero and the results reduces to those presented by Mindlin et al. [21].

3. Impedance and admittance matrices

Near the resonance frequency, the displacements of the stator can be approximated as those of
Lth circumferential vibrating mode. Therefore, the variations of the internal energy that is shown
in Eq. (20) can be now approximated as follows:

dLDFTdu�QTdV; ð35Þ

where each vector is defined as

F ¼

�praMRR
L ðraÞ

�praMRY
L ðraÞ

�praRRZ
L ðraÞ

prbMRR
L ðrbÞ

prbMRY
L ðrbÞ

prbRRZ
L ðrbÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
; u ¼

CR
LðraÞ

CY
L ðraÞ

ULðraÞ

CR
LðrbÞ

CY
L ðrbÞ

ULðrbÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð36aÞ

Q ¼
QðtÞ

QðbÞ

 !
; V ¼

V
ðtÞ
0

V
ðbÞ
0

 !
: ð36bÞ
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Using Eqs. (16), (30) and (33), the force boundary conditions can be represented in a matrix form
which is the function of displacements at the boundary and the voltages

F ¼ BhAþ BpVþ CEV: ð37Þ

Similar to the force boundary conditions, the displacement boundary conditions can also be
expressed in a matrix form by using Eqs. (30) and (33):

u ¼ GhAþGpV: ð38Þ

From Eq. (18), the charge vector can be expressed as follows:

Q ¼ � CEuþ PhAþ PpVþ CV

¼ � ðCE � PhG
�1
h Þuþ ðCþ Pp � PhG

�1
h GpÞV: ð39Þ

Eliminating the coefficient vector A from Eqs. (37) and (38) and using the symmetry of the matrix
[22] that is manifested by the results of the variational analysis, i.e., Eq. (20), we obtain

F

�Q

 !
¼

CM CT
C

sym: �CE

" #
u

V

 !
; ð40Þ

where

CM ¼ BhG
�1
h ; ð41aÞ

CC ¼ CE � PhG
�1
h ; ð41bÞ

CE ¼ Cþ Pp � PhG
�1
h Gp: ð41cÞ

The matrices Bh; Gh; CE ; Ph; Pp; and Gp in Eq. (41) are shown in Appendix A. Exchanging the
charge vector for the voltage vector in Eq. (40) and employing generic velocity vector U ¼ jou and
current vector I ¼ joQ easily yield the 8
 8 impedance matrix Z:

F

V

 !
¼ Z

U

I

 !
; ð42Þ

where

Z ¼
1

jo

CM þ CCC�1
E CT

C CCC�1
E

sym: C�1
E

" #
: ð43Þ

The exchange of the force vectors for the velocity vectors in Eq. (40) yields the admittance matrix

U

I

 !
¼ jo

C�1
M C�1

M CC

sym: CT
CC�1

M CC þ vE

" #
F

V

 !
; ð44Þ

which enables us to calculate the mechanical and electrical responses of the piezoelectric transducers
for the forces applied at the boundary and the voltages excited at the piezoelectric layers. The poles
and zeros of electrical admittance in Eq. (44) give the characteristic equations, each for the resonance
frequencies (RF) or and the antiresonance frequencies (AF) oa of electric current. The amplitude of
the vibration velocity and the currents near the resonance frequency can be calculated by employing
mechanical, piezoelectric, and dielectric properties in complex forms [23]. In this case, the impedance
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and admittance matrices become complex variables, but have the same form as those given in
Eqs. (43) and (44). The derived impedance matrix in Eq. (43) is that of the closed annular actuator
with constant thickness. For the piezoelectric motor stator that has radially stepwise varying
thickness, the global impedance matrix can be obtained by combining the impedance matrices of each
section according to the continuation conditions at the interfaces, i.e., at the inner and outer radii [24].

4. Results and discussion

In this section, the dynamic behavior of the piezoelectric annular actuator is investigated using
the impedance and admittance matrices derived in the previous section. In the numerical
calculations, PZT G1195N is used to actuate the motor stator and stainless steel is used for the
metal plate. The material properties are as follows; for the G1195N, 1=sE

11 ¼ 61:0GPa, n ¼ 0:3;
r ¼ 7600:0 kg/m3, d31 ¼ 0:254 nm/V, and eT33 ¼ 15:0 nF/m; for the stainless steel, 1=sE

11 ¼200:0GPa,
n ¼ 0:3; and r ¼ 7830:0 kg/m3. The inner and outer radii of the actuator are 15.0 and 30.0mm,
respectively, and the thickness of the piezoelectric layer and the metal shim are 0.25 and 3.0mm,
respectively.

The RF and AF of the piezoelectric annular actuators are calculated for various boundary
conditions and vibration mode. Three cases are investigated: (1) the effects of shear deformation
and rotary inertia are neglected (no shear and no rotary inertia), (2) only the effect of rotary
inertia is considered (only rotary inertia), and (3) the effects of shear deformation and rotary
inertia are considered (both shear and rotary inertia). Three-dimensional FEM is used to verify
the results by the present methods. The element has four degrees of freedom at a node, i.e., three
mechanical displacements and one electric potential [25]. The sector of the stator which
corresponds to a quarter wavelength is modelled by applying the symmetric and antisymmetric
conditions at y ¼ 0 and l=4; respectively, that shows the same results as the full modelling of the
annular actuator. The finite element model of the piezoelectric annular actuator is shown in

Fig. 3. FEM of the annular piezoelectric actuator.

Y.H. Kim, S.K. Ha / Journal of Sound and Vibration 263 (2003) 643–663654



Fig. 3. In the finite element analysis, the RF and the AF are calculated by the modal analysis
under the conditions of short circuit and open circuit, respectively [26]. When the actuator is
short-circuited, the electric field Ez in the piezoelectric layer becomes zero under the assumption of
Eq. (5), and the stress–strain relations follow the non-piezoelectric constituent equations. In that
case, the resonance occurs at the RF of the actuator. When the electrical port is opened (I ¼ 0),
the overall stiffness of the piezoelectric layer is increased, the resonance occurring at the AF of the
actuator that is higher than the RF.

At first, the RF and the AF of (0;L) mode of the actuator under clamped–free and free–free
boundary conditions are calculated and shown in Figs. 4 and 5, respectively. The RF and the AF
of case (3) are a little lower than those by the FEM with an error of 1%, which is caused by the
assumption of constant electric field under each electrode segment. As the circumferential mode
number L increases, the effects of rotary inertia and shear strain Syz increases, and the RF and the
AF of case (1) and (2) have significant deviations from the results of the three-dimensional FEM,
which shows the importance of rotary inertia and shear deformation for the lower ratio of the
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wavelength to the plate thickness. Overall, the differences of case (2) and (3) of the free–free
boundary condition are less than those of the clamped–free boundary condition. It is because the
shear deformation Srz of the actuator under free-free boundary condition is less than those of the
actuator under clamped–free boundary condition.

The RF and the AF of (1;L) mode of the actuator under clamped–free and free–free boundary
conditions are also shown in Figs. 6 and 7, respectively. As expected, the effects of shear
deformation and the rotary inertia are higher than those of (0;L) mode. The differences of
case (2) and (3) when the boundary condition is clamped–free is insensitive to the circum-
ferential mode number L because the differences are mainly due to shear deformation Srz which is
irrelative to L: However, for the free–free boundary condition, the difference of case (2)
and (3) increases as the mode number increases because the differences mainly due to shear
deformation Syz: As the circumferential mode number increases, the effects of rotary inertia
become more significant for the both boundary conditions because of the increase of resonance
frequency. The RF and the AF calculated under the consideration of both shear and rotary inertia
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agree very well with the results by the three-dimensional FEM for all ranges of circumferential
mode number L:

The mode shapes for the short-circuit actuator under clamped–free and free–free boundary
conditions, when the circumferential mode number L is 5, are calculated and shown in
Figs. 8 and 9, respectively. The differences of mode shapes are not clearly shown when the
radial mode number is 0, where the effects of shear deformation on the mode shape are
small. However, when the radial mode number is 1, the differences of mode shapes are
clearly shown, especially at the inner radius of clamped boundary condition, where the slope of
transverse displacement is not zero for the case (3) and FEM because they allow shear
deformation Srz: This result in the difference of the position of zero slope where the tooth are
mounted. If shear deformation is not considered, the position of zero slope, which is neces-
sary in the design of (1;L) mode disk-type USM [14,27], cannot be estimated accurately.
It has been also observed that the vibrational mode shapes for the open-circuit condition
show unnoticeable differences from those for the short-circuit condition while the AF are
different from the RF.
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5. Conclusion

To analyze the dynamic behavior of disk-type USM, impedance and admittance matrices of the
piezoelectric annular actuator with segmented electrodes are derived. In the derivation, the effects
of both shear deformation and rotary inertia are considered. The dynamic behavior of the
actuator is investigated using the derived matrices, and the results are compared with those by the
three-dimensional FEM. The derived impedance and admittance matrices can be applied to the
analysis of the disk-type USM with the stator/rotor interaction model, and the radially stepwise
varying thickness of the stator can be taken into account by combining impedance matrices of
each section according to the continuity condition. It is expected that the present method can be
extended to the analysis of the beam or ring type ultrasonic motor.
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Appendix. A

All the components of the derived impedance matrix in Eq. (41) are presented. Gh and Bh;
which are the components the matrix GM are as follows:

Gh ¼
G0jr¼ra

G0jr¼rb

 !
; Bh ¼

�B0jr¼ra

B0jr¼rb

 !
; ðA:1Þ

where the matrices G0 and B0 are the functions of r and defined as

GT
0 ¼

LILðkrÞ=r �ID
L ðkrÞ 0

LKLðkrÞ=r �KD
L ðkrÞ 0

a1JD
L ðl1rÞ �a1LJLðl1rÞ=r a1JLðl1rÞ

a1YD
L ðl1rÞ �a1LYLðl1rÞ=r a1YLðl1rÞ

a2ID
L ðl2rÞ �a2LILðl2rÞ=r a2ILðl2rÞ

a2KD
L ðl2rÞ �a2LKLðl2rÞ=r a2KLðl2rÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ðA:2aÞ
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BT
0 ¼

s1ILðkrÞ þ s2ILþ1ðkrÞ s7ILðkrÞ þ s8ILþ1ðkrÞ s13ILðkrÞ

s1KLðkrÞ � s2KLþ1ðkrÞ s7KLðkrÞ � s8KLþ1ðkrÞ s13KLðkrÞ

s3JLðl1rÞ þ s4JLþ1ðl1rÞ s9JLðl1rÞ þ s10JLþ1ðl1rÞ s14J
D
L ðl1rÞ

s3YLðl1rÞ þ s4YLþ1ðl1rÞ s9YLðl1rÞ þ s10YLþ1ðl1rÞ s14Y
D
L ðl1rÞ

s5ILðl2rÞ � s6ILþ1ðl2rÞ s11ILðl2rÞ � s12ILþ1ðl2rÞ s15I
D
L ðl2rÞ

s5KLðl2rÞ þ s6KLþ1ðl2rÞ s11KLðl2rÞ þ s12KLþ1ðl2rÞ s15K
D
L ðl2rÞ

0
BBBBBBBBB@

1
CCCCCCCCCA
; ðA:2bÞ

where the superscript D means the differentiation with respect to r; i.e.,

JD
L ðl1rÞ ¼

dJLðl1rÞ
dr

¼
LJLðl1rÞ

r
� l1JLþ1ðl1rÞ;

YD
L ðl1rÞ ¼

dYLðl1rÞ
dr

¼
LYLðl1rÞ

r
� l1YLþ1ðl1rÞ;
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ID
L ðl2rÞ ¼

dILðl2rÞ
dr

¼
LILðl2rÞ

r
þ l2ILþ1ðl2rÞ;

KD
L ðl2rÞ ¼

dKLðl2rÞ
dr

¼
LKLðl2rÞ

r
� l2KLþ1ðl2rÞ: ðA:3Þ

The parameters si in Eq. (A.2b) are defined as follows for notation brevity:

s1 ¼ pðL2 � LÞðD11 � D12Þ=r; s2 ¼ pLkðD11 � D12Þ;

s3 ¼ a1ðs1 � pD11l
2
1rÞ; s4 ¼ pa1l1ðD11 � D12Þ;

s5 ¼ a2ðs1 þ pD11l
2
2rÞ; s6 ¼ pa2l2ðD11 � D12Þ;

s7 ¼ pD66ð2L � 2L2 � k2r2Þ=r; s8 ¼ 2pkD66;

s9 ¼ 2pD66a1ðL � L2Þ=r; s10 ¼ 2pLD66a1l1;

s11 ¼ 2pD66a2ðL � L2Þ=r; s12 ¼ 2pLD66a2l2;

s13 ¼ �pLG44; s14 ¼ pG44ð1� a1Þr;

s15 ¼ pG44ð1� a2Þr:

ðA:4Þ

The matrices CE and P of Eq. (41b) are as follows:

CE ¼
�pgLzðtÞc e

ðtÞ
31ra 0 0 pgLzðtÞc e

ðtÞ
31rb 0 0

�pgLzðbÞc e
ðbÞ
31 ra 0 0 pgLzðbÞc e

ðbÞ
31 rb 0 0

 !
; ðA:5aÞ

PT
h ¼ pLgL

zðtÞc e
ðtÞ
31ðILðkrbÞ � ILðkraÞÞ zðbÞc e

ðbÞ
31 ðILðkrbÞ � ILðkraÞÞ

zðtÞc e
ðtÞ
31ðKLðkrbÞ �KLðkraÞÞ zðbÞc e

ðbÞ
31 ðKLðkrbÞ �KLðkraÞÞ

La1zðtÞc e
ðtÞ
31J

I
LðrbÞ La1zðbÞc e

ðbÞ
31 J

I
LðrbÞ

La1zðtÞc e
ðtÞ
31Y

I
LðrbÞ La1zðbÞc e

ðbÞ
31Y

I
LðrbÞ

La2zðtÞc e
ðtÞ
31I

I
LðrbÞ La2zðbÞc e

ðbÞ
31 I

I
LðrbÞ

La2zðtÞc e
ðtÞ
31K

I
LðrbÞ La2zðbÞc e

ðbÞ
31K

I
LðrbÞ

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; ðA:5bÞ

where the functions JILðrÞ; Y
I
LðrÞ; I

I
LðrÞ; and KI

LðrÞ are defined in Eq. (32). The matrices C; GP; and
PP of Eq. (41c) are as follows:

C ¼
CðtÞ 0

0 CðbÞ

 !
; ðA:6aÞ
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Gp ¼ gL

0 0

0 0

0 0

e
ðtÞ
31zðtÞc x1ðrbÞ e

ðbÞ
31 zðbÞc x1ðrbÞ

e
ðtÞ
31zðtÞc x2ðrbÞ e

ðbÞ
31 zðbÞc x2ðrbÞ

e
ðtÞ
31zðtÞc x3ðrbÞ e

ðtÞ
31zðtÞc x3ðrbÞ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; ðA:6bÞ

Pp ¼ pgLL2zðrbÞ
zðtÞ2c e

ðtÞ2
31 zðtÞc zðbÞc e

ðtÞ
31e

ðbÞ
31

zðtÞc zðbÞc e
ðtÞ
31e

ðbÞ
31 zðbÞ2c e

ðbÞ2
31

 !
; ðA:6cÞ

where CðpÞ is the clamped capacitance of the piezoelectric layer and defined as Eq. (19). The
functions xiðrÞ; zðrÞ are defined as

x1ðrÞ ¼
pa1L2

2D11ðl
2
1 þ l22Þ

ðJD
L ðl1rÞYI

LðrÞ �YD
L ðl1rÞJI

LðrÞÞ

þ
a2L2

D11ðl
2
1 þ l22Þ

ðID
L ðl2rÞKI

LðrÞ �KD
L ðl2rÞII

LðrÞÞ; ðA:7aÞ

x2ðrÞ ¼
�pa1L3

2D11ðl
2
1 þ l22Þr

ðJLðl1rÞYI
LðrÞ �YLðl1rÞJI

LðrÞÞ

�
a2L3

D11ðl
2
1 þ l22Þr

ðILðl2rÞKI
LðrÞ �KLðl2rÞII

LðrÞÞ �
LgL

rðG44 � rRo2Þ
; ðA:7bÞ

x3ðrÞ ¼
pL2

2D11ðl
2
1 þ l22Þ

ðJLðl1rÞYI
LðrÞ �YLðl1rÞJI

LðrÞÞ

þ
L2

D11ðl
2
1 þ l22Þ

ðILðl2rÞKI
LðrÞ �KLðl2rÞII

LðrÞÞ; ðA:7cÞ

zðrÞ ¼
pa1L2

2D11ðl
2
1 þ l22Þ

Z r

ra

ðJLðl1rÞYI
LðrbÞ �YLðl1rÞJI

LðrbÞÞ dr

þ
a2L2

D11ðl
2
1 þ l22Þ

Z r

ra

ðILðl2rÞKI
LðrbÞ �KLðl2rÞII

LðrbÞÞ dr

þ
L2gL

ðl21 þ l22ÞðG44 � rRo2Þ
ln

r

ra

� �
: ðA:7dÞ
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