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1. Introduction

Motion of a body with non-zero average velocity caused by actions undirected on the average is
called vibrational transposition. Such a definition formulated by Blekhman [1] corresponds to the
theory based on a model of a body located on a vibrating rough surface [1]. This model is said to
be also valid for the case of motion caused by oscillations of internal mass in presence of
asymmetry of frictional or resistance forces [2,3]. An example of this type of motion is the
vibrational transposition in a liquid [4]. Unfortunately, this kind of motion is not realistic enough.
At low velocities of a system in a fluid, the resistance force is proportional to the speed but not to
the square of the velocity [5]. Therefore, vibrational floating with the magnitude of the resistance
force increasing linearly with speed has remained without satisfactory solution. So far one does
not know how fast the vibrational propulsive device can move in a fluid. One should remember
that the average velocity of the vibrational transposition depends on the type of oscillations. By
the reasons mentioned above, one cannot immediately use known results [1,5,6]. Therefore, in
order to avoid ambiguity one should echo the framework of this vibrational transposition in
detail. Especially, as it is found out that this is neither more nor less than the law of motion of the
center of mass of the system. The problem is to establish the connection between the parameters
describing the system but not to develop the theory of the vibrational transposition. Below is a
simple interpretation of the theory of vibrational floating [1,4].

2. Vibrational transposition

Consider an asymmetrical platform P of mass M inside which the block B of mass m executes
forced oscillations in the horizontal direction. The platform is partly submerged in a liquid L, as
shown in Fig. 1, with a resistance force Fr proportional to the velocity of motion v. The location of
the block B in the inertial frame of reference can be determined by the sum of two vectors x+xm

the first of which x describes the position of the platform with respect to the inertial frame of

E-mail address: gsimp@yandex.ru (S.A. Gerasimov).

0022-460X/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0022-460X(02)01470-0



references XOY and the second vector xm describes the position of the load B with respect to the
platform P. The forces acting on the mass m are the normal N and the horizontal forces FM�m due
to the box and the force of gravity mg. The forces acting on the platform P are the vertical mg and
horizontal forces Fm�M exerted on the platform by the load of the mass m, the force of gravity
Mg, the Archimedes’ force FA and the resistance force Fr. Since the mass m and the platform P do
not move in vertical direction then the sum of the forces N and mg and the sum of the forces FA,
Mg and mg equal zero. Thus, equations of motion of the platform and the load are

M
d2x

dt2
¼ Fr þ Fm�M ; ð1Þ

m
d2ðx þ xmÞ

dt2
¼ FM�m: ð2Þ

The forces FM�m and Fm�M are the internal ones. Their sum equals zero. By combining Eqs. (1)
and (2), the equation of motion can be written as

d2

dt2
½Mx þ mðx þ xmÞ� ¼ Fr; ð3Þ

which describes the vibrational transposition of the platform in the liquid for any given character
xm(t) of oscillations of the load B. The term in the square brackets is nothing else but a vector
describing the center of mass of the system of the bodies P and B.
The behavior of the drag force Fr depends on many things, including the shape of the object, the

velocity v=dx/dt of the object relative to the fluid, the direction of motion, and the nature of the
fluid:

Fr ¼
�l>v; v > 0;

�lov; vo0;

(
ð4Þ

where l> and lo are proportionality constants corresponding to the motion in positive (v>0)
and negative (vo0) directions of the X-axis. Expression (4) is approximately valid when the
magnitude of v is not large. For the case of the harmonic oscillations of the load m

xm ¼ a cos
2pt

T
: ð5Þ

Fig. 1. Illustration of the vibrational floating.

S.A. Gerasimov / Journal of Sound and Vibration 263 (2003) 700–704 701



When a>0, the equation of motion (3) can be rewritten in the form

d2z
dt2

þ
ð1� dÞ

2
sign

dz
dt

� �
þ
ð1þ dÞ

2

� �
dz
dt

�
1

y2
cos

2pt
y

¼ 0; ð6Þ

where sign(W)=1 if W>0 and sign(W)=�1 if Wo0. It turns out that introducing dimensionless
variables

z ¼
M0

4p2ma
x; t ¼

l>
M0

t; W ¼
M2

0

4p2mal>
dx

dt
ð7Þ

and

y ¼
l>
M0

T ; d ¼
lo
l>

; ð8Þ

one may decrease the number of variables. Here, M0=M+m is the total mass of the system of the
bodies and T is the period of the vibrations of the load B. Now the reduced path z travelled by the
system depends only on the reduced time t; the reduced period y and the parameter of asymmetry
d. One can solve Eq. (6) numerically for any given parameters y and d: An example of such
calculations is shown in Fig. 2. But the problem of the scaling has not been solved. Too many
variables describing the process of such a motion.

3. Symmetry

The average reduced velocity /WS=/dz/dtS depends only on y and d: When the reduced
period y is small (yo1) and db1, the value /WS/d depends only on dy: The case of the irreversible
transposition of the platform in the direction opposite to the X-axis corresponds to the condition
d51. This means that for small d when yo1, the average reduced velocity /WS depends only on
the reduced period y: On the other side, Eq. (6) contains the parameter of asymmetry d only in the

Fig. 2. The path x=4p2maz/M0 travelled by the vibratory propulsive device during time t=M0t/l> at the period of

vibrations T equal M0/l>. Solid line is for d=2 and dashed line is for d ¼ 1
2
:

S.A. Gerasimov / Journal of Sound and Vibration 263 (2003) 700–704702



forms (d�1) or (d+1). This symmetry enables one to write universal variables of the average
velocity and the period of vibrations. Indeed, the simultaneous transformations l>-lo and
lo-l> correspond to a turn of the platform in the opposite direction /vS-�/vS with the
same magnitude of the average velocity. The value /WS/(d�1) is anti-symmetrical with respect to
the simultaneous transpositions l>2lo but the value y(d+1) saves the value of the period T at
these transformations. Thus, a universal dependence, if it exists, could be /WS/(d�1)=f(y(d+1))
with some function f. Fig. 3 shows the results of numerical calculations plotted using the
mentioned variables.
For practical purposes, it is useful to have an approximate dependence of /WS/(d�1) on

y(d+1). Satisfactory results are obtained by means of fitting a formula /WS/(d�1)=(A+
By3/2(d+1)3/2)�2/3 to the calculation results presented in Fig. 3. The usual least-square method
gives AE(40/19)3/2 and BE8A. In the usual notations, the average velocity as a function of all
parameters of the system is

vh iE
19p2maðlo � l>Þ

10M0½M
3=2
0 þ 8T3=2ðlo þ l>Þ

3=2�2=3
: ð9Þ

It is seen that this procedure of scaling does not depend on the type of oscillations. It would be a
good thing, therefore, to apply this method to the case of oscillations produced by the piece-wise
constant force:

m
d2xm

dt2
¼ �

4p2m
T2

ac sign cos
2pt

T

� �
: ð10Þ

In this case, it turns out that the scaled dependence of the average velocity upon the period is
almost identical to the described one if acE0.81a. This is also shown in Fig. 3.

Fig. 3. The scaled dependence of the average reduced velocity of the vibrational floating /WS versus the reduced period

of vibrations y and the parameter of asymmetry d at yo1. Points (D�d=1.1, r�d=2, &�d=4, B�d=8, J�d=16)

are the results of solving the equation of motion (6) for the harmonic oscillations (open points) and the piece-wise

constant force (solid points). The curve is relation (9).
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4. Conclusions

Note that the maximum velocity of vibrational floating corresponds to the case of irreversible
motion when db1. On the other hand, it follows from Eq. (9) that the maximum value of /WS/
(d�1) is about 0.5. This means that as the reduced period of the vibrations approaches zero, the
average velocity approaches the asymptotic value

vh imaxE2
p2malo

M2
0

ð11Þ

and does not depend on l> since lobl>. When lo=1kg/s, M0=1kg, a=0.1m, m/M=1
2
; this

value is /vSmaxE1m/s. At large y and d; the average reduced velocity /WS is inversely
proportional to the square of the reduced periods and does not depend on the parameter of the
asymmetry: /WSE0.32/y2 [7]. To take this fact into account, one may add the corresponding item
in the denominator of Eq. (9). It gives

Wh iE
19ðd� 1Þ

40½1þ 8y3=2ðdþ 1Þ3=2 þ 9d3=2y3=5�2=3
: ð12Þ

One should remember that transformations of symmetry can be exact only in asymptotic fields.
The problem has been solved. Apart from estimating the average velocity of vibrational floating,
the distinction and likeness of two types of oscillations in this kind of motion are mentioned.
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