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Abstract

Recently, a new approach, called a non-parametric model of random uncertainties, has been introduced
for modelling random uncertainties in linear and non-linear elastodynamics in the low-frequency range.
This non-parametric approach differs from the parametric methods for random uncertainties modelling
and has been developed in introducing a new ensemble of random matrices constituted of symmetric
positive-definite real random matrices. This ensemble differs from the Gaussian orthogonal ensemble
(GOE) and from the other known ensembles of the random matrix theory. The present paper has three
main objectives. The first one is to study the statistics of the random eigenvalues of random matrices
belonging to this new ensemble and to compare with the GOE. The second one is to compare this new
ensemble of random matrices with the GOE in the context of the non-parametric approach of random
uncertainties in structural dynamics for the low-frequency range. The last objective is to give a new
validation for the non-parametric model of random uncertainties in structural dynamics in comparing, in
the low-frequency range, the dynamical response of a simple system having random uncertainties modelled
by the parametric and the non-parametric methods. These three objectives will allow us to conclude about
the validity of the different theories.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The random matrix theory was introduced and developed in mathematical statistics by Wishart
and others in the 1930s and was intensively studied by physicists and mathematicians in the
context of nuclear physics. These works began with Wigner [1] in the 1950s and received an
important effort in the 1960s by Dyson [2], Wigner [3] and Dyson and Mehta [4] and others. In
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1965, Poter [5] published a volume of important papers in this field, followed, in 1967 by the first
edition of the Mehta book [6] whose second edition [7] published in 1991 is an excellent synthesis
of the random matrix theory. For physical applications, the most important ensemble of the
random matrix theory, is the Gaussian orthogonal ensemble (GOE) for which the elements are
constituted of real symmetric random matrices with statistically independent entries and which
are invariant under orthogonal linear transformations.

The random matrix theory has been used in other domains than nuclear physics. In 1984 and
1986, Bohigas et al. [8,9] found that the level fluctuations of the quantum Sinai’s billard were able
to predict with the GOE of random matrices. In 1989, Weaver [10] showed that the higher
frequencies of elastodynamic structures constituted of small aluminium blocks have the behaviour
of the eigenvalues of a matrix belonging to the GOE. Then, Legrand and Schmit [11], Bohigas
et al. [12], Schmit [13], and Legrand et al. [14] studied the high-frequency spectral statistics with
the GOE for elastodynamics and vibration problems in the high-frequency range. More recently,
Langley [15] showed that the system of natural frequencies in the high-frequency range of linear
uncertain dynamic systems is a non-Poisson point-process. All these results have clearly been
validated for the high-frequency range in elastodynamics but not at all for the low- and medium-
frequency ranges.

Recently, a new approach, called a non-parametric model of random uncertainties, has been
introduced [16-20] for modelling random uncertainties in linear and non-linear elastodynamics in
the modal range, that is to say, in the low-frequency range. This non-parametric approach differs
from the parametric [21-24] and stochastic finite element [25-30] methods for random
uncertainties modelling and has been developed in introducing a new ensemble of random
matrices constituted of symmetric positive-definite real random matrices [16,18]. This ensemble
differs from the GOE and from the other known ensembles of the random matrix theory. This
new ensemble is constructed using the maximum entropy principle [31-34] which allows the
probability distribution of positive symmetric real random matrices to be constructed using only
the available information. In order to improve the readability of this paper, one recalls
fundamentals of the non-parametric model of random uncertainties introduced in the papers
mentioned above.

The present paper has three main objectives. The first one is to study the statistics of the
random eigenvalues of random matrices belonging to this new ensemble of symmetric positive-
definite real random matrices. This part will allow some properties of this new ensemble to be
given and to be compared to those of the GOE. The second one is to compare these two ensembles
of random matrices in the context of the non-parametric approach of random uncertainties in
dynamic systems for the low-frequency range. This comparison will be limited to the case for
which only the generalized stiffness matrix of the dynamic system is random, the generalized mass
and damping matrices being deterministic. This limitation is due to the fact that, in the state of the
art, the GOE does not allow a damped dynamic system to be modelled while the new ensemble
allows mass, damping and stiffness random uncertainties to be modelled. Finally, the last
objective of this paper is to give a new validation for the non-parametric model of random
uncertainties in fixed dynamic systems in comparing, in the low-frequency range, the dynamical
response of a simple system having random uncertainties modelled by the parametric and the non-
parametric methods. It should be noted that the extension to the free dynamic systems having
rigid-body modes is straightforward using the additional developments introduced in Ref. [16] for
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the semi-positive-definite real random matrices (instead of the positive-definite set of random
matrices). These three objectives will allow us to conclude about the validity of the different
theories and in particular, about the non-parametric modelling of random uncertainties in
dynamic systems.

1.1. Brief review on the non-parametric model of random uncertainties in vibration analysis

In this paper, M,(R), Mf (R) and M/ (R) are the set of all the (n x n) real matrices, the set of all
the symmetric (n x n) real matrices and the set of all the positive-definite symmetric (# X n) real
matrices, respectively. One has M+(R)CM (R) =M, (R). If [A] belongs to M,(R), [|[A]llF =
(tr{ [A][A]T})l/ 2 is the Frobenius norm of matrix [A], where tr is the trace of the matrices, det is the
determinant of the matrices and [A]" is the transpose of matrix [A]. The indicatrix function 14(b)
of any set % is such that 14(b) is equal to 1 if beZ# and is equal to zero if b¢ %. The gamma
function is defined for z > 0 by I'(z) = +OO ##~le~'dt. All the random variables are defined on a
probability space (7,7 ,2) and E is the mathematical expectation.

In this introduction, one briefly recalls the main ideas introduced in Refs. [16—-18] concerning
the non-parametric model in elastodynamics and vibrations for the low-frequency range and one
limits the developments to the case of linear dynamic systems.

The two main assumptions introduced to construct such a non-parametric model of random
uncertainties in linear structural dynamics are:

(1) not using the local parameters of the boundary value problem modelling the dynamic
system, but using the generalized co-ordinates directly related to dynamics (non-parametric
approach);

(2) using the available information which is constituted of the mean reduced model constructed
with the n generalized co-ordinates of the mode-superposition method associated with the elastic
modes corresponding to the n lowest eigenfrequencies of the linear dynamic system assumed to be
fixed, damped and stable.

To satisfy these two main assumptions, the non-parametric probabilistic model of random
uncertainties consists in replacing the generalized diagonal mass matrix [M,]e M (R), the
generalized full damping matrix [D,]eM(R) and the generalized diagonal stiffness matrix
[K,]eM (R) of the mean reduced model by the full random matrices [M,], [D,] and [K,],
respectively, with values in M/ (R). The probability model of each random matrix [M,], [D,] and
[K,] is constructed using the entropy optimization principle [32-34] from information theory [31],
using only the available information. For instance, consider the random matrix [K,] for which the
available information is constituted of the following constraints.

(C1) The mean value E{[K,]} of M/ (R)-valued random matrix [K,] is known and is equal to the
corresponding generalized matrix [Kn]el\/ﬂ (R) of the mean reduced model,

E{K,]} = [K,]eM, (R). (1)

(C2) The second order moment E{ ||[Kn]’1||%} of the Frobenius norm of the inverse of random
matrix [K,] has to be finite

E{|I[K,] 'lI7} < + . (2)
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The random matrix [K,] has to consist of values in M (R) in order to represent a mechanical
system with random uncertainties, which models a fixed and stable dynamic system. For instance
if there were uncertainties in the generalized mass matrix, the probability distribution should be
such that this random generalized mass matrix be positive definite. If not, the probability model
would be wrong because the generalized mass matrix of any dynamic system has to be positive
definite. It seems natural to introduce constraint (C1). Constraint (C2) is absolutely necessary and
allows a unique second order random response of the dynamic system with random uncertainties
to exist as proved in Refs. [18,20].

It should be noted that such a non-parametric model of random uncertainties,

(1) allows the uncertainties for the parameters of the elastodynamic model to be taken into
account (similarly to the parametric approaches, but using a global approach),

(2) but also, allows the model uncertainties to be taken into account, that is to say, modelling
the errors which cannot be reached through the model parameters (by definition, any parametric
approach cannot model the kind of uncertainties which correspond to non existing parameters in
the boundary value problem under consideration); for instance, the use of the thick plate theory
instead of the three-dimensional elasticity, etc.

1.2. Summarizing the probability model for symmetric positive-definite real random matrices

This subsection summarizes part of the results developed in Refs. [16-18], concerning the
construction of the probability model for the random matrix [K,] with values in M,/ (R) using the
entropy optimization principle for which the available information is defined by Egs. (1) and (2).
This ensemble of random matrices has been developed for the non-parametric approach of
random uncertainties in the vibration analysis of dynamic systems.

(A) Normalization and dispersion parameter of random matrix [K,]: Since [K,] is a positive-
definite real matrix, there is an upper triangular matrix [Lg ] in M, (R) (Cholesky factorization)
such that

[K,] = [Lg,]"[Lg, - )
Considering Eq. (3), the random matrix [K,] can be written as
[Ku] = [Lg,]' (G, [Lg, ) “)
in which matrix [Gg,] is a random variable with values in M (R) such that
[Gk,] = E{[Gk, I} = [Lu], ()

in which [I,] is the (n x n) identity matrix. Let dx > 0 be the real parameter defined by

5.y 12
5 E{|[Gk,] — [Gk lll7}
K= 2 :
Gk Ix

The parameter dg allows the dispersion of the probability model of random matrix [K,] to be
controlled. If ny>1 is a given and fixed integer, then the dispersion of the probability model is
defined by giving parameter dx, independent of n, a value such that 0<dx < {(ng + 1)/(ny + 5)} 172,
This upper bound for dx comes from the theory, is necessary for Eq. (2) to hold and is not a severe

limitation for applications. In general, dimension n of the reduced matrix model is high, greater

(6)
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than 10 or 100. For instance, if n is greater than 10, ny can be chosen as ny = 10 and consequently,
this upper bound is 0.856 which corresponds to a very high level of uncertainties which is
generally not reached in the applications.

(B) Probability distribution and second order moments of random matrix [Gg,]: The probability
distribution P, of random matrix [Gg,] is defined by a probability density function
[Gn]— PGy, 1([Gr]) from M (R) into R* = [0, + co[, with respect to the measure (volume element)
dG, on the set MS (R) of all the (n x n) real symmetric matrices defined by

dG, =2 T diG.;. (7)

1<i<j<n

One then has Picy,) = picy,)([Ga]) dG, with the normalization condition
/ p[GKn]([Gn]) aGn =1. (8)
M, (R)

Probability density function pig,,([G,]) is then written as
2 s2 -1
P61 (GaD) = Ly @) ([Gal) X Cay, X (det[G,])! X% D
x exp{—(n + 1)(20%) ' t[G,]}, )

in which positive constant Cg,, is such that

(21) "D ((n + 1)/25%)" DO

CG n n - * (10)
AT T+ 1)/20% + (1= j)/2)}
The covariance C/g;’,’k, of random variables [Gg,]; and [Gk, ], defined by
Cio = E{(Gx,1x — G, Ji)(GrJyw — [Gr,Jii)} (11)
is written as
G 5%

Cikl,;";k’ = n+1) 107k Ojp + O Ok 5 (12)
where 0y = 0if j#k and J;; = 1. In particular, the variance of random variable [Gg, ] 1s such that
2

G %
Kn — 1
Vi = ey (0 o (13)

(C) Additional properties of random matrix [Gg,]: Let b = (b1, ..., b,) be any vector in R". Its
Euclidean norm ||b| is such that ||b|]> = b3 + -+ + b2. For 0 fixed in ./, the realization [GKH(H)]’1
of random matrix [Gg, ]! is a matrix belonging to M’ (R) and [G, (0)]" ' bis a vector in R” whose
Euclidean norm is ||[GK”(0)]’1 b||. One introduces the usual matrix norm |||[G1<n(t9)]’1 [|| of matrix
[Gk, (0)] ' defined by

Gk, O] 'l = max [[G,(6)] 'bl. (14)
beR",[[bl|=1
Consequently, |||[GKH(9)]_1||| is the Euclidean norm of the largest vector obtained by applying
[GKn(B)]_l to any vector with a unit Euclidean norm. One then has the following inequality:

¥n=no, E{lIGx] P} < Cse < + o0, (15)
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in which Cj, is a positive-finite constant that is independent of n but that depends on Jx. The
property defined by Eq. (15) is fundamental to prove the convergence of the random response of
the dynamic system with random uncertainties as dimension n goes to infinity as proved in Ref.
[18].

Let [Gy ] be the random matrix with values in M (R) defined by [G ] = [¥.]'[Gk,][W,] in
which [‘l’,,] is any real orthogonal matrix belonging to M,(R). One then has

P, ((GL) 3G, = pia,, ((G,) G, (16)

which proves the invariance of random matrix [Gg,] under real orthogonal transformations.

(D) Monte Carlo numerical simulation of random matrix [Gg,]: The following algebraic
representation of positive-definite real random matrix [Gg,] allows a procedure for the Monte
Carlo numerical simulation of random matrix [Gg,] to be defined. Random matrix [Gg,] can be
written as

[Gk,] = [Lk,]" [Lx,], (17)

in which [Lg, ] is an upper triangular random matrix with values in M,(R) such that:

(1) random variables {[Lg,];,/<j'} are independent;

(2) for j<j', real-valued random variable [Lg,];; can be written as [Lg,];; = ¢,Uy in which
0, = Ox(n+ 1) and where Uy is a real-valued Gaussian random variable Wlth zero mean and
variance equal to 1;

(3) for j =j', positive-valued random variable [Lg,]; can be written as [Lg,]; = 0,/2V; in
which ¢, is defined above and where V is a positive-valued gamma random variable for which the
probability density function py,(v) with respect to dv is written as

1 9 .
p ,-(U) -1 +(U\ : U(n+1)/2bkf(l+j)/2 e v, (18)
k U 1265 + (1 ))2)

1.3. Probability model for a random matrix belonging to the GOE

In this subsection, the random matrix [K,?OE] with values in ME(IR) is constructed by using the
Gaussian orthogonal ensemble (GOE) (concerning the GOE, see for instance Ref. [7]). In order to
perform the comparisons with the model summarized in Section 1.2, it is assumed that the mean
value of random matrix [K,?OE] is the positive-definite symmetric real matrix [K,] defined by

Eq. (1), that is to say
E{[K°F]} = [K,]eM; (R). (19)

(A) Normalization and dispersion parameter of random matrix [KI?OE]: The developments of
Section 1.2(A) are used and consequently, the random matrix [K,?OE] can be written as

(K%)= [L ]G] L, ) (20)
in which matrix [G,%OE] is a random variable with values in MZ(R) such that
[GX1 = E{IGE"T} = [L]. (21

In order to compare the two sets of random matrices in the same conditions, the dispersion
parameter of random matrix [KnGOE] is taken as parameter g of random matrix [K,], defined by
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Eq. (6). One then has
EAIGEY — [GRTNIE _ o
52
IGEOF NI

(22)

It should be noted that ||[GGOE |3 = n. As the mean value of a random matrix [H®F] belonging to
the GOE is such that E{[H,, E = [0], random matrix [GG?E] constructed with the GOE has to be
written as

[GEOF] = [1,] + [HSOF), (23)

in which [H?E] belongs to the GOE, that is to say, is a random matrix with values in Mf (R).
Consequently, yandom matrices [HnGOE], [G,G<?E] and [KnGOE] are not positive matrices almost
surely. Let Vﬂf" be the variance of the random variable [GI%OE]jk such that

GUOE

Vit = BAIGLOR), — [GEOFY,)*) = E{(HEOF), %), (24)
Random matrix [HGOE] is constructed for that
Gy — K (11 g0, and k
Vi =V —( +1)(1—&- i), Jand ke{l, ... n}. (25)

(B) Probability distribution and second order moments of random matrix [HGOE ]: With respect to
the volume element dH,, defined by Eq. (7), the probability density function of random variable
[HHGOE] belonging to the GOE, such that its second order moments are

2

0
E{H;" Y =101 EAHTO 0% = (=5 1+ o), (26)

is written as

(n+ 1)

2
K

p[HnGOE]([Hn]) = Cy ¥ exp{_ tr{[Hn]z} }, (27)

where C, is the constant of normalization which can easily be calculated. Eq. (27) shows that real-
valued random variables {[HnGOE]jk, j<k} are mutually independent, second order, centred and
Gaussian.

(C) Additional properties of random matrix [HGOE ]: The probability density function of random
matrix [HGOE] defined by Eq.(27) shows that [HGOE] is invariant under real orthogonal
transformations. Random matrix [HGOE] and consequently, random matrices [GGOE] and [KGOE]
are with values in MS (R) but not in M, (R). Consequently, [HGOE] [GGOE] and [KGOE] are not
invertible almost surely and Eq. (15) does not hold neither for [HGOE] nor for [GGOE] or [KGOE]

(D) Monte Carlo numerical simulation of random matrix [GGOE] As real-valued random
variables {[HGOE]/k, j<k} are mutually independent, second order centred and Gaussian with
variances given by Eq. (26), then it is easy to perform a Monte Carlo numerical simulation of
random matrix [GIG<?E] =[L,] + [HnG °F,



900 C. Soize | Journal of Sound and Vibration 263 (2003) 893-916
2. Statistics of the random eigenvalues
2.1. Introducing the random generalized eigenvalue problems

With respect to the generalized co-ordinates q = (g1, ...,¢,)€R" associated with the elastic
modes corresponding to the n lowest positive eigenfrequencies 0 <@; < --- <@, of the fixed and
stable mean dynamic system, the mean generalized eigenvalue problem is written (see Section 1.1)
as

K,]q = AM,]q. (28)
The matrix [M,]eM;(R) is the mean generalized diagonal mass matrix for which the diagonal
entries are the generalized masses of the elastic modes of the mean dynamic system. The matrix
[K,]eM(R) is the mean generalized diagonal stiffness matrix for which the diagonal entries are
the n first eigenvalues 0 < 4; < --- </, of the mean dynamic system, such that /; = cg}. It should be
noted that the mean generalized eigenvalue problem defined by Eq. (28) gives n-uncoupled
equations for the mean dynamic systems due to the usual orthogonal properties of the elastic
modes for a fixed (or a free) dynamic system. Let us assume that random uncertainties concern
only the stiffness operator (the mass operator is certain for the reason given in the Introduction).
The use of the non-parametric model of random uncertainties for this dynamic system consists in
introducing (see Section 1.1) the random generalized eigenvalue problem associated with Eq. (28),

[K.]Q = 4[M,] Q. (29)

The probability model of the random matrix [K,] with values in M (R) is defined in Section 1.2
and is such that [K,] = [Lg 1" [Gk,][L k,] In which [Lg ] = 4; 1/2 0y and where the random matrix
[Gk,] with values in M*(R) is such that

2

(+1)

E{[Gk]} =[L] Vy* = (1 + ). (30)

The positive-valued random eigenvalues of Eq. (29) are denoted 0 <Ay, ..., A,. It should be noted
that the random generalized eigenvalue problem defined by Eq. (29) gives n-coupled random
equations.

In order to compare the two ensembles of random matrices defined in Sections 1.2 and 1.3, a
second random generalized eigenvalue problem is introduced by replacing random matrix [K,] by
the random matrix [KGOE] with values in MS(R) defined in Section 1.3, which is such that
[KnGOE] = [Lg,]" [GGOE] [Lg,] where the random matrix [GGOE] with values in M7 (R) is such that

GOE 52
E{GLR) = L], V™ = TR 31)

This second random generalized eigenvalue problem is then written as

[KGOE] QGOE AGOE [M ] QGOE (32)
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for which the real-valued random eigenvalues are denoted AYF, ..., A%9F. Finally, the order

statistics of random eigenvalues 0< Ay, ..., A4, and AF9F, ... A%CF are introduced,
0<A; <A<+ <A, (33)
ATOECASOE < < A99F, (34)

2.2. Probability density functions and second order moments of the random eigenvalues

Let py(2)dZ and p Aco.e()u) d/ be the probability distributions of random eigenvalues 4; and
AGO respectwely, correspondlng to the order statistics defined by Egs. (33) and (34). The mean
Values m,, and m 490% and the standard deviations ¢ 4, and ¢ 490% of the random eigenvalues 4; and

AGOE are such that
ma, = E{A},  mgor = E{A9OF}, (35)
J

o, = E{A7} =iy Ggor = E{ATOP)} — mijcor, (36)

in which the moments of order v>1 are defined by

+oo +0o0
By = [ 2o EAF = [ 2 pgyan (37)
0 —w J

For the general case considered, probability density functions p4,(4) and p 4e0c(4) and the second
order moments cannot be explicitly constructed. This is the reason why an approximation of these
quantities will be constructed by using the Monte Carlo numerical simulation.

2.3. Probability density functions and second order moments of the random normalized spacings
between two consecutive random eigenvalues

The random spacing 4; (or AGOE) between the two consecutive random eigenvalues 4; and 4,44
(or AGOE and AGOE) of the order statistics is defined by

Aj = Ajp1— A; (or AFOF = AFGF — AFOF), jell,...,n—1}. (38)

The mean value my, (or m eor) of random variable 4; (or 4 ]-GOE) is defined by
my, = E{4;} (or  meor = E{A7OFY),  jefl, ... ,n—1} (39)

In Section 2.4, one will see that my, (or m Aoog) depends on j. As usually, the random normalized
spacing S; (or S7OF) can be introduced and is defined by

A, A9
S]:_J (OI' S].GOE:‘]—>, jE{l,...,l’l—l}- (40)

my; m ,GoE

It can easily be seen that the mean value ms, = E{S;} (or m spor = E{S79F}) of random variables
Sj (or SFOF) is independent of j and is such that

ms, =1 (or mS]_oog—l), je{l,...,n—1}. (41)
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For j fixed in {1,2,. — 1}, let ps(s) (or pSGOE(S)) be the probability density function with
respect to ds of posmve Valued random variable S; (or SGOE) Let a5, (or O'SGOE) be the standard
deviation of random variable S; (or S7°F), such that

o5, = ELS}} =1 or ojear = E{(S77")} — 1, (42)

+ o0

E{sz} = /0 o szpsj(s)ds or E{(S]_GOE)2} — /0 sszj(;oE(S) ds. (43)

Probability density function pg;(s) (or p SGOE(S)) and consequently, g, (or USGOE) depends, a priori,
on j (this statement will be Verlﬁed in Section 2.4). Nevertheless, one will see in Section 2.4, that
function ji— 0y, (or ]r—mScog) depends weakly on j. Consequently, following the usual approach
(see for instance Ref. [7]), one introduces the positive-valued spacing random variable S (or SOF)
such that, for all 0 fixed in .7, S1(0), ..., S,—1(0) (or STOE(O), ..., SSPE(0)) are (n — 1) independent
realizations of random variable S (or S¢9F). It should be noted that this construction corresponds
to an approximation. The probability density function ps(s) (or pgcor(s)) with respect to ds of
positive-valued random variable S (or S°OF) are usually called the spacing probability density
function. Concerning the GOE, the Wigner surmise for the spacing probability density function

consists in writing (see Ref. [7]) that pgeor(s) ~ pw(s) in which
pi(s) = Iy (s) g se /97 (44)

However, a more general probability density function than py(s) was introduced by Brody [35]
for fitting spacing probability density functions. This probability density function, denoted pp(s),
is written as

pa(s) = 1gi(s)as* e, (45)

in which « >0, ¢ >0 and b > 0 are such that foﬂopg(s) ds=1 and f0+oo s pp(s)ds = 1. One then
gets a=ob and b = {I'(1 + 1/x)}*. Taking o = 2 yields pp(s) = pw(s). In Section 2.4, it is proved
that pp(s) with a<2 is a better approximation of pgs(s) and pgeor(s) than py (s).

2.4. Comparison of the two ensembles of random matrices

Below, the ensemble of random matrices defined in Section 1.2 will be called the “positive-
definite” ensemble. One considers the mean reduced system with dimension n = 30, such that, for
all ¢ and fin {1, ..., 30},

+1 +1
My = 8o, Kol =1 [ dhgds+ ks [ 0,904 d. (46)
in which @,(x) = sin(na(1 + x)/2) and ¢} is the second derivative of ¢, with respect to x. This
model corresponds to an Euler beam in bending mode, with length 2, simply supported at its ends,
attached to a continuous elastic support along its length, for which the elastic bending modes ¢
are associated with the 30 lowest eigenfrequencies @, such that N

0 =1 =k(T) @)
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For all the numerical examples considered in this paper, one takes k; = 0.9999987 and k, =
2.0278508 x 10~7. Consequently, one has 1<, <2 with 4, =1, A = 1.000185, ..., Ao =
1.873186, A3 = 2. As explained in Section 2.2, the Monte Carlo numerical simulation [36,37]
and the usual mathematical statistics are used to estimate m,,, m 90> Mg;5 1M1460F, T 4, O g60F, T,

7 6o and probability density functions p,,, p AGOF Ps;(9), pS/_G()E(S), ps(8), pscor(s), defined in

Sections 2.2 and 2.3. Figs. 1-8 (left and right) display the results corresponding to the use of 10°
realizations in the computation. There are two groups of figures. Figs. 1-4 correspond to ox =
0.25 (weak value of the dispersion parameter) and Figs. 5-8 correspond to dx = 0.50 (strong value
of the dispersion parameter).

(A) Results for ox = 0.25: Fig. 1 compares the graph of function j+>m,, with the graph of
function jr>m eor (Fig. 1 on the left) and, j+>0,, with ji>0 60 (Fig. 1 on the right), the
functions being defined on the set {1, ...,30}. For this weak value'of dispersion parameter Jg, it
can be seen that the second order moments of the random eigenvalues (order statistics) are similar
for the “positive-definite” ensemble and for the GOE. Fig. 2 on the left displays the 30 graphs of
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Fig. 1. Dispersion parameter ox = 0.25. Figure on the left: graphs of functions j+ m,; (thick solid line) and j+ m 4eor
(thin solid line). Figure on the right: graphs of functions j a4, (thick solid line) and j+ o 460r (thin solid line).
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Fig. 2. Dispersion parameter dx = 0.25. Figure on the left: for j = 1, ..., 30, graph of function A+ p ,e0r (). Figure on
the right: for j = 1, ..., 30, graph of function 2 p4,(4). !
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Fig. 3. Dispersion parameter ok = 0.25. Figure on the left: graphs of functions j+—my; (thick solid line) and ji— m 4eox
(thin solid line). Figure on the right: graphs of functions j— g5, (thick solid line) and j o geor (thin solid line).
J

probability density functions (pdf) {4 |—>pAcor(/1) j=1,...,30} for the GOE. Fig. 2 on the right
displays the 30 graphs of pdf {Ar—>p4.(4),/j =1, 30} for the “‘positive-definite” ensemble. For
this weak value of g, the graphs are similar for the two ensembles of random matrices. Fig. 3
compares the graph of function j—my,, with the graph of function j>m A0F (Fig. 3 on the left)
and , jio o with j > 0 ggor (Fig. 3 on the right). The results for the second order moments of the
random spacings are similar for the “positive-definite”” ensemble and for the GOE. However, it
should be noted (see Fig. 3 on the right) that g5, and 7 560r depend lightly on j, as explained in
Section 2.3. Fig.4a on the left shows the 30 graphs of pdf {s—=logo(ps,(s)),) = 1, ..., 30}
compared with the Wigner pdf s+ log,,(pw(s)). This figure shows that, for s > 2.5, the ngner pdf
does not fit well pdf {ps,, j=1,...,30} in mean. Fig. 4a on the right shows the graph of pdf
s>logo(ps(s)) (irregular thick sohd line), in which pg(s) is estimated as explained in Section 2.3,
compared with the Wigner pdf s+ log,,(pw(s)) (dashed line). For s > 2.5, it can be seen that pyy(s)
does not fit well pgs(s). Consequently, a Brody pdf s+—log;,(ps(s)) has been fitted with o = 1.93
(thin solid line). Fig. 4b (left and right) is similar to Fig. 4a, but correspond to the GOE instead of
the “positive-definite” ensemble. Fig. 4b on the left show pdf {s+—log;,(pseor(s)),j =1, ...,30}
and s—log;,(pw(s)). Fig. 4b on the right shows the graph of pdf s»—>log16(psoos(s)) (irregular
thick solid line), s+ log;(pw(s)) (dashed line) and s+ log;,(pa(s)) fitted with o = 1.93 (thin solid
line). The analysis of Figs. 4a and b show that, for the two ensembles of random matrices, the
spacing probability density functions are similar. However, their asymptotic behaviour at infinity
does not follow the Wigner pdf but are better fitted with the Brody pdf with o = 1.93.

(B) Results for ox = 0.50: Figs. 5-8 correspond to Figs. 1-4 for the strong value of dispersion
parameter ok instead of its small value. Fig. 5 compares the graphs of functions j+>m,, with
jrom A50F (Fig. 5 on the left) and, compare the graphs of functions ji— 0o, with ji>o A90F (Flg 5
on the right). For this strong value of dispersion parameter dg, the second order moments of the
random eigenvalues (order statistics) are different for the “positive-definite”” ensemble and for the
GOE, especially, for the standard deviations. For the “positive-definite” ensemble, j—>ay; is a
monotonic increasing function, that is not the case for function j—o 490F corresponding to the
GOE. This point constitutes an important difference between the two ensembles. It should be
noted that, in dynamic systems, the random uncertainties increase with frequency and
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Fig. 4. (a) “Positive-definite” ensemble; dispersion parameter dx = 0.25. Figure on the left: for j = 1, ..., 30, graph of
function s+ log;,(ps;(s)) (irregular solid lines) and graph of the Wigner pdf s+ log;,(pw(s)) (regular solid line). Figure
on the right: graph of function s—logo(ps(s)) (irregular thick solid line), graph of the Wigner pdf s+ log,,(pw(s))
(dashed line) and graph of the Brody pdf s+—log;o(pp(s)) with o = 1.93 (thin solid line). (b) Gaussian orthogonal
ensemble; dispersion parameter dx = 0.25. Figure on the left: for j =1, ...,30, graph of function s»—»logm(ngE(s))
(irregular solid lines) and graph of the Wigner pdf s+—1log,,(pw(s)) (regular solid line). Figure on the right: graph of
function SHIOglO(ngE(S)) (irregular thick solid line), graph of the Wigner pdf s+ log;,(pw(s)) (dashed line) and graph
of the Brody pdf s+—log;,(ps(s)) with o = 1.93 (thin solid line).
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Fig. 5. Dispersion parameter ox = 0.50. Figure on the left: graphs of functions j m,; (thick solid line) and j+ m 4eox

(thin solid line). Figure on the right: graphs of functions j g4, (thick solid line) and j>a 4o0r (thin solid line).
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Fig. 6. Dispersion parameter dx = 0.50. Figure on the left: for j = 1, ..., 30, graph of function A+ p ,c0x(1). Figure on
the right: for j =1, ..., 30, graph of function A p4,(4). '
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Fig. 7. Dispersion parameter 6x = 0.50. Figure on the left: graphs of functions j—my; (thick solid line) and j—m 4eox
(thin solid line). Figure on the right: graphs of functions j— g5, (thick solid line) and j+— g geor (thin solid line).
J

consequently, the standard deviation ¢4, has to increase with j from j = 1. This is the case for the
“positive-definite” ensemble but not the case for the GOE, i.e., for ¢ cor. Fig. 6 on the left
displays the 30 graphs of pdf {1+ p jcor(4),j = 1, ..., 30} for the GOE. Fig.'6 on the right displays
the 30 graphs of pdf {1+—>p4,(1),) = 1, ..., 30} for the “positive-definite’” ensemble. The “positive-

definite” ensemble yields results very different from the GOE. Those given by the GOE are not
good: in Fig. 6 on the left, it can easily be seen that pAlcog(}v) is not equal to zero for A <0. This

means that random eigenvalue AYCF (that is to say the fundamental eigenfrequency of the
dynamic system with random uncertainties) is not positive almost surely, that is not admissible for
a stable dynamic system. In opposite, the “positive-definite” ensemble gives good results. Fig. 7
compares the graphs of functions j—my, with jr>m cor (Fig. 7 on the left) and , j— o5 with
Jj+—>ageor (Fig. 7 on the right). Concerning the mean values (Fig. 7 on the left), there is a significant
differénce between the two ensembles while the difference is small for standard deviations s and
o geor which depend lightly on j. Figs. 8a and b, which correspond to the strong value of dispersion
parameter dg, are very similar to Figs. 4a and b which correspond to the small value of the
dispersion parameter. Figs. 8a corresponds to the “positive-definite” ensemble and Fig. 8b to the



C. Soize | Journal of Sound and Vibration 263 (2003) 893-916 907

Fig. 8. (a) “Positive-definite” ensemble; dispersion parameter dx = 0.50. Figure on the left: for j =1, ..., 30, graph of
function s+ log,((ps;(s)) (irregular solid lines) and graph of the Wigner pdf s+ log;,(pw(s)) (regular solid line). Figure
on the right: graph of function s+log,(ps(s)) (irregular thick solid line), graph of the Wigner pdf s+ log,,(pw(s))
(dashed line) and graph of the Brody pdf s+—log;o(ps(s)) with o = 1.91 (thin solid line). (b) Gaussian orthogonal
ensemble; dispersion parameter dx = 0.50. Figure on the left: for j =1, ...,30, graph of function SH]OglO(ngE(S))
(irregular solid lines) and graph of the Wigner pdf s+ log,o(pw(s)) (regular solid line). Figure on the right: gréph of
function s+ log;o(p%9(s)) (irregular thick solid line), graph of the Wigner pdf s log,o(pw(s)) (dashed line) and graph
of the Brody pdf s—log,y(ps(s)) with & = 1.91 (thin solid line).

GOE. For this strong value of the dispersion parameter, the Brody pdf is well fitted with « = 1.91
instead of o = 1.93 for the small value.

3. Non-parametric model of random uncertainties in vibration analysis
3.1. Definition of the mean reduced model of the dynamic system

One considers a fixed stable linear mean dynamic system for which the Fourier transform
u(x, w) with respect to ¢ of the vector-valued displacement field u(x, ), is defined on a bounded



908 C. Soize | Journal of Sound and Vibration 263 (2003) 893-916

domain Q =R’ with d > 1, equipped with the measure denoted dx and such that |Q| = Jodx is the
“volume” of domain Q. For all w belonging to the frequency band of analysis [0, @] With
Wpax > 0, the mean reduced model of dimension 71 of this mean dynamic system is obtained by
using the usual mode-superposition method. The approximation u,(x,®) of u(x,w) with
dimension # is then written as

En(X, Q)) - Z Qz(w) ga(x)a XEQ, (48)
=1
(—o’M,] +i0[D,] + [K,]) q(») = f(w), (49)
in which Q... are the elastic modes corresponding to the n lowest eigenfrequencies

0<@ <wy< - <@, of the mean dynamic system, q(w) = (gi(w), ..., g.(w))eC" is the complex
vector of the generalized co-ordinates, f(w) = (fi(w), ..., f(w))eC" is the complex vector of the
generalized external forces, [M,], [D,] and [K,] belong to M/ (R) and represent the generalized
diagonal mass matrix, the generalized full damping matrix and the generalized diagonal stiffness
matrix, respectively. It is assumed that the mass density of the mean dynamic system is a constant
equal to 1, that [, gl(x) ‘@ /;(X) dx = 9,4 and that the generalized damping matrix is a diagonal
matrix, such that

IM,] = 8,5, [D,]=2E e 8up,  [K,] = 028y, (50)

in which £ > 0 and w,,.; > 0 are given positive constants. From Eq. (50), it can be deduced that, for
the mean dynamic system, the critical damping rates &1, ..., &, of elastic modes Qs> are given
by &, = & wyer/w,. It should be noted that for the numerical examples presented in this paper, the
given mean value of the critical damping rates of the elastic modes whose eigenfrequencies are
inside the frequency band of analysis, is taken as 0.001. In this case, the use of Eq. (50) yields as
the minimum value of the critical damping rates £,, the value 0.0009, and as the maximum value,
the value 0.0012. Consequently, for the mean dynamic system, the use of a simple Rayleigh
damping is sufficient in taking into account the objectives of this paper. As observation of the
mean dynamic system, one introduces the positive-valued function w+ ¢,(w) such that

ex(@) = Il ()]l (51)

in which [h,(®)] = (—w?M,] + iw[D,] + [K,]) ' is the generalized frequency response function of
the mean dynamic system and ||[A]llr = (tr{[A]]A]*})"/* with [A]* = [A]".

3.2. Non-parametric model of random uncertainties

The non-parametric model of random uncertainties is introduced as explained in Section 1.1.
For preserving the coherence with Section 2.1, it is assumed that only the stiffness operator is
uncertain. Consequently, the use of the ‘“‘positive-definite” ensemble for the non-parametric
modelling of random uncertainties leads one to the following random generalized frequency
response function of the random dynamic system:

[H,(0)] = (-0*[M,] +io[D,] + [K,]) ", (52)
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in which the probability model of random matrix [K,] is defined in Section 1.2. The random
observation associated with Eq. (51), is the positive-valued random variable &,(w) defined by

() = |l [Hu(@)]l|- (53)

If the generalized stiffness matrix is modelled by the GOE, then [K,] is replaced by [K¢%#] for
which the probability model is defined in Section 1.3. In this case, &,(w) is denoted &% (w).

3.3. Comparison of the two ensembles of random matrices

The mean reduced model of the dynamic system is defined in Sections 2.4 and 3.1 with & = 0.01
and w,,r = 21 x 0.02rad/s. The frequency band of analysis is such that ., = 27 x 0.22rad/s.
The value of the dispersion parameter is dx = 0.50. The Monte Carlo numerical simulation
method is carried out with n; =40000 realizations, denoted by 0,,...0,, for which the
realizations w— &,(w; 0y), ..., o— &Ey(w; 0,,) are numerically calculated for the two ensembles of
random matrices, with a sampling frequency step Aw = @4, /300. For o fixed in [0, wpy], the
mean values E{&,(w)} and E{gGOE(cu)} and the standard deviations o4, (w) and ¢ [G()E(CU) of
random variables &,(w) and é”‘GOE (w), respectively, are usually estimated. For the comparisons,
one defines the functions vr—»dB(v) and v dB%%E(v) such that

dB(v) = log,o(E{&,(2nv)}),  dBOE(v) = log,o(E{&PE2nv)}). (54)

Finally, for the “‘positive-definite’” ensemble and for the GOE, for all v fixed in [0, @,y /27], the
extreme value statistics associated with realizations 0y, ..., 0, are defined by

dB,ux(v) = loglo{ml?x &,2mv; Hk)}, dB,in(v) = loglo{mln &n2mny; Hk)} (55)

max min

dBC9E(y) = loglo{m]?x @‘”,CI;OE(27W; Hk)}, dBC9E(v) = loglo{mkin (5505(2nv; Qk)}. (56)

Figs. 9 and 10 are relative to the frequency band [0, 0.22] Hz. Fig. 9 on the left displays (1) the
response vi—log,,e,(2nv) of the mean dynamic system (dashed line), (2) the graphs of functions
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Fig. 9. Non-parametric approach. Dispersion parameter dx = 0.50. Frequency band [0,0.22] Hz (horizontal axis).
Figure on the left: graphs of functions vi—log,e,(2nv) (dashed line), vi— dB(v) (thick solid line) and v+ dB°%E(v) (thin
solid line). Figure on the right: graphs of functions vi— g, (2nv) (thick solid line) and Vi 0 gGor (2mv) (thin solid line).
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Fig. 10. Non-parametric approach. Dispersion parameter dx = 0.50. For the “positive-definite”” ensemble: graphs of
functions v— dB(v) (thick dashed line), vi— dB,,,(v) (upper thick solid line), v— dB,,;»(v) (lower thick solid line). For
the Gaussian orthogonal ensemble, graphs of functions vi—dB%(v) (thin dashed line), v+ dBS2E(v) (upper thin solid
line), vi— dBS9E(v) (lower thin solid line).

min

vi—>dB(v) (thick solid line) and v dB“PF(v) (thin solid line). Fig. 9 on the right displays the
graphs of functions vi— g4, (2nv) (thick solid line) and v+ & 4cor (27v) (thin solid line). Fig. 9 shows
an important difference between the “positive-definite” ensemble and the GOE. As proved in
Section 2.4(B), for the GOE, the first random eigenvalues (the lowest eigenvalues of the order
statistics) have a larger standard deviation than for the ‘“‘positive-definite” ensemble and their
probability distributions are different. This is the reason why the mean value and the standard
deviation of the random responses are very different in the frequency band [0, 0.1] Hz for the two
ensembles of random matrices. These differences can also be seen in Fig. 10 which shows (1) for
the ‘“‘positive-definite” ensemble, the graphs of functions v+>dB(v) (thick dashed line),
vi=>dBy,(v) (upper thick solid line), vi—dB,,;,(v) (lower thick solid line), (2) for the GOE, the
graphs of functions vi—>dB%%E(v) (thin dashed line), vi>dBS%E(v) (upper thin solid line),
vi—>dB%9E(v) (lower thin solid line).

min

4. A validation point for the non-parametric model of random uncertainties in vibration analysis
4.1. Setting the problem

As explained in Section 1.1 of the introduction, the non-parametric model of random
uncertainties in vibration analysis has been introduced to replace the usual parametric model for
complex dynamic systems when the number of uncertain local parameters is large and above all,
to take into account the model uncertainties which cannot be modelled with the parametric
models. Nevertheless, as Section 3 shows that the results given by the two ensembles of random
matrices are very different, it is interesting to analyze a simple dynamic system with random
uncertainties which can easily be modelled by using the usual parametric approach, in order to
conclude if the use of the ““positive-definite” ensemble is better than the use of the GOE for the
non-parametric model of random uncertainties in low-frequency vibration analysis.
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Consequently, one considers the dynamic system with parametric random uncertainties for which
the associated mean dynamic system is defined in Section 2.4 and which is used in Section 3.

4.2. Defining the dynamic system with parametric random uncertainties

One considers a dynamic system with parametric random uncertainties on the stiffness
operator, for which the mean dynamic system is defined in Sections 2.4 and 3.1. In the frequency
domain, the weak formulation of the corresponding boundary value problem is written as

+1

+1 +1
— w? / U(x, w) v(x) dx + 2iwéw,er / U(x,w) v(x)dx + ky / Y(x)U"(x, w)v"(x) dx
—1 —1

+1

1
+ k> / T T(x) U(x,w)v(x)dx = / g(x, ) v(x) dx, (57)

in which v” is the second derivative of v with respect to x and where the test function v belongs to
the admissible function space constituted of the “‘sufficiently differentiable” real-valued functions
v defined on @ =] —1,+1[ and such that v(—1) = v(+1) =0 and v"(—1) =v"(+1) = 0. The
external excitation is represented by the complex-valued force field x— g(x, w) define on Q. In
Eq. (57), £ and w,.r are defined in Section 3.3 and, k; and k; are defined in Section 2.4. Parameters
Y(x) and T'(x) are second order stochastic processes indexed by Q with values in R™, statistically
independent, such that

E{Y(x)! =1, E{T(x)}!=1 VYxeQ. (58)

For x fixed in Q, Y(x) and T(x) are written as

L&y, o L5 r0
MFE;%m,MFE;%m, (59)
in which my >1 and mz > 1 are two finite positive integers and where Z, ...,Z} , Z[, ..., Z] are

my + my independent copies of a stochastic process Z; defined as follows. Stochastic process
{Z}(x), xeR} is indexed by R with values in R, second order, centred, Gaussian and stationary,
such that

E{Zy(x)} =0, B{Zyx)} =1 (60)

Let Sz, (k) be its power spectral density function defined on R with values in R", related to its
autocorrelation function Rz, (n) = E{Zy(x + n)Z;(x)} by the equation

Ra) = [ & 55,06 dk.

Power spectral density function is defined by

L 1

S2,(k) = na (1 + L2k?)

1—ppy(K), (61)
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in which 0<b< + oo is a finite positive real constant and where « is such that a =
(2/m) arctan(bL). It can then verified that

0% =E{Y(x)*} - 1= m% 02 =E{T(x)*} — 1= m% (62)

4.3. Constructing the random reduced model
The random reduced model of dimension # is obtained by using the # elastic modes Qs @,

introduced in Section 2.4, associated with the n lowest eigenfrequencies @, ..., ®, defined by
Eq. (47). From Eq. (57), it can be deduced that the approximation U,(x, w) of U(x, w) is written as

Uix,0) =Y Oy0) g (), xeQ, (63)
a=1
(—* [M,] + io[D,] + [K2"")Q(w) = f(w), (64)

in which [M,]=[I,] (see Eq.(46)), [D,] =2Zlw.s(l,] (see Eq.(50)) and where Q(w)=
(Q1(w), ..., Ou(w)) is the random vector of the generalized co-ordinates and where
f(w) = (fi(w), ..., fn(w)) is the complex vector of the generalized external forces such that f,(w) =
fjll g(x,w) (py(x) dx. Let [K,],5 = @? 8,5 be the matrix defined by Eq. (50) which can be written as

[K,] = [Lg,"[Lg, ], [Lg,Jip = @x Sp- (65)

In Eq. (64), the random matrix [K/*“"] can be written as
[Klrilarain] — [LK”]T [G[IJg’ram] [LK”], ( 6 6)

where the random matrix [GE"“"] is such that
aram kl 1 k2 1
(G = — / Y (1) (X)) (x) dx + — / T, (Mg, ()dx.  (67)
WuWg J_1 ‘ WaWp J 1
From Egs. (58), (47) and (65), one deduces that

[Gk "= E{[GK "]} = [L.]. (68)

In order to compare the non-parametric model with the parametric model, one introduces the
global dispersion parameter o%"“" >0 of random matrix [Gi""] defined (see Eqgs. (3)~(6)) by

aram aram 1/2
aram E{H[Gg(,, ] - [GII){,, ] II%}
5117( = param-; 2 . (69)
Gk, Iz
The random generalized frequency response function associated with Eq. (64) is written as
[H,(0)""*"] = (-0 [M,] + io [D,] + [KZ""])~". (70)

Finally, the random observation defined by Eq. (53) is written as

gﬁaram(w) — ||U)2[H£amm((,l))]”1r- (71)
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4.4. Numerical analysis

Statistics related to stochastic process {&7““"(w),we[0, W]} are estimated by using the
Monte Carlo numerical simulation. Let N be a fixed integer sufficiently high. It is assumed that
b = N7/2. Domain [—1, +1] is discretized with the sampling space step 4 = 2/N. In Egs. (67), the
integrals are discretized as follows:

[G%ram ~ A Z {

in which the sampling points in the space domain are

x,=—14+v4, v=0,1,....N—1, (73)

k>
W)+ Te g} 02

0(_

and where Y (x,) and T'(x,) are derived from Eq. (59). From Section 4.2, one then has to compute
independent realizations of stochastic process Z;. For N fixed, one wishes stochastic process Z; to
be Gaussian. Consequently, one uses the approximation Z} (x) of Zy(x) defined by

N-1
ZY(x) = V26 Re{z V/Sz,(k) Ry e ke Ry = \/—InV,, (74)

/=0

in which Re{z} denotes the real part of the complex number z and where 6 = 2b/N is the
sampling wave number step such that 6 x 4 = 2z/N (that is to say, 6 = n). The sampling points
in the wave number domain are such that

ki =—-b+(+Hs, ¢=01,...,N—1 (75)

In Eq. (74), Uy, Uy, ...,Uy_; and V,, Vi, ...,Vy_; are 2N independent uniform real-valued
random variables on [0, 1]. With this choice of the parameter values, the FFT algorithm can be
used to compute the independent realizations of the RY-valued random vector
(ZY (0. oo Z) (v 1),

4.5. Numerical parameters and computation

The Monte Carlo numerical simulation method is carried out with n, = 40 000 realizations,
denoted by 0y, ...0,,. The realizations w— &, (w;0,), ..., o & (w; 0,,) are numerically
calculated on the frequency band [0, @] With @, = 21 x 0.22rad/s and with a sampling
frequency step Aw = w4y /300. The values of the numerical parameters are n = 30, my = my =
4,N=512,L=0.076m,6 =n=23.1415m', 4 =2/N = 0.0039m, b = Nr/2 = 804.25m ! and
a = 0.9896. Fig. 11 on the left displays the graph of power spectral density function k> Sz, (k)
and Fig. 11 on the right displays the graph of autocorrelation function n+— Rz (k). The
computation of parameter &5 " defined by Eq. (69) yields %" “" = 0.4942~0.50.

Figs. 12 and 13 are relative to the frequency band [0,0.22] Hz. Fig. 12 on the left displays the
response vi—log;,e,(2nv) of the mean dynamic system (dashed line) calculated in Section 3.3 and
the graph of function v dB*“"(v) (thick solid line) such that

dBparanz(V) — loglo(E{@@ﬁ”’”’"(va)}). (76)



914 C. Soize | Journal of Sound and Vibration 263 (2003) 893-916

1.2
0.025 |
1
0.02 08
0.015 | 1 06
0.01} 1 o4
0.005 | 1 0.2
0 ) ) )
-1000 -500 0 500 1000 -1 -0.5 0 0.5 1

Fig. 11. Figure on the left: graph of power spectral density function k> Sz (k). Figure on the right: graph of
autocorrelation function n+— Rz, (k).
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Fig. 12. Parametric approach. Dispersion parameter %" = 0.4942. Frequency band [0,0.22] Hz (horizontal axis).
Figure on the left: graphs of functions vi—log;e,(2nv) (dashed line) and v dB " (v) (thick solid line). Figure on the
right: graph of function v+ ¢ grwan(27v) (solid line).
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Fig. 13. Parametric approach. Dispersion parameter &5 “" = 0.4942. Frequency band [0,0.22] Hz (horizontal axis).
Graphs of functions v+ dBP"(v) (dashed line), vi—dB2¥4"(v) (upper solid line) and vi—dBh:"(v) (lower solid line).
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Fig. 12 on the right displays the graph of the function v+ ggwan(2nv) (solid line) in which
o graan(w) 1s the standard deviation of random variable &7%“"(w). Fig. 13 displays the graphs of
functions v dB?“"(v) (dashed line), vi—dB:“(v) (upper solid line) and vi—dB. " (v) (lower
solid line) in which

dBi"(v) = loglo{max pAram (2, Hk)} (77)
dB " (v) = loglo{mkin ELTM (2 Hk)}. (78)

4.6. Comparison of the parametric model with the non-parametric model

Due to the fact that 6x = 0.50 ~ 5% " = 0.4942, one can compare the results given by the non-
parametric approach (Figs. 9 and 10) with the results given by the parametric approach (Figs. 12
and 13). These figures clearly prove that the non-parametric results look like the parametric
results when the “positive-definite” ensemble is used and is very different in the low-frequency
domain when the GOE is used. Consequently, the present results give an additional validation
point of the non-parametric model of random uncertainties for which the theory is recalled in
Sections 1.1 and 1.2 and which is based on the “positive-definite” ensemble.

5. Conclusions

This paper gives a new validation point of the non-parametric theory of random uncertainties
in vibration analysis, recently introduced by the author. It is proved that the “positive-definite”
ensemble of random matrices, which has been introduced in the context of the development of this
non-parametric approach, is well adapted to the low-frequency vibration analysis, while the use of
the Gaussian orthogonal ensemble (GOE) is not, particularly for strong values of the dispersion
parameter. In addition, as it is explained in previous papers devoted to the construction of this
non-parametric approach, the “positive-definite”” ensemble allows random uncertainties to be
modelled for the damping operator while the GOE does not, in the present state of the art.
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