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Abstract

This study is dedicated to design effective control schemes to suppress transverse vibration of an axially
moving string system by adjusting the axial tension of the string. To this end, a continuous model in the
form of partial differential equations is first established to describe the system dynamics. Using an energy-
like system functional as a Lyapunov function, a sliding-mode controller (SMC) is designed to be applied
when the level of vibration is not small. Due to non-analyticity of the SMC control effort generated as
vibration level becoming small, two intelligent control schemes are proposed to complete the task — fuzzy
sliding-mode control (FSMC) and fuzzy neural network control (FNNC). Both control approaches are
based on a common structure of fuzzy control, taking switching function and its derivative as inputs and
tension variation as output to reduce the transverse vibration of the string. In the framework of FSMC,
genetic algorithm (GA) is utilized to search for the optimal scalings for the inputs; in addition, the
technique of regionwise linear fuzzy logic control (RLFLC) is employed to simplify the computation
procedure of the fuzzy reasoning. On the other hand, FNNC is proposed for conducting on-line tuning of
control parameters to overcome model uncertainty. Numerical simulations are conducted to verify the
effectiveness of controllers. Satisfactory stability and vibration suppression are attained for all controllers
with the findings that the FSMC assisted by GA holds the advantage of fast convergence with a precise
model while the FNNC is robust to model uncertainty and environmental disturbance although a relatively
slower convergence could be present.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

An axially moving string system is often utilized to represent various realistic mechanical
systems such as travelling strings, magnetic tapes, band saws and cable tramways, etc. Early
research was focused on analyzing vibrations of the system [1–3] to understand the basic dynamic
characteristics. Other than dynamics analysis, active vibration suppression of the axially moving
string was an intensive topic for many industrial applications. Researchers initially conducted
vibration suppression by the so-called ‘‘modal control,’’ which first approximates the string by a
set of discrete. vibratory modes and then applies the existing control techniques to synthesize
controllers [4–6]. Some researchers instead used the finite-dimensional modelling to approximate
the original continuous string system for designing the controller [7–14]. In recent years, Rahn
and Mote [15–17] have proposed ‘‘parametric control’’ to mechanical systems, which refers to the
control schemes that activate on-line adjustment of some system parameters to achieve pre-
designated control goals. As it is applied to flexible, continuous systems, the objective is usually to
achieve satisfactory vibration suppression.
In the present study, the essence of the parametric control, utilizing variation of string tension,

is adopted to design various controllers for suppressing the transverse vibration of an axially
moving string. The design process starts, in Section 2, by establishing a continuous mathematical
model of an axially moving string used for describing transverse vibrations of the string system. A
conventional sliding-mode controller (SMC) [18] is designed in Section 3 by considering the
energy-like system functional as a Lyapunov function, with which related stability analysis can be
conducted. To avoid non-analyticity of the designed SMC as the level of the vibration becomes
small intelligent controllers are proposed in Section 4, to complement the SMC in a prescribed
boundary layer near the switching surface, forming a hybrid control design. The proposed
complementary controllers are based on the mechanism of fuzzy logic control (FLC). The FLC is
built based on the theory of fuzzy sets, which were first introduced by Zadeh in 1965 [19]. The first
successful application of fuzzy sets theory in the control field was presented by Mamdani in 1974
[20]. In designing a FLC, some common difficulties are encountered; such as (1) inference rules are
model dependent and experience oriented; thus, it is difficult to establish the fuzzy rule bases; (2)
dynamic characteristics of the fuzzy control systems, especially in transient period, cannot be
easily predicted; (3) the number of rule bases increases exponentially with the number of fuzzy
input variables. This will consume substantial computational time; (4) the control parameters for
the FLC are not optimized for maximum performance.
To overcome the above-mentioned difficulties (1) and (2), the switching variables are adopted in

this study to form inference rule bases and force the transient dynamics to first converge the
switching surface before reaching the desired states. This control technique is named ‘‘fuzzy
sliding-mode control (FSMC).’’ As to tackle difficulty (3), another approach called regionwise
linear fuzzy logic control (RLFLC) [21] is applied to reduce the number of fuzzy if–then rules.
Finally, aiming for maximizing FLC performance, genetic algorithm (GA) and fuzzy neural
network control (FNNC) are applied in this study to conduct off and on-line adaptations,
respectively, to search for optimal control parameters. The GA [22] is a tuning/learning algorithm,
which is elemented by parametrizing and encoding the control tuning parameters into binary
strings in order to search for the optima. To facilitate the computation, a fitness function is
defined such that the GA can search for the optimal parameters via correct directions and then
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keep the evolving states on the user-defined switching surface. On the other hand, the fuzzy neural
network control (FNNC) [23–36] is basically a FLC embedded in the framework of back-
propagation, which combines the capability of fuzzy reasoning to handle uncertain information
and that of artificial neural networks to learn from real processes in order to achieve the desired
control goal.
This paper is organized as follows. In Section 2, a continuous model of the axially moving string

is established. In Section 3, the sliding-mode controller is synthesized to perform vibration
suppression outside the boundary layer. In Section 4, the fuzzy sliding-mode controller assisted
with genetic algorithm is proposed to generate finite control effort in order to annihilate
transverse vibration inside the boundary layer. In Section 5, the fuzzy neural network controller is
designed to conduct on-line tuning of control parameters inside the boundary layer for a robust
control performance. In Section 6, simulations are conducted to validate the effectiveness of the
controllers. In Section 7, discussions are given for a better understanding of the performance of
the controllers designed. In Section 8, conclusions are presented.

2. Mathematical model

The physical model of an axially moving string-like system is depicted in Fig. 1, where an
axially moving string is supported at both ends by two frictionless pulleys in a constant translating
speed c. An initial tension T is applied to the moving string system through the pulleys. The
spatial length between the two pulleys is l. The parametric control input is realized by the
variation of the string tension, denoted by DT(t). Neglecting the effect of the bending rigidity EI
and axial vibration, the mathematical model of the system can be captured by [37]

rVttðx; tÞ þ 2rcVxtðx; tÞ þ rc2Vxxðx; tÞ � ðT þ DTðtÞÞVxxðx; tÞ ¼ 0 ð1Þ

subjected to the boundary conditions

V ð0; tÞ ¼ V ðl; tÞ ¼ 0; Vtð0; tÞ ¼ Vtðl; tÞ ¼ 0; ð2Þ

l

c
V (x, t)

T + ∆T (t)

x

y

Fig. 1. Schematic of the axially moving string system.
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where Vðx; tÞ represents the transverse displacement of string, r is the mass per unit length, and
the subscripts denote temporal or spatial differentiations. Note that the term ‘‘2rcVxtðx; tÞ’’ arises
from gyroscopic effect. With liberty to vary DT(t), the transverse vibration of the string is
expected to be suppressed via the control schemes designed later to regulate DT(t). Since the
tension variation DT(t) originally plays the role of the system parameter in governing equation (1),
the mechanism of the control to be forged can be categorized as one of ‘‘parametric controls’’
[15–17]. For the system prescribed in Eq. (1), the total energy of this system can be expressed as

EðtÞ ¼
1

2

Z l

0

rðVt þ cVxÞ
2 dx þ

T

2

Z l

0

V2
x dx: ð3Þ

Note in Eq. (3) that ðVt þ cVxÞ is the combined velocity of the string in axial and transverse
directions. The first and second integration terms in Eq. (3) correspond to the kinetic and
potential energies, respectively.

3. Sliding-mode control design

A sliding-mode controller (SMC) is synthesized in this section in order to effectively suppress
the transverse vibration of the axially moving string governed by Eq. (1). The SMC is one of the
powerful control design schemes, which can be applied to either linear or non-linear systems [18].
It allows designers to force the system dynamics to first converge to the vicinity of the switching
surface and then reach the origin inside the vicinity of the switching surface. The well-known
Lyapunov stability analysis method is employed to ensure the stability of the controlled system.
The most important elements of applying this method lie in a suitable selection of the Lyapunov
functional and the effective construction of control input via Lyapunov stability analysis. For the
present study, an energy-like function is first chosen as the Lyapunov function in the form of

*EðtÞ ¼
1

2

Z l

0

rs2 dx þ
T

2

Z l

0

V2
x dx; ð4Þ

where s ¼ hV þ Vt þ cVx; h > 0: It can be easily seen that as the control target is set to be
*EðtÞ ¼ 0; it is equivalent that ‘‘s ¼ 0’’ is reached, yielding no transverse vibration for the string. It
can also be shown that the energy in Eq. (4) complies with the following theorem as related to the
real system energy E(t) in Eq. (3).

Theorem 1. Given the system energy function in Eq. (3) and Lyapunov functional in Eq. (4), there
exist C1; C1AR such that

C1EðtÞp *EðtÞpC2EðtÞ: ð5Þ

Proof. See the appendix.

With the Lyapunov functional defined in Eq. (4), the sliding-mode control input, denoted by
uSMC, is next derived to reach ’*EðtÞo0 in order to guarantee the stability of the controlled system.
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This control design process starts with the computation of ’*EðtÞ; the differentiation of the chosen
energy-like Lyapunov function (4) with respect to time. Moving the differentiation inside the
integrand in Eq. (4), employing the chain rule

d

dt
¼

@

@t
þ c

@

@x
ð6Þ

and incorporating the governing equations (1) and its boundary conditions, the time-
differentiation of Lyapunov functional in Eq. (4) results in

’*EðtÞ ¼
Z l

0

rsðhVt þ chVx þ Vtt þ 2cVxt þ c2VxxÞ dx þ T

Z l

0

VxðVxt þ cVxxÞ dx: ð7Þ

Re-arrange the above equation,

’*EðtÞ ¼
Z l

0 %
s½hrðVt þ cVxÞ þ ð

%
T þ DTÞVxx� dx þ T

Z l

0

VxðVxt þ cVxxÞ dx: ð8Þ

Performing integration by parts on the underlined integrand term in Eq. (7) with incorporation of
the boundary conditions (2) yields

T

Z l

0

sVxx dx ¼T

Z l

0

ðhV þ Vt þ cVxÞVxx dx

¼TðhV þ Vt þ cVxÞVxjl0 � T

Z l

0

ðhVx þ Vxt þ cVxxÞVx dx

¼TcV2
x j

l
0 � T

Z l

0

ðhVx þ Vxt þ cVxxÞVx dx: ð9Þ

Substitution of the above Eq. (9) into Eq. (7) renders

’*EðtÞ ¼
Z l

0

s½hrðVt þ cVxÞ þ DTVxx� dx þ TcV2
x jx¼l � TcV2

x jx¼0 � T

Z l

0

hV2
x dx

¼DT

Z l

0

sVxx dx þ hr
Z l

0

sðVt þ cVxÞ dx þ TcV2
x jx¼l � TcV2

x jx¼0 � T

Z l

0

hV 2
x dx: ð10Þ

Now a suitable uSMC can be designed as follows to satisfy the condition ’*EðtÞp0;

uSMCðtÞ ¼ DT ¼ �
R1

R l

0 sðVt þ cVxÞ dx
��� ���þ R2V

2
x jx¼lR l

0 sVxx dx
��� ���

8<
:

9=
;sgn

Z l

0

sVxx dx


 �
; ð11Þ

where R1 and R2 are positive constants to be determined for a target convergence speed.
The essence of uSMC presented in Eq. (11) resides in two key points: (i) the switching function is
chosen as

SðtÞ ¼
Z l

0

sVxx dx ð12Þ
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and (ii) R1 and R2 must be determined such that R1Xhr; R2XTc in order to guarantee the
stability of the controlled system. The proof is given in the following.

Theorem 2. Given the designed effort DT as expressed in Eq. (11) for system (1), and {R1, R2}
determined with satisfaction of {R1Xhr;R2XTc}, the controlled system is exponentially stable

about the origin (corresponding to *EðtÞ ¼ 0; i.e., no transverse vibrations).

Proof. To show there exists a positive constant b such that

’*EðtÞp� b *EðtÞ ð13Þ

sufficient to say that the origin with *EðtÞ ¼ 0 is exponentially stable. Substitution of uSMC given in
Eq. (11) into ’*EðtÞ in Eq. (10) yields

’*EðtÞp � ðR1 � hrÞ
Z l

0

ðhV þ Vt þ cVxÞðVt þ cVxÞ dx

����
����

� ðR2 � TcÞV2
x jx¼l � TcV2

x jx¼0 � hT

Z l

0

V2
x dx

p � ðR1 � hrÞ
Z l

0

ðs2 � shV Þ dx

����
����� hT

Z l

0

V2
x dx ð14Þ

by using the definition of s and design condition R2XTc: Having applied the well-known
triangular inequality

jabjp
1

2
d2a2 þ

b2

d2


 �
; ð15Þ

where d is a positive constant, Eq. (14) becomes

’*EðtÞp � ðR1 � hrÞ
Z l

0

s2 dx þ
ðR1 � hrÞh

2

Z l

0

d2s2 þ
V2

d2


 �
dx � hT

Z l

0

V2
x dx

¼ � ðR1 � hrÞ �
ðR � hrÞhd2

2

� 
 Z l

0

s2 dx þ
ðR1 � hrÞ

2d2

Z l

0

V2 dx � hT

Z l

0

V2
x dx: ð16Þ

For a continuous V(x, t) and Vð0; tÞ ¼ Vðl; tÞ ¼ 0; based on Poincar!e inequality, there exists a
positive constant #Z > 0 such that Z l

0

V2 dxp#Z
Z l

0

V2
x dx: ð17Þ

Incorporating Eq. (17) into Eq. (16),

’*EðtÞp � ðR � hrÞ �
ðR � hrÞhd2

2

� 
 Z l

0

s2 dx þ
ðR � hrÞh#Z

2d2

Z l

0

V2
x dx � hT

Z l

0

V2
x dx

¼ �
ðR � hrÞ

r
1�

hd2

2

� 
 Z l

0

rs2 dx � h 1�
ðR � hrÞ#Z

2d2T

� 
 Z l

0

TV 2
x dx: ð18Þ
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Let d be chosen such that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR � hrÞ#Z

2T

r
odo

ffiffiffiffi
2

h
:

r

On the other hand, define

A1 ¼
ðR � hrÞ

r
1�

hd2

2

� 

; A2 ¼ h 1�

ðR � hrÞ#Z

2Td2

� 

:

Eq. (18) becomes

’*EðtÞp � A1

Z l

0

rs2 dx � A2

Z l

0

TV 2
x dx

p � 2min A1;A2f g
1

2

Z l

0

rs2 dx �
T

2

Z l

0

V2
x dx


 �
p � b *EðtÞ

where b ¼ 2 minfA1; A2g: &

It can be seen from Eq. (11) that with the control input uSMC discontinuous and even non-
analytic at the switching surface, ‘‘S ¼ 0;’’ large control effort would be generated as the states
approach the vicinity of S ¼ 0; i.e., as the transverse vibration becomes smaller. To solve this
problem, a boundary layer specified by ‘‘jSjpSB’’ is defined such that as the states approach inside
this layer, the control effort is switched from the control input uSMC designed above in Eq. (11) to
alternative control schemes: (i) fuzzy sliding-mode control (FSMC) or (ii) fuzzy neural network
control (FNNC), in order to avoid the aforementioned non-analyticity at S ¼ 0: The designs of
FSMC and FNNC are stated in Sections 4 and 5, respectively.

4. Design of the fuzzy sliding-mode control FSMC

To avoid the non-analyticity of the SMC near S ¼ 0 proposed in the last section, an hybrid
control law is proposed as follows:

DT ¼ ð1� aÞuFSMC þ auSMC ; ð19Þ

where a is defined as

a ¼
1 forjSðtÞj > SB;

0 forjSðtÞjpSB:

(
ð19aÞ

Note that in Eq. (19) uSMC is the control derived in Section 3, and uFSMC would be designed in this
section based on the scheme of FSMC plus GA tuning technique to avoid large control effort near
S ¼ 0: SB in Eq. (19a) is a small positive number specifying the thickness of the boundary layer,
‘‘|S|pSB.’’ At the boundary, i.e., ‘‘jSj ¼ SB;’’ uSMC and uFSMC are switched. With the hybrid
control law (19) applied, at the initial evolution stage of the controlled system, i.e., as the states
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are away from the boundary layer, the second term in the hybrid control law, uSMC ; is activated,
while inside the boundary layer, the first term in hybrid control law, uFSMC ; is activated. The
aforementioned switching mechanism provides the means to force a fast convergence of the
transient dynamics via the large control effort generated by the SMC proposed in Eq. (11) outside
the boundary layer, and then perform precision control via the fine-tuned effort generated by the
intelligent FSMC inside the boundary layer, the mechanism of which is presented as follows.

4.1. Design of fuzzy sliding mode control

To initialize FSMC design, the switching function S(t) given in Eq. (12) and its derivative are
adopted to establish the fuzzy logic rules. For simplicity of computation, the derivative of
switching function is considered available by a discrete approximation of

’SðKTÞ ¼
1

T
S½KT � SðK � 1ÞT½ �; ð20Þ

where K is the number of sampling iteration and T is the sampling period. In order to
accommodate various model characterisitics for a better control, the input functions for FSMC, S

and ’S; are multiplied by scaling factors GS and GCS, respectively. These factors are mainly used to
equip the designers with the capability of adjusting control gains before S and ’S taken as inputs
for fuzzy membership functions. The scalings give

*S ¼ SðtÞGS;
’*S ¼ ’SðtÞGCS: ð21Þ

Then *S and ’*S become the actual inputs for ensuing the fuzzy mechanism. The associated fuzzy
sets are determined as follows:

N : negative; Z : Zero; P : positive;

NH : negative huge; NB : negative big; NM : negative medium;

NS : negative small; ZE : zero; PS : positive small;

PM : positive medium; PB : positive big; PH : positive huge:

The membership functions for the inputs *S; ’*S and outputs uFSMC ¼ DT are defined and illustrated
in Fig. 2. It is seen from this figure that only five fuzzy subsets, NB, NM, Z, PM, PB, are defined
for *S and ’*S; which require subsequently 25 fuzzy rules to accomplish the fuzzy control design. The
resulting fuzzy sliding mode inference rules are shown in Table 1, where uFSMC ¼ DT is the fuzzy
mapped function of *S and ’*S: Note that the essence of rules in Table 1 originates from the concept
of the conventional feedback control in which uFSMC plays the role of a negative feedback. Even
though with the linear memberships shown in Fig. 2, the input/output relation of the fuzzy
controller would not be linear with scalings {GS, GCS, GR} updated via Genetic Algorithm
introduced in Section 4.3 to search for better memberships. Note also that by imposing the upper/
lower bounds on the membership function of uFSMC ¼ DT ; one is able to realize actual saturation
of control effort, which is often difficult for many control designs. (Fig. 3)
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4.2. Design of region-wise linear fuzzy logic control

As the number of input variables for fuzzy control increases, the number of fuzzy if–then rules
increases exponentially; consequently, this induces a great deal of computation burden to
determine fuzzy control output. In order to minimize computation load, the technique RLFLC

Fig. 2. The membership functions for the fuzzy sets corresponding to *S; ’*S and DT.

Table 1

Fuzzy logic linguistic rules for fuzzy sliding-mode control

DT ’*S

NB NM Z PM PB

*S NB PH PB PM PS ZE

NM PB PM PS ZE NS

Z PM PS ZE NS NM

PM PS ZE NS NM NB

PB ZE NS NM NB NH
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[21] is applied herein to FSMC. For implementing the regionwise technique, a region-wise
function *S� is first defined by

S� ¼ S þ ’S; ð22Þ

*S� ¼ GRS�; ð23Þ

where it is seen that to accommodate various dynamic characteristics the regionwise functions S*

are multiplied by scaling factor GR . Table 2 lists the fuzzy relationship among S*, S and ’S and
reflecting Eq. (22), where the fuzzy variable S* is defined as the composition operation of S and ’S

in a fuzzy sense. The information revealed in both Tables 1 and 2 makes possible the derivation of
the fuzzy relationship between DT and *S� which is listed in Table 3. The variable *S� is now
considered the new sole fuzzy variable to synthesize fuzzy control output. Compared to the
original scheme of FSMC, this method of RLFLC reduces the number of fuzzy variables from
two ( *S and ’*S) to one ( *S�); as a result, the number of fuzzy linguistic rules decreases greatly. Note,

Fig. 3. Membership functions of *S� and DT for RLFLC.

Table 2

Tabulated relationships between S*, S and ’S

DT ’S

NB NM Z PM PB

S NB NH NB NM NS ZE

NM NB NM NS ZE NS

Z NM NS ZE PS PM

PM NS ZE PS PM PB

PB ZE PS PM PB PH
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however, that since the proposed RLFLC only simplifies computation procedure, the dynamic
characteristics of the RLFLC are not different from those of FSMC in nature.

4.3. Genetic algorithm (GA) for scaling factor determination

The scaling factors Gs, GCS in Eq. (21) and GR in Eq. (23) allow designers to perform control
gain-tunings through re-shaping of membership functions. It is expected to result in a better
performance in terms of overshoot, response time, etc. The genetic algorithm (GA) is a digital
numerical algorithm [22] used to search for optimum values of prescribed scalings via minimizing
a pre-defined fitness function through a binary searching mechanism. The fitness function for the
present study is chosen as

F ¼
Xtf

t¼t0

1

J þ 0:1
; ð24Þ

where the objective function J is the discrete sum of displacement at the middle point of the string
times the sampling time, i.e.,

J ¼
X

V
l

2
; t


 �
Dt

����
����; ð25Þ

where Dt is the sampling time. It is seen from Eq. (24) that the fitness F would be maximized by
GA through minimizing the objective function J, i.e., resulting in minimizing the transverse
vibration of the string. Note that for the present study optimal values of GS , GCS and GR would
be obtained off-line through an optimization process. This process demands a high accuracy of
mathematical model to ensure the effectiveness of FSMC control plus GA; otherwise, satisfactory
transverse vibration suppression cannot be ensured for a real string. To avoid this drawback of
GA, the method of fuzzy neural network control (FNNC) is considered in the ensuing section to
synthesize an on-line learning controller, uFNNC, in place of uFSMC in Eq. (19). The adapted neural
network of FNNC provides the capability of searching for the optimum control parameters based
on realistic input/output data, which does not need a precise mathematical model to function.

5. Design of the FNNC

Design of a FNNC controller, uFNNC, is performed herein in two steps: (i) structure
construction of FNNC, and (ii) synthesis of updating laws for FNNC.

Table 3

Fuzzy logic linguistic rules for RLFLC

*S� PH PB PM PS ZE NS NM NB NH

DT NH NB NM NS ZE PS PM PB PH

J.-S. Huang et al. / Journal of Sound and Vibration 264 (2003) 177–201 187



5.1. Structure of fuzzy neural network

A general four-layer FNNC structure shown in Fig. 4 is adopted to implement the proposed
FNNC controller, which consists of the input (i layer), membership ( j layer), rule (k layer), and
output (o layer) layers. The switching function signal in Eq. (12) and its derivative computed by
Eq. (20), S and ’S; respectively, are chosen as two inputs to the FNNC mechanism. The output of
the FNNC would be used for realizing the actuation of string tension inside the boundary layer,
i.e., uFNNC, in place of uFSMC in Eq. (19). Two neurons in the input layer accept crisp values of S
and ’S: Those in the membership layer act as membership functions. Moreover, each neuron in the
rule layer reflects a fuzzy rule base. The signal propagation in the FNNC structure and the basic
function of each layer are elaborated below.

5.1.1. Layer 1 (input layer)

For each neuron i in this layer, the net input and the net output are related by

net1i ¼ x1
i ; y1i ¼ f 1

i ðnet1i Þ ¼ net1i ; i ¼ 1; 2; ð26Þ

where x1
i represents the ith input to the neuron of layer 1.

5.1.2. Layer 2 (membership layer)
In this layer, each neuron plays the role of a membership function. The Gaussian function is

adopted as the membership function.

Fig. 4. Structure of the four-layer FNNC.
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For the jth neuron,

net2j ¼ �
ðx2

i � mijÞ
2

ðsijÞ
2

;

y2
j ¼ f 2

j ðnet2j Þ ¼ expðnet2j Þ; i ¼ 1; 2; j ¼ 126; ð27Þ

where mij and sij are, respectively, the mean and the standard deviations of the Gaussian function
for the membership in the jth neuron, which takes the ith linguistic variable x2

i as the input.
Note that the objective of layer 2 are to form the membership functions for incorporating the
fuzzy logics in the structure of neural network, and then updating mij and sij to find the optimum
shapes of memberships for a minimum error defined later. Unlike the traditional back-
propagation scheme, the weights between layers 1 and 2 are set as unities, leaving adaptation
responsibility to varying mi’s and sij’s. As a result, in Fig. 4, the weights between layers 1 and 2 are
not denoted.

5.1.3. Layer 3 (rule layer)

Each neuron k in this layer is denoted by
Q
; which multiplies the incoming signal with

weightings and outputs the resulting product. For the kth rule neuron,

net3k ¼
Y

j

w3
jkx3

j ; y3
k ¼ f 3

k ðnet3kÞ ¼ net3k; j ¼ 126; k ¼ 129; ð28Þ

where x3
j represents the jth input to the neuron of layer 3. The weights between layers 2 and 3 are

also set to be unities, leaving the remaining adaptation capability of this FNNC scheme to be
performed in layer four.

5.1.4. Layer 4 (output layer)
The single neuron o in this layer is labelled by

P
; which computes the overall output by

summing all incoming signals by

net40 ¼
X

k

w4
kox4

k; y4o ¼ f 4
o ðnet4oÞ ¼ net4o; o ¼ 1; ð29Þ

where the link weights w4
ko’s are the output action strength of the oth output associated

with the kth rule; x4
k represents the kth input to the neuron of layer 4, y4

o is the output of the
neural network. In practice, y4

o is realized by the actuation of the tension force; i.e.,
y4o ¼ uFNNC ¼ DT :

5.2. Updating laws

Another key design part for FNNC other than neural network structure presented in the last
subsection is to obtain learning algorithms for each updating parameter, which can be
accomplished by computing the derivatives of a defined error function with respect to the
updating parameters through the established neural network. This is done by means of the chain
rule, and the method is generally referred to as the back-propagation learning because the
updating laws are calculated in the direction opposite to the flow of real data processing [27]. The
computation of the updating laws starts with defining the error function as S ’S in order to
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maximize convergence speed to approach S=0. The expression of S ’S is next derived to realize
updating computation, which is achieved based on the definition of switching function S in
Eq. (12) and its time-derivative, yielding

S ’S ¼S

Z l

0

hVtjhcVx þ
T

r
Vxx


 �
Vxx dx þ

1

r
DTðtÞS

Z l

0

V2
xx dx

þ S

Z l

0

ðhV þ Vt þ cVxÞðVxxt þ cVxxxÞ dx: ð30Þ

With the explicit expression of the error function (30) in hand, the updating laws for each layer is
derived as follows for FNNC to function.

5.2.1. Layer 4
Based on the basic concept of gradient descent, the weights in the output layer are updated as

follows:

Dw4
ko ¼ � Z

@S ’S

@DT

@DT

@w4
ko

¼ �Z
S

r

Z l

0

V2
xx dx


 �
x4

k

¼ �
Z
r


 �
S

Z l

0

V2
xx dxx4

k ¼ �gS

Z l

0

V2
xx dxx4

k; ð31Þ

where Z is a positive constant, and g ¼ ðZ=rÞ is the learning-rate parameter of the weights
to be designed. The weights of the output layer are updated according to the following
equation:

w4
koðN þ 1Þ ¼ w4

koðNÞ þ Dw4
ko; ð32Þ

where N denotes the sampling iteration number. The initial values of weights are set to be uniform
over the output space of layer 3 for simplicity.

5.2.2. Layer 3

In this layer since the weights in the rule layer are set to be unities, only the approximated error
term needs to be calculated by

d3k9 �
@S ’S

@DT

@DT

@net4o

@net4o
@y3

k

@y3k
@net3k

� 

¼ �

s

r

Z l

0

V2
xx dx


 �
w4

ko: ð33Þ

5.2.3. Layer 2
As multiplications are conducted in the membership layer, the error term is computed as

follows:

d2k9 �
@S ’S

@DT

@DT

@net4o

@net4o
@y3k

@y3k
@net3k

� 

@net3k
@y2

j

@y2
j

@net2j

" #
¼

X
k

d3ky3k: ð34Þ
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The update laws for mij’s and sij’s are obtained by the gradient descent search algorithm, i.e.,

Dmij ¼ �Zm

@S ’S

@mij

¼ �Zm

@S ’S

@y2j

@y2j

@net2j

@net2j

@mij

" #
¼ Zmd

2
j

2ðx2
i � mijÞ

ðsijÞ
2

; ð35Þ

Dsij ¼ �Zs
@S ’S

@sij

¼ �Zs
@S ’S

@y2
j

@y2
j

@net2j

@net2j

@sij

" #
¼ Zsd

2
j

2ðx2
i � mijÞ

ðsijÞ
3

; ð36Þ

where the factors Zm‘s andZs‘s are the learning-rate parameters of the means and the standard
deviations for Gaussian membership functions to be designed, respectively. The means and
standard deviations of the membership layer are updated as follows,

mijðN þ 1Þ ¼ mijðNÞ þ Dmij ; ð37Þ

sijðN þ 1Þ ¼ sijðNÞ þ Dsij ð38Þ

6. Numerical simulation

The numerical technique of finite difference is used herein to discretize the governing PDE (1)
and simulate the response of the system. The total length of the string is discretized in N sections
by equal section length Dx, while the temporal axis is discretized by Dt. The spatial integration is
approximated via the trapezoidal integration method. The stability for the convergence of the
finite difference criterion is [38]

Dtp
Dx2

2
: ð39Þ

With N ¼ 20 and l ¼ 1 (since l is already normalized) Dx .and Dt .are chosen to be 0.05
and 0.00125, respectively, to render Dt=Dx2 ¼ 0:5; satisfying the convergence criterion (39).
On the other hand, the parameters of the string-like system used are as follows. The initial tension
is T ¼ 45N. The saturation limit for control effort, variation of string tension is set as
DTmax ¼ 50N; mass per unit length is r ¼ 1Kg/m, string length is l ¼ 1 m, translating speed is
constant as. c ¼ 0:1m/s Finally, the initial transverse shape of the string is assumed by
V ðx; 0Þ ¼ 0:05sinðpx=lÞ.
Fig. 5 shows the simulation results for the case in which the design of SMC is applied

outside the boundary layer, while FSMC is applied inside the boundary layer without assistance
of GA, where the solid curves represent the controlled case while the dotted curves represent
the uncontrolled case. Figs. 5(a) and (b) show the history of displacements at middle point ðl ¼ 1

2
Þ

and the first quarter point ðl ¼ 1
4
Þ of the axially moving string, respectively. In order to

guarantee ’*EðtÞo0; the constants R1 and R2 in uSMCðtÞ in control law (11) are first chosen as
R1 ¼ 10 and R2 ¼ 10; and the boundary layer is determined by SB ¼ 0:01: Fig. 5(c) shows the
time history of total mechanical energy given by Eq. (3). Fig. 5(d) shows time history of
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Fig. 5. Simulation results by FSMC; (a) the transverse vibration amplitude at the midpoint of the string; (b) the

transverse vibration amplitude at the quarter point of the string; (c) the total energy of the controlled system, (d)

switching function; (e) control effort. ‘‘y’’ represents the results related to uncontrolled system. ‘‘-’’ represents the

results related to controlled system with R1 ¼ 10; R2 ¼ 10 and unity scalings.
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Fig. 6. Simulation results by FSMC with unity scalings and various (R1, R2); (a) the transverse vibration amplitude at

the midpoint of the string; (b) the transverse vibration amplitude at the quarter point of the string; (c) the total energy of

the controlled system, (d) switching function; (e) control effort. ‘‘y’’ represents the results related to the controlled

system with ðR1;R2Þ ¼ ð20; 20Þ: ‘‘-.’’ represents those with ðR1;R2Þ ¼ ð20; 20Þ: ‘‘–’’ represents those with ðR1;R2Þ ¼
ð40; 40Þ; ‘‘-’’ represents those with largest gains ðR1;R2Þ ¼ ð100; 100Þ:
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Fig. 7. Simulation results by FSMC assisted by GA with ðR1;R2Þ ¼ ð100; 100Þ and various scalings of (GS, GCS); (a) the

transverse vibration amplitude at the midpoint of the string; (b) the transverse vibration amplitude at the quarter point

of the string; (c) the total energy of the controlled system, (d). switching function; (e) control effort; (f) objective

function. ‘‘y’’ represents the results related to the controlled system with ðGS ;GCSÞ ¼ ð10; 1Þ: ‘‘-.’’ represents those

controlled system with ðGS ;GCSÞ ¼ ð80; 1Þ: ‘‘–-’’ represents those with ðGS ;GCSÞ ¼ ð100; 1Þ: ‘‘-’’ represents those with the

optimal gain ðGS ;GCSÞ ¼ ð100; 10Þ:
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switching function S(t), where it is seen that the state trajectory approaches the boundary
layer {SoSB ¼ 0:01} in a short period of time; then oscillates around the switching surface
S ¼ 0 to zero vibration after the control mechanism is switched from SMC to FSMC. Fig. 5(e)
shows the corresponding control effort, where it is seen that as the states are inside the
boundary layer, the control effort generated by FSMC remains finite. It is seen from Figs. 5(a)
and (b), based on the comparison between controlled and uncontrolled cases that the transverse
vibration of the controlled systems is successfully suppressed after the designed hybrid controller
is applied.
To obtain possibly better vibration suppression at midpoint of the string, the influence of

parameters R1 and R2 on SMC performance outside the boundary layer is explored based on
related simulations shown in Figs. 6(a)–(e), where dotted, dot–dashed, dashed and solid curves
represent the cases with the ðR1;R2Þ ¼ ð1; 5Þ; (20 20), (40, 40) and (100, 100), respectively. It can be
seen from these figures that as (R1, R2) increased from (1, 5) to (20, 20), the convergence speed is
increased significantly, while (R1, R2) increased from (20, 20) to (100, 100), the convergence speed
is increased in a moderate level. This reveals that with large (R1, R2), the convergence speed does
not vary significantly outside the boundary layer, which is in fact due to the realistic saturation
limitation, DTmax ¼ 50N; imposed on the control effort.
The influence of the chosen values of GS and GCS on the performance of FSMC equipped with

GA technique applied inside the boundary layer is exploited next based on simulations.
Figs. 7(a)–(f) show the related results where dotted, dot–dashed, dashed and solid curves represent
the cases with ðGS;GCSÞ ¼ ð10; 1Þ; (80, 1), (100, 1) and the optimum ones ðGS;GCSÞ ¼ ð100; 10Þ;
respectively. Fig. 7(f) shows the history of the objective function defined in Eq. (25). It is seen
from these figures that the optimum scalings, ðGS;GCSÞ ¼ ð100; 10Þ; obtained by the GA technique
renders faster vibration suppression and smoother system response of the string as compared to
those with other values of (GS, GCS) employed. This demonstrates the effectiveness of the GA
technique.
Fig. 8 shows the simulated results using the design schemes of RLFLC equipped with the

technique of GA where dotted, dot–dashed, dashed and solid curves represent the cases with
GR ¼ f10; 50; 80g and the optimum one, GR ¼ 100; respectively. It is seen from these figures that
the optimum scaling GR ¼ 100 leads to faster vibration suppression and smoother system
response. On the other hand, it is also seen that as compared to the simulated results of FSMC
with GA shown in Fig. 7, a reduction in number of rule bases by RLFLC still renders similar
general dynamic characteristics of the controlled system. This is due to the fact that RLFLC only
provides a simplified computation technique of the fuzzy logic reasoning rather than changing the
dynamic nature of the controllers.
Fig. 9 shows the simulated results using the FNNC scheme inside the boundary layer. Dotted

curves represent the uncontrolled case while dashed and solid curves show the controlled results
with the learning rate g ¼ 0:1 and 0.2, respectively. Other learning rates are set as Zm ¼ Zs ¼ 0:05:
It is seen from the figures that the larger g is used, the faster decay of the string transverse
vibration is obtained either at first quarter point or midpoint of the moving string. One can also
note, as compared to the controlled responses from Figs. 8(a), (b) and 9(a), (b), respectively, that
the convergence speed via FSMC with GA is faster than that via FNNC. This shows the
advantage of the FSMC with GA over FNNC as the precision of the mathematical model is
assured.
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Fig. 8. Simulation results by RLFLC assisted by GA with various GR; (a) the transverse vibration amplitude at the

midpoint of the string; (b) the transverse vibration amplitude at the quarter point of the string; (c) the total energy of the

controlled system, (d) switching function; (e) control effort; (f) objective function. ‘‘y’’ represents the results related to

the controlled system with GR ¼ 10: ‘‘-.’’ represents those the with GR ¼ 50: ‘‘–’’ represents those with GR ¼ 80: ‘‘-’’
represents those with the optimal gain GR.
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Fig. 9. Simulation results by FNNC(a) the transverse vibration amplitude at the midpoint of the string; (b) the

transverse vibration amplitude at the quarter point of the string; (c) the total energy of the controlled system, (d)

switching function; (e) control effort. ‘‘y’’ represents the results related to the uncontrolled system. ‘‘–’’ represents the

controlled system with smaller learning rate g ¼ 0:1: ‘‘-’’ represents the controlled system with largerlearning rate

g ¼ 0:2:
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7. Discussions

Remarks related to controller performance are provided at this point.

* It was shown by simulations that the proposed hybrid controller in Eq. (19) — using sliding-
mode control as the states away from the switching surface and intelligent controls as
approaching the switching surface — is capable of stabilizing the systems dynamics in a fast
convergent speed while avoiding large control efforts as approaching the switching surface,
reducing the transverse vibration of the axially moving string in a fast and smooth fashion.

* Two different intelligent control techniques were proposed as the states are inside the boundary
layer around the switching surface: (i) FSMC equipped with GA and (ii) FNNC. As mentioned in
the end of Section 4, a precise dynamic model is needed for the FSMC equipped with GA to find
realistically functional optimal scalings. Without sufficient confidence on the dynamic model, the
FNNC should then be used instead to overcome model uncertainty even though it consumes
considerable amount of computation time to search for optimal weights and parameters.

8. Conclusions

The active parametric control intended for transverse vibration suppression of an axially
moving string was designed via adjustment of string tension in this study. With governing
dynamic equations in the forms of partial differential equations established, a newly developed
hybrid control scheme was proposed to carry out vibration suppression. The hybrid control
consists of two different control strategies applied at two different stages of convergence evolution
of the controlled system dynamics. The conventional sliding-mode control (SMC) was applied
first outside the prescribed boundary layer around the switching surface to render a fast
convergence, which was followed by activation of an intelligent control scheme — fuzzy sliding-
mode control (FSMC) equipped with GA or fuzzy neural network control (FNNC) — to perform
fine-tuning inside the boundary. Other than the above-mentioned control designs, to ease the
computation load of fuzzy mechanism, the technique of regionwise linear fuzzy logic control
(RLFLC) was also employed to assist the computation related to fuzzy control. Numerical
simulations are performed to validate the effectiveness of the controls designed and to explore the
influence of different control parameters on controller performance. The simulation results show
that the proposed controllers are able to achieve satisfactory vibration suppression. With the
precise mathematical model obtained, the FSMC equipped with GA would perform the best
through an off-line process of searching for optimal scalings, while without sufficient confidence
on the dynamic model, the FNNC would be a better choice to overcome model uncertainty even
though it consumes considerable amount of computation time to search for optimal weights and
parameters.
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Appendix

Proof of Theorem 1. The upper bound part in Eq. (5) is shown first. The Lyapunov function (4)
can be rewritten as

*EðtÞ ¼
1

2

Z l

0

rðhV þ Vt þ cVxÞ
2 dx þ

T

2

Z l

0

V2
x dx

¼
1

2

Z l

0

rðhV Þ2 dx þ
Z l

0

rhV ðVt þ cVxÞ dx

þ
1

2

Z l

0

rðVt þ cVxÞ
2 dx þ

T

2

Z l

0

V2
x dx: ðA:1Þ

Incorporating inequalities (15) and (17), Eq. (A.1) becomes

*EðtÞp
1

2

Z l

0

rc2 dx þ
rh2Z
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Z l

0
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x dx þ

rh

2

Z l

0

e2V2 þ
ðVt þ cVxÞ

2

e2

� 

dx

þ
1

2

Z l

0

rðVt þ cVxÞ
2 dx þ

T

2

Z l

0

V2
x dx
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x dx; ðA:2Þ

where e is an arbitrary positive constant. The Poincar!e’s inequality (17) is applied on Eq. (A.2),
yielding
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The lower bound part of Eq. (5) is to be shown next with the Lyapunov function (4) first rewritten
as

*EðtÞ ¼
1

2

Z l

0

rðhV þ Vt þ cVxÞ
2 dx þ

T

2

Z l

0

V2
x dx
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Using Poincar!e’s inequality in Eq. (17), Eq.(A.3) becomes
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