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Abstract

This paper theoretically analyzes undamped free transverse vibrations of an elastically connected
rectangular plate–membrane system. Solutions of the problem are formulated by using the Navier method.
Natural frequencies of the system in the form of two infinite sequences are determined. Normal mode
shapes of vibration expressing two kinds of vibration, synchronous and asynchronous, are presented. The
initial-value problem is also solved. In a numerical example, the effect of membrane tension on the natural
frequencies of this mixed system is discussed.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Most real mechanical structures widely used in aeronautical, civil, naval, and mechanical
engineering are modelled by simple or complex two-dimensional continuous systems. Funda-
mental vibration theory of simple two-dimensional continuous systems as membranes and plates
is developed in a number of monographs by, for example, Ziemba [1], Solecki and Szymkiewicz
[2], Kaliski [3], Leissa [4], Nowacki [5], Timoshenko et al. [6], Osi !nski [7], Craig [8], and Rao [9],
and others. In classical vibration plate theory, two basic analytical methods are applied for
analyzing free vibrations of a single rectangular plate, which, as is well known, are the L!evy and
Navier methods [1–24]. The Navier method, equivalent to the modal expansion method, is also
used for solving free vibration problems of a simply supported rectangular double-plate system
[11,25–27]. Double-plate and double-membrane systems are examples of complex two-
dimensional continuous systems. The simplest physical models of these structures consist of
two parallel plates or membranes, which are connected by an elastic layer of a Winkler type. Free
vibrations of the systems under discussion are a subject of scientific interest to numerous
investigators [25–37].
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In the present paper, a new model of a complex two-dimensional continuous system is
proposed. This is an elastically connected rectangular plate–membrane system [38,39]. Undamped
free transverse vibrations of this mixed system are studied by using the classical Navier method.
Theoretical vibration analysis of the system is necessary to be performed considering the
possibility of application of a membrane as a continuous dynamic vibration absorber (CDVA) in
relation to a plate. The system considered has an interesting feature, which enables to change each
natural frequency within a certain limited interval as a function only of the membrane tension. At
the same time, the other constructional and physical parameters of the system need not be
changed. With proper control of the membrane tension, it is possible to avoid a resonance
phenomenon or to generate a dynamic vibration absorption phenomenon for the system subjected
to harmonic loadings. This can be significant in practical applications. A future publication
concerning an elastically connected plate–membrane system will contain the forced vibration
analysis showing how to utilize dynamic vibration absorption for suppressing a plate forced
vibration.
In another paper, the [40] considers free vibrations of a similar mixed system composed of two

one-dimensional continuous models of solids, in an elastically connected beam–string system.

2. Formulation of the problem

The investigated vibratory system model shown in Fig. 1 constitutes a complex continuous
system modelled as a rectangular three-layered structure which is composed of isotropic plate, and
parallel membrane stretched uniformly by constant tensions applied at the edges, separated by
homogeneous massless elastic layer of a Winkler type. It is assumed that both plate and membrane
are thin, homogeneous, uniform, and perfectly elastic. For the sake of simplicity of vibration
analysis it is also assumed that the plate as well as the membrane are governed by simply supported
boundary conditions. In the general case, the system is subjected to arbitrarily distributed
transverse continuous loads. Small vibrations of the system with no damping are analyzed.
According to the Kirchhoff–Love plate theory, transverse vibrations of an elastically connected

rectangular plate–membrane system are described by the following differential equations:

m1 .w1 þ D1 D
2w1 þ k ðw1 � w2Þ ¼ f1; m2 .w2 � N2 Dw2 þ kðw2 � w1Þ ¼ f2; ð1Þ

Fig. 1. The physical model of an elastically connected rectangular plate–membrane complex system.
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where wi ¼ wiðx; y; tÞ is the transverse plate (membrane) displacement; fi ¼ fiðx; y; tÞ is the
exciting distributed load; x; y; t are the space co-ordinates and the time; D1 is the flexural rigidity
of the plate; E1 is Young’s modulus of elasticity for the plate; N2 is the uniform constant tension
per unit length for the membrane; k is the stiffness modulus of a Winkler elastic layer; a; b; hi are
the plate (membrane) dimensions; n1 is the Poisson’s ratio; ri is the mass density;

D1 ¼ E1 h31½12ð1� n21Þ�
�1; mi ¼ ri hi; ’wi ¼ @wi=@t; i ¼ 1; 2;

D2w1 ¼ @4w1=@x4 þ 2@4w1=@x2@y2 þ @4w1=@y4; Dw2 ¼ @2w2=@x2 þ @2w2=@y2:

The subscripts 1 and 2 refer to the plate, denoted by the index 1, and the membrane, denoted by
the index 2, respectively.
The boundary conditions for the simply supported plate and membrane are as follows:

w1ð0; y; tÞ ¼ w1ða; y; tÞ ¼ w1ðx; 0; tÞ ¼ w1ðx; b; tÞ ¼ 0;

@2w1=@x2
��
ð0; y; tÞ¼ @2w1=@x2

��
ða; y; tÞ¼ @2w1=@y2

��
ðx; 0; tÞ¼ @2w1=@y2

��
ðx; b; tÞ¼ 0;

w2ð0; y; tÞ ¼ w2ða; y; tÞ ¼ w2ðx; 0; tÞ ¼ w2ðx; b; tÞ ¼ 0: ð2Þ

The initial conditions may be written in the following general form:

wiðx; y; 0Þ ¼ wi0ðx; yÞ; ’wiðx; y; 0Þ ¼ vi0ðx; yÞ; i ¼ 1; 2: ð3Þ

3. Solution of the free vibration problem

Free vibrations of a rectangular plate-membrane system (see Fig. 2) are governed by the
following homogeneous partial differential equations [38,39]:

m1 .w1 þ D1D
2w1 þ kðw1 � w2Þ ¼ 0; m2 .w2 � N2Dw2 þ kðw2 � w1Þ ¼ 0: ð4Þ

The above equation system with the boundary conditions (2) can be solved by the Navier method
equivalent to the modal expansion method assuming solutions in the form

w1ðx; y; tÞ ¼
XN

m; n¼1

Wmnðx; yÞ S1mnðtÞ ¼
XN

m; n¼1

sinðamxÞsinðbnyÞ S1mnðtÞ;

w2ðx; y; tÞ ¼
XN

m; n¼1

Wmnðx; yÞ S2mnðtÞ ¼
XN

m; n¼1

sinðamxÞsinðbnyÞ S2mnðtÞ; ð5Þ

Fig. 2. The physical model of an elastically connected rectangular plate–membrane system analyzed for free vibrations.
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where SimnðtÞ; ði ¼ 1; 2Þ are the unknown time functions;

Wmnðx; yÞ ¼ XmðxÞ YnðyÞ ¼ sinðamxÞ sinðbnyÞ;

XmðxÞ ¼ sinðamxÞ; YnðyÞ ¼ sinðbnyÞ; m; n ¼ 1; 2; 3;y;

am ¼ a�1mp; bn ¼ b�1np; k2mn ¼ a2m þ b2n ¼ p2½ða�1mÞ2 þ ðb�1nÞ2�: ð6Þ

Wmnðx; yÞ are the known mode shape functions satisfying the corresponding boundary conditions
(2) for the simply supported plate and membrane as well as the homogeneous differential
equations (4).
Substituting solutions (5) into Eqs. (4) gives the following expressions:

XN
m; n¼1

½ .S1mn þ ðD1k4mn þ kÞm�1
1 S1mn � km�1

1 S2mn�Wmn ¼ 0;

XN
m; n¼1

.S2mn þ ðN2k2mn þ kÞm�1
2 S2mn � km�1

2 S1mn

� �
Wmn ¼ 0;

from which a set of ordinary differential equations for the unknown time functions is obtained

.S1mn þ O211mnS1mn � O210S2mn ¼ 0; .S2mn þ O222mnS2mn � O220S1mn ¼ 0; ð7Þ

where

O211mn ¼ ðD1k4mn þ kÞm�1
1 ; O222mn ¼ ðN2k2mn þ kÞm�1

2 ;

O2i0 ¼ km�1
i ; O4120 ¼ O210O

2
20 ¼ k2ðm1m2Þ

�1; i ¼ 1; 2:

Oiimn ði ¼ 1; 2Þ and O120 denote the partial and coupling frequency of the system, respectively. The
solutions of Eqs. (7) are as follows:

S1mnðtÞ ¼ Cmne
iomnt; S2mnðtÞ ¼ Dmne

iomnt; i ¼ ð�1Þ1=2; ð8Þ

where omn is the natural frequency of the system. Introducing them into Eqs. (7) results in the
system of algebraic equations for unknown constants Cmn; Dmn:

ðO211mn � o2mnÞCmn � O210Dmn ¼ 0; ðO222mn � o2mnÞDmn � O220Cmn ¼ 0: ð9Þ

For non-trivial solutions of the above equations, the determinant of the system coefficient matrix
is set equal to zero, yielding the following frequency equation:

o4mn � ðO211mn þ O222mnÞo
2
mn þ ðO211mnO

2
22mn � O4120Þ ¼ 0 ð10Þ

or

o4mn � ½ðD1k4mn þ kÞm�1
1 þ ðN2k2mn þ kÞm�1

2 �o2mn

þ k2mn½D1N2k
4
mn þ kðD1k2mn þ N2Þ�ðm1m2Þ

�1 ¼ 0: ð11Þ

Since the discriminant of this biquadratic algebraic equation is positive

D ¼ ðO211mn þ O222mnÞ
2 � 4ðO211mnO

2
22mn � O4120Þ ¼ ðO211mn � O222mnÞ

2 þ 4O4120 > 0

and the relationships mentioned below are also satisfied:

ðO211mnO
2
22mn � O4120Þ > 0; ðO211mn þ O222mnÞ > D1=2;
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and thus the frequency equation (10) has two different, real, positive roots o21; 2mn:

o21; 2mn ¼ 0:5 ðO211mn þ O222mnÞ8½ðO211mn � O222mnÞ
2 þ 4O4120�

1=2
n o

; o1mnoo2mn: ð12Þ

Two infinite sequences of the natural frequencies o1mn; o2mn are obtained in the form

o21; 2mn ¼ 0:5f½ðD1k4mn þ kÞm�1
1 þ ðN2k2mn þ kÞm�1

2 �8ð½ðD1k4mn þ kÞm�1
1

þ ðN2k2mn þ kÞm�1
2 �2 � 4k2mnðm1m2Þ

�1½D1N2k4mn þ kðD1k2mn þ N2Þ�Þ
1=2g; ð13Þ

The time functions (8) may be written as follows:

S1mnðtÞ ¼ C1mne
io1mnt þ C2mne

�io1mnt þ C3mne
io2mnt þ C4mne

�io2mnt;

S2mnðtÞ ¼ D1mne
io1mnt þ D2mne

�io1mnt þ D3mne
io2mnt þ D4mne

�io2mnt;

or in more useful alternative trigonometric form

S1mnðtÞ ¼
X2
i¼1

TimnðtÞ ¼
X2
i¼1

½AimnsinðoimntÞ þ BimncosðoimntÞ�;

S2mnðtÞ ¼
X2
i¼1

aimnTimnðtÞ ¼
X2
i¼1

½AimnsinðoimntÞ þ BimncosðoimntÞ�aimn; ð14Þ

where

TimnðtÞ ¼ AimnsinðoimntÞ þ BimncosðoimntÞ; m; n ¼ 1; 2; 3;y; ð15Þ

aimn ¼ðD1k4mn þ k � m1o2imnÞk
�1 ¼ kðN2k2mn þ k � m2o2imnÞ

�1

¼O�2
10 ðO

2
11mn � o2imnÞ

¼O220ðO
2
22mn � o2imnÞ

�1;

k2mn ¼ p2½ða�1mÞ2 þ ðb�1nÞ2�; i ¼ 1; 2: ð16Þ

It is easy to show that the coefficients aimn may be presented in the form

a1; 2mn ¼ 0:5O�2
10 fðO

2
11mn � O222mnÞ7½ðO211mn � O222mnÞ

2 þ 4O4120�
1=2g; a1mn > 0; a2mno0;

a1mna2mn ¼ �m1m
�1
2 ¼ �M1M

�1
2 ¼ �O�2

10 O
2
20; Mi ¼ abmi ¼ abhiri:

It is seen that the coefficient a1mn; dependent on lower natural frequency o1mn; is always positive
while a2mn; dependent on higher frequency o2mn; is always negative.
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Finally, the free transverse vibrations of an elastically connected rectangular plate–membrane
system may be written in the following form:

w1ðx; y; tÞ ¼
XN

m; n¼1

Wmnðx; yÞ
X2
i¼1

TimnðtÞ ¼
XN

m; n¼1

X2
i¼1

W1imnðx; yÞTimnðtÞ

¼
XN

m; n¼1

sinðamxÞsinðbnyÞ
X2
i¼1

½AimnsinðoimntÞ þ BimncosðoimntÞ�;

w2ðx; y; tÞ ¼
XN

m; n¼1

Wmnðx; yÞ
X2
i¼1

aimnTimnðtÞ ¼
XN

m; n¼1

X2
i¼1

W2imnðx; yÞTimnðtÞ

¼
XN

m; n¼1

sinðamxÞsinðbnyÞ
X2
i¼1

½AimnsinðoimntÞ þ BimncosðoimntÞ�aimn; ð17Þ

where

W1imnðx; yÞ ¼ Wmnðx; yÞ ¼ sinðamxÞsinðbnyÞ;

W2imnðx; yÞ ¼ aimnWmnðx; yÞ ¼ aimnsinðamxÞsinðbnyÞ: ð18Þ

The functions W1imnðx; yÞ; W2imnðx; yÞ are the natural mode shapes of vibration of the plate–
membrane system corresponding to two infinite sequences of the natural frequencies oimn:
General mode shapes for the first four pairs of the natural frequencies are presented in Fig. 3. It is
seen that an elastically connected plate-membrane system executes two types of vibrating motion:
synchronous vibrations ði ¼ 1; a1mn > 0Þ with lower frequencies o1mn and asynchronous vibrations
ði ¼ 2; a2mno0Þ with higher frequencies o2mn: The mode shapes obtained for a system considered
are the same as those determined for a simply supported double-plate system [11,27], and for a
double-membrane system [11,37]. It should also be noted that the nature of free vibrations is
identical for all these three systems as a consequence of defining the same boundary conditions.
The unknown constants Aimn; Bimn in expressions (17) are calculated by solving the initial-value

problem. To make it possible, knowledge of the orthogonality condition of mode shape functions
is necessary. In this case the orthogonality condition has the classical form [2,3,11]

Z a

0

Z b

0

WklWmn dx dy ¼
Z a

0

sinðakxÞsinðamxÞ dx

Z b

0

sinðblyÞsinðbnyÞ dy ¼ cdklmn;

c ¼ c2mn ¼
Z a

0

Z b

0

W 2
mn dx dy ¼

Z a

0

sin2ðamxÞ dx

Z b

0

sin2ðbnyÞ dy ¼ 0:25ab; ð19Þ

where dklmn is the Kronecker delta function: dklmn ¼ 0 for kam or lan; and dklmn ¼ 1 for k ¼ m

and l ¼ n;
Substituting solutions (17) into the initial conditions (3), and then performing the known usual

transformation procedure and applying the orthogonality condition (19), the following formulae
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for evaluating Aimn; Bimn are obtained:

A1mn ¼ðo1mnz1mnÞ
�1

Z a

0

Z b

0

ða2mnv10 � v20ÞsinðamxÞsinðbnyÞ dx dy;

A2mn ¼ðo2mnz2mnÞ
�1

Z a

0

Z b

0

ða1mnv10 � v20ÞsinðamxÞsinðbnyÞ dx dy;

B1mn ¼ z�11mn

Z a

0

Z b

0

ða2mnw10 � w20ÞsinðamxÞsinðbnyÞ dx dy;

B2mn ¼ z�12mn

Z a

0

Z b

0

ða1mnw10 � w20ÞsinðamxÞsinðbnyÞ dx dy; ð20Þ

i = 1 
m = 1 
n = 1 
ω111

a111 > 0 
a1 = π

i = 2 
m = 1 
n = 1 
 211

a211 < 0 
b1 = 0,5π 

W1111 = W11 = sin( x) sin(0,5 y),                         W1211 = W11 = sin( x) sin(0,5 y)   

W2111 = a111W11 = a111 sin( x) sin(0,5πy),   W2211 = a211W11 = a211 sin( x) sin(0,5 y) 

i = 1 
m = 1 
n = 2 
 112

a112 > 0 
a1 = π 

i = 2 
m = 1 
n = 2 
 212

a212 < 0 
b2 = π  

W1112 = W12 = sin( x) sin( y),                                  W1212 = W12 = sin( x) sin( y) 

W2112 = a112W12 = a112 sin( x) sin( y),           W2212 = a212W12 = a212 sin( x) sin( y) 

i = 1 
m = 2 
n = 1 
 121

a121 > 0 
a2 = 2π

i = 2 
m = 2 
n = 1 
 221

a221 < 0 
b1 = 0,5π 

W1121 = W21 = sin(2 x) sin(0,5 y),                     W1221 = W21 = sin(2 x) sin(0,5πy)

W2121= a121W21= a121 sin(2 x) sin(0,5πy),  W 2221= a221W21= a221 sin(2 x) sin(0,5 y) 

i = 1 
m = 2 
n = 2 
 122

a122 > 0 
a2  

i = 2 
m = 2 
n = 2 
 222

a222 < 0 
b2  

W1122 = W22 = sin(2 x) sin( y),                               W1222 = W22 = sin(2 x) sin( y) 

W2122 = a122W22 = a122 sin(2 x) sin( y),       W2222 = a222W22 = a222 sin(2πx) sin(πy) 

π

π

π

π

ππ

ππ

π

π

ππ

ππ

ππ

ππ

π π

π

π π π π

ω

π 

ω ω

ω ω

ωω

 = 2π  = 2π

Fig. 3. The general mode shapes of vibration of an elastically connected rectangular plate–membrane system

corresponding to the first four pairs of the natural frequencies oimn (i=1, 2; m,n=1, 2). The mode shapes for i=1 and

i=2 express the synchronous (a1mn > 0; o1mn) and asynchronous (a2mno0; o2mn) free vibrations, respectively.
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where

z2mn ¼ �z1mn ¼ ða1mn � a2mnÞc ¼ 0:25abða1mn � a2mnÞ ¼ 0:25abO�2
10 ðo

2
2mn � o21mnÞ:

It can be shown that the free vibration analysis made here for a rectangular plate–membrane
system is analogous to that for a simply supported double-plate [27], and a double-membrane
system [37].

4. Numerical example

The purpose of this simple example is to demonstrate the effect of a membrane tension N2 on
the natural frequencies of the system.
The following values of the parameters characterizing properties of the system are used in the

numerical calculations:

a ¼ 1 m; b ¼ 2 m; E1 ¼ 1
 108 Nm�2; h1 ¼ 1
 10�2 m; h2 ¼ 4
 10�3 m;

k ¼ 1
 104 Nm�3; m1 ¼ r1h1 ¼ 50 kgm
�2; m2 ¼ r2h2 ¼ 1 kgm

�2; n1 ¼ 0:3;

N2 ¼ 0; 100; 200; 300; 400; 500Nm�1; r1 ¼ 5
 10
3 kgm�3; r2 ¼ 2:5
 10

2 kg m�3:

The free vibrations of the system discussed are described by relations (17):

w1ðx; y; tÞ ¼
XN

m; n¼1

X2
i¼1

W1imnðx; yÞTimnðtÞ

¼
XN

m; n¼1

sinðamxÞsinðbnyÞ
X2
i¼1

½AimnsinðoimntÞ þ BimncosðoimntÞ�;

w2ðx; y; tÞ ¼
XN

m; n¼1

X2
i¼1

W2imnðx; yÞTimnðtÞ

¼
XN

m; n¼1

sinðamxÞsinðbnyÞ
X2
i¼1

½AimnsinðoimntÞ þ BimncosðoimntÞ�aimn:

The general natural mode shapes of vibration W1imnðxÞ and W2imnðxÞ are (18)

W1imnðx; yÞ ¼ sinðamxÞsinðbnyÞ; W2imnðx; yÞ ¼ aimnsinðamxÞsinðbnyÞ;

where

am ¼ a�1mp; bn ¼ b�1np; a1mn > 0; a2mno0:

Exemplar mode shapes corresponding to the first four pairs of the natural frequencies oimn are
shown in Fig. 3. The mode shapes for i=1 and 2 express the synchronous (a1mn > 0; o1mn) and
asynchronous (a2mno0; o2mn) free vibrations of the system, respectively.
The natural frequencies oimn are evaluated from relations (12) and (13) as functions of a tension

magnitude N2: Results of the calculations for i=1, 2 and m,n=1, 2 are presented in Table 1 and in
Fig. 4. An evident influence of membrane tension on the frequencies of the system is observed. In
any case, increasing N2 causes an increasing of oimn: However this influence of the membrane
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tension on the particular frequencies is different, and the effect of N2 on the asynchronous
frequencies o2mn is greater than on the synchronous ones o1mn:
It can be seen that the mixed system discussed has an interesting feature, which allows each

natural frequency to change as a function of membrane tension, whilst the other constructional
and physical parameters of the system can remain unchanged. Selecting suitable tension of
membrane gives desirable values of the system frequencies in certain limited domains, so that it is
possible, for instance, to avoid resonance phenomena or to generate a dynamic vibration
absorption phenomenon. As is well known, vibration absorption can be used to suppress excessive
forced vibration amplitudes [11,37]. This fact can have significance in practical applications of
such mixed complex systems.

Table 1

Natural frequencies of rectangular plate–membrane system oimn ðs�1Þ

N2 0 100 200 300 400 500

o111 5.2 7.0 8.2 9.0 9.7 10.2

o211 101.0 106.8 112.4 117.7 122.8 127.6

o112 8.4 10.1 11.3 12.0 12.6 13.0

o212 101.0 110.2 118.7 126.7 134.2 141.3

o121 11.0 19.4 20.3 20.8 21.1 21.4

o221 101.0 119.8 136.0 150.6 163.9 175.4

o122 15.5 22.5 23.3 23.7 24.0 24.2

o222 101.0 122.8 141.3 157.8 172.7 186.4

0

50

100

150

200

0 100 200 300 400 500

222
221

212

211

111
112
121
122

N2 (Nm -1)

�
im

n 
(s

 -1
)

Fig. 4. The natural frequencies of plate–membrane system oimn (i=1, 2; m,n=1, 2) as a function of membrane

tension N2:
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5. Conclusions

In this study, free transverse vibrations of an elastically connected rectangular plate–membrane
system are analyzed theoretically. The vibratory system model considered comprises a three-
layered structure which is composed of a thin plate, a massless elastic layer modelled as a
homogeneous Winkler-type foundation, and a parallel membrane stretched uniformly by suitable
constant tensions applied at the edges. The problem is solved by using the classical Navier method
equivalent to the modal expansion method. Two infinite sequences of the natural frequencies and
corresponding mode shape functions expressing synchronous and asynchronous vibrations of the
system are obtained. It should be noted that the natural frequencies of the system may be varied
with a change of membrane tensions without the necessity to vary parameters characterizing
physical and geometrical properties of the system. This possibility is of great practical importance.
The final form of free vibrations is found by solving the generally formulated initial-value
problem. Solutions for the system discussed are analogous with those obtained for an elastically
connected rectangular simply supported double-plate system [11,27], and for a similar system of
two membranes [11,37].
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