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Abstract

The main purpose of the present paper is to consider theoretically damped transverse vibrations of an
elastically connected double-string system. This system is treated as two viscoelastic strings with a Kelvin—
Voigt viscoelastic layer between them. A theoretical analysis has been made for a simplified model of the
system, in which assumed physical parameters make it possible to decouple the governing equations of
motion by introducing the principal co-ordinates. Applying the method of separation of variables and the
modal expansion method, exact analytical solutions for damped free and forced responses of the system
subjected to arbitrarily distributed transverse continuous loads are determined in the case of arbitrary
magnitude of linear viscous damping. It is important to note that the solutions obtained are explicitly
expressed in terms of parameters characterizing the physical properties of the system under discussion. For
the sake of completeness of the analysis, solutions for undamped free and forced vibrations are also
formulated.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The question of damping is one of the most important, as well difficult and complicated
problems in vibration theory of mechanical systems. Mathematical troubles with damping begin
in a discrete vibratory system having two degrees of freedom [1-13], and in a multi-degree-of-
freedom system difficulties intensify [1-4]. For a simple distributed (continuous) system damped
vibrations are usually determined under the assumption of small damping [1-7,12,13], and the
general case of arbitrary damping is not considered. Most serious problems occur in damped
complex continuous systems [14]. Investigations of their dynamical behaviours are of great
theoretical and practical importance. A system of two parallel strings continuously coupled by a
Winkler-type elastic layer constitutes the simplest model of one-dimensional complex continuous

0022-460X/03/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0022-460X(02)01165-3



254 Z. Oniszczuk | Journal of Sound and Vibration 264 (2003) 253-271

system. Undamped transverse vibrations of such a system have been discussed in the author’s
previous publications [14—17]. The vibration problem of an elastically connected double-string
system with damping is difficult to solve in the general case. In Ref. [14], the author has
determined the solutions for free and forced vibrations of the general string system in the case of
low damping. The author’s latest work [18] is devoted to damped free vibrations of the title system
with arbitrary linear viscous damping. The present paper being an extension of this work contains
the complete damped free and forced vibration analysis of a complex string system modelled as
two viscoelastic strings connected by a Kelvin—Voigt viscoelastic layer. Exact analytical solutions
are formulated for a certain simplified model of this system due to arbitrary magnitude of viscous
damping.

It is proper to note that damped vibrations of technically important analogous double-beam
systems have been studied by a number of authors: Oniszczuk [14,22], Dublin and Friedrich [19],
Kessel and Raske [20], Lu and Douglas [21], Jacquot and Foster [23], Irie et al. [24], Nakai and
Kitano [25], Vu [26], Aida et al. [27], Chen and Sheu [28,29], Chen and Lin [30], Kawazoe et al.
[31], and Vu et al. [32], among others. In the investigation of a damped double-string continuous
system, the vibration analysis of a two-degree-of-freedom discrete system with damping [33-35]
can also be helpful because of evident analogy existing between both these systems [14,16,17].

2. Formulation of the problem

The transverse vibration problem of an elastically connected double-string complex system with
damping was exactly formulated in Refs. [14,18]. The dynamic model of the system under
consideration depicted in Fig. 1 consists of two parallel, homogeneous, uniform, viscoelastic
strings attached together by a continuously distributed Kelvin—Voigt viscoelastic massless layer.
As is well known this elastic foundation model, being a generalized Winkler one, is characterized
by two parameters: stiffness modulus k& and viscous damping coefficient ¢ [3,14,36,37]. Both
strings have the same length and are simply supported at their ends. The strings are stretched
under suitable constant tensions and subjected to arbitrarily distributed transverse continuous
loads. Small vibrations of the system are considered.

According to the Kelvin—Voigt foundation model, the damped transverse motion of an
elastically connected double-string system due to general loading is described by a set of two

!

Fig. 1. The physical model of an elastically connected complex double-string complex system.
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non-homogeneous partial differential equations [14,18] as
mywy + ey + cObp — i) — Siwf + k(wy — wa) = fi(x, 1),

MWy + c2Wa + c(y — W) — Sow)) + k(wa — wy) = fo(x, 1),

(1)

where w; = w;i(x, ) is the transverse string deflection; x, ¢ are the spatial co-ordinate and the time;
fi = fi(x, 1) is the exciting distributed load; ¢; is the viscous damping coefficient for the string; F; is
the cross-sectional area of the string; ¢, k are the viscous damping coefficient and the stiffness
modulus of a Kelvin—Voigt viscoelastic layer, respectively; / is the string length; m; is the string
mass per unit length; S; is the string tension; p;, is the mass density; m; = p;F;, Ww; = 0w;/0t, w;=

ow;/ox, i=1,2.
The boundary and initial conditions for this problem have the form
Wi(oa t) = Wi(lv t) = 07 (2)
M}i(xz 0) = M}io(x)a wi(xa 0) = Uio(x): i= 17 2 (3)

Egs. (1) constitute a coupled system of differential equations in two unknown functions wy(x, )
and wy(x, ¢), which is difficult to solve in a general form. Making certain simplifying assumptions,
this system can be easily decoupled, which considerably facilitates finding the solutions.
Therefore, the analysis of this problem is performed for a simplified system variant when the
physical parameters, namely, the viscous damping coefficients ¢;, the unit masses m;, and the
tension forces S; are the same and assumed to be

¢i=C, mi=p;Fi=m, §;=S, i=1,2. 4)
It is seen that the string parameters F; and p, satisfying the corresponding relation (4) can be

arbitrary to a certain degree. In the light of the above assumptions (4), Egs. (1) can be rewritten in
the form

mivy + Cwy + ¢y —in) — SW] + k(wi — wa) = fi(x, 1),

mivy + O + ¢y — W) — SWS + k(wy — wy) = fo(x, 1). (5)
Introducing the new variables being the principal co-ordinates defined as
2 2
w0 =Y w0, wlen =) aw(x.n, a=-a=I (6)
i=1 i=1
allows the decoupling of the differential equations (5). Adding and subtracting Eqgs. (5) gives
miiy + Ciy — Suf = Fi(x,1), miiy + (C + 2¢)iiy — Suby + 2kur = Fa(x, 1), (7)
where
2 2
P = fitx0, Bx0=> aflx), a=-a=1 ®)
i=1 i=1

The equations of motion (7) are now uncoupled, and each of them represents the damped
transverse vibrations of a single string. Moreover, the second equation describes the oscillations of
a string resting on a viscoelastic foundation. Egs.(7) are accompanied by appropriate
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transformed boundary conditions (2)
u(0,0) =u(l,t) =0, i=1.2 )

and can be solved independently of each other to find the principal co-ordinates u; = u;(x, ).
Finally, the unknown solutions of Eqgs. (5) can be determined from the relationships

2 2
wi(x, ) = 0.5 Z ui(x, 1, wyx,t)=0.5 Z aiui(x,t), a;=—a; = 1. (10)
i=1 i=1

In the next section, solutions for damped free and forced responses are formulated. For the sake
of completeness of the analysis, solutions for undamped vibrations are also presented.

3. Vibration analysis of the system
3.1. Undamped free vibrations

Application of the modal expansion method [1-14,16,38] for the damped vibration analysis of a
continuous system usually requires knowing appropriate natural mode shapes of vibration.
Therefore, the undamped free vibrations are first considered for the system shown in Fig. 2.

The undamped, free vibrations are described by the equations of motion (5) reduced (through
omittion of the terms expressing damping and exciting loadings) to the form

mivy — Swi + k(w; —wa) =0,  mivy — Sw) + k(wy — wy) = 0. (11)

In this connection, normal modes for the strings are found, by solving the alternative Egs. (7)
assumed in the homogeneous form in which damping is neglected, from

mi/il — Su/l/ = O’ mﬂz — Sulz/ + 2ku2 = 0 (12)

General solutions of these homogeneous partial differential equations are obtained by applying
the method of separation of variables. The solutions are assumed to be in the form

ui(x, 1) = Xi()T1(0),  us(x, 1) = Xo(x)Ta(2). (13)

Substituting expressions (13) into Egs. (12), as a result of separation of variables, gives four
homogeneous ordinary differential equations of the second order

T\ +olTy =0, T)+w3T, =0, (14)

X!+ kX, =0, XJ+k5X,=0, (15)
0 S S| x

c k
@ 5 T T 5

Fig. 2. The physical model of an elastically connected double-string system analyzed for free motions.
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where
kI =mwlS™, k3 =(mw3—2k)S™!, o?=Skim!, o}=(Sk}+2km . (16)

wy (I =1,2) are the separating constants denoting the natural frequencies of undamped free
vibration of the system.
Egs. (14) describe simple harmonic motions, their solutions being of the known form

T1(t) = M, sin(wt) + Ny cos(wt), T»(t) = M, sin(w;t) + N> cos(w;i). (17)

Next, the eigenfunctions X;(x), X>(x) being the solutions of Egs. (15) are
Xi1(x) = Ay sin(k1x) + By cos(k1x), Xo(x) = A; sin(kyx) + By cos(kyx). (18)

The unknown constants 4; and B; (i = 1,2) are evaluated from the transformed boundary
conditions (9)

Xi0)= X(l)=0, i=1,2. (19)

Solving the boundary value problems leads to the characteristic equations
sin(k;[) =0, i=1,2 (20)

from which the eigenvalues of the boundary value problems can be found as
ki=kip=hky=nnl"', n=123,... (21)
Using relations (16)—(18), the time functions and natural mode shapes corresponding to the

suitable mode shape coefficient k,, and corresponding to the natural frequencies w;, (i = 1,2) are
determined, respectively,

Tln(t) = Mln Sin(wlnt) + Nln COS((UMZ), T2n([) = M2n Sin(w2nt) + N2n COS((L)Q,,Z), (22)
Xin(x) = Xp(x) = sin(k,x),  Xou(x) = Xu(x) = sin(k,x), (23)

wl = SiZm™', w3} = (Sk>+2kym! (24)

Solving Egs. (12) the principal co-ordinates u; = u;(x, ) (Eq. (13)) are found in the form

i n =Y w0 =3 X0 = 3 X))
n=1 n=1 n=1
= io: Sin(knx)[Mln Sin(wlnt) + Nin COS(CO],,[)],
n=1

up(x, 1) = Zuzn(X, 1= Z Xon(x)Ton(1) = 2 Xn(xX) T (1)
=1 n=1 n=1

= sin(kyX)[May sin(aaf) + Nay cOS(w241)] (25)
n=1



258 Z. Oniszczuk | Journal of Sound and Vibration 264 (2003) 253-271

The unknown solutions of Egs. (11) wy(x, ¢) and w»(x, t) are then determined from relationships
(10), and finally, the undamped free vibrations of the system can be represented by the formulae

2 o0 2
Wi, ) =053 u(x, )= sin(kyx) > [Ain sin(winl) + Biy cos(winl)],
i=1 n=1 i=1

2 o0 2
wa(x, 1) =05 " ai(x,1) =Y sin(k,x) > _[Ain sin(wint) + Bin coS(0in1))tin, (26)
i=1 n=1 i=1

where
ay, =a) = —ay, = —a = 1.
In order to determine the final form of free vibrations (26) the initial-value problem must be

solved. The unknown constants A, and B;, are calculated from the assumed initial conditions (3).
In Ref. [15], the above solutions are obtained for more general system of two different strings.

3.2. Damped free vibrations

The damped free vibrations of the system are expressed by general solutions of the governing
equations (7) taken in the homogeneous form

miiy + Ciy — Suf =0,  miiz + (C + 2¢)ita — Suy + 2kuy = 0. (27)

Applying the modal expansion method, these solutions are assumed to be in the form of
superposition of natural mode shapes (23), namely,

i) = 3 XS = 3 X080 = 3 sin(k,0)S1(0),
n=1 n=1

n=1
) = 3 Xas(0S2u() = 3 XS0 = 3 sin(h1)San(0), (28)
n=1 n=1 n=1

where S1,(¢) and Sy,(?) are the unknown time functions to be determined.
Substituting solutions (28) into Eqgs. (27) results in the relationships

o0 ©
> IS+ 20 Sin 4 01, S1l Xy = 0, > [So + 28280, + ©3,521X, = 0,
n=1 n=1

which give two independent infinite sequences of ordinary differential equations for the unknown
time functions

Sin + 2 Siy + 02,80 =0, i=1,2, n=1,23,..., (29)
where
hy =05Cm™", hy=05C+20m™", ol =Sk2m™, 3, =(Sk+2km'.  (30)

The quantities /#; and w;, (i = 1,2) denote the damping coefficients and undamped natural
frequencies of vibration, respectively.
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As is well known, Egs. (29) have three types of solutions depending on the value of damping
coefficients [1-13,18,39,40]. The following cases are usually considered:
(1) Undercritical damping: h; < wjy,,

Sin(1) = e M [Cyy sin(Qint) + Djy cos(Qint)], i=1,2, (31)
where Q;, = (w2, — 1?)!/? denotes the damped natural frequency,
Qip = (SI2m™" = 025C?m™ )2, Qy, = [(SK2 + 2kym™" — 0.25(C + 2¢)’m™ /2.

An underdamped case (small damping) is important in vibration analysis, because it is the unique
case leading to an oscillatory motion. Solution (31) represents the damped free harmonic
vibration of the system, which is performed at the frequency Q;, and amplitude decreasing
exponentially with time.

(2) Critical damping: h; = wj,,

Sin(t) = e M [Cint + Din],  i=1,2, (32)
(3) Overcritical damping: h; > w;y,,
Sin(t) = e "[C;, sinh(¥it) + Dy, cosh(W;,0)], i=1,2, (33)
where

Vi = (] — 3)",
¥, = (0.25C*m™2 — Sk2m~ )2, ¥y, = [0.25(C + 2¢)*m=2 — (Sk2 + 2kym~'1"/2.

Formulating solutions (10) for the damped free vibrations of the system discussed
2 0 2 0 2

Wi ) =05 u(x,0) =05 Xu(x) > Sin(t) = 0.5 sin(k,x) Y Sin0),
i=1 n=1 i=1 n=1 i=1

2 0 2 0 2
wa(x, 1) =053 " ap(x,1) = 0.5 Xy(0) > ainSin(t) = 0.5 sin(kyx) > ainSun(),  (34)
i=1 n=1 i=1 n=1 i=1

where a1, = a; = —ay, = —a; = 1, nine possible cases depending on the mutual relations between
the damping coefficients C and c, the stiffness modulus k, the string tension S, and the eigenvalue
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k, should be identified. They are presented below:
(1) hy <1y, iy <oy, when C<2(Sk*m)'?, ¢ <[(Sk2 4 2k)ym]'/> — 0.5C,

r—1
wia(x, 1) = e_h”{z sin(k,x)[A1, sinh(¥1,t) + By, cosh(V1,1)]

n=1

+§: Sin(knx)[Aln SiH(anZ) + Bin COS(anZ)]}

n=r

n=1

s—1
+e Mt { Z sin(k,,x)[A2, sinh(¥,,1) + By, cosh(¥y,1)]

o0
+ > sin(kyX)[ Az, sin(Qaat) + Bay cos(Qat)]},

(2) hy <1,y = wo, when C<2(Sk2m)'?, ¢ = [(Sk2 + 2kym]'/* — 0.5C,

r—1
wia(x, 1) = e‘h”{z sin(k,x)[A1, sinh(¥,t) + By, cosh(¥,1)]
n=1

=+ i Sin(knx)[Aln Sin(an[) + Bln COS(an[)]}

n=r

s—1
+e ! {Z sin(k,x)[A>, sinh(¥,,t) + Bo, cosh(¥,,1)]
n=1

o0

+ sin(ke0)[Ast + B+ ) sin(kn)[ Az sin(@at) + By cos(Qau0)]

n=s+1

(3) hy <1,y > a5, when C<2(Sk2m)'/?, ¢ > [(SKk2 + 2kym]'/> —0.5C,

r—1
wia(x, t) = e_’“f{z sin(k,x)[A1, sinh(¥1,t) + By, cosh(V1,7)]

n=1

n=r

+ Z Sin(knx)[Aln Sin(anl) + Bln COS(‘anZ)]}

+e Mt {Z sin(k,,x)[A2, sinh(¥5,1) + By, cosh(¥y,1)]

n=1

+ Z sin(k,x)[A2,510(2y,1) + ancos(ant)]},

n=s+1

(35)

}, (36)

(37)
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(4) Iy = 1,y <o, when C = 2(Sk2m)'?, ¢ <[(Sk2 + 2kym]'/? — (Sk2m)'/?,

r—1
Wia(x, 1) = e-’"f{z sin(k, )[4, sinh(¥1,1) + By, cosh(Py,0)] + sink,x)[ 41,4 + B,

n=1

n=r+1

+ i Sin(knx)[Aln Sil’l(anl) + By COS(anZ)]}

s—1
4ot {Z sin(k,x)[Az, sinh(¥a,t) + By, cosh(¥,1)]

n=1

+ i sin(k,x)[A42, sin(Q,,t) + By, cos(ant)]}, (38)

n=s

(5) hy = w1,y = wo, when C = 2(Sk2m)'/?, ¢ = [(Sk2 + 2kym]'/? — (Sk2m)!/?,

r—1

wia(x, 1) = e‘hl’{z sin(k,x)[A41, sinh(¥1,t) + By, cosh(W,0)] + sin(k,x)[A1,t + Bi,]
n=1

n=r+1

+ i Sin(knx)[Aln Sin(an[) + By COS(anZ)]}

s—1
+e Mt {Z sin(k,x)[A2, sinh(¥,1) + By, cosh(¥5,1)]

n=1

+ sin(kx)[Aast + Bas] + ZOO: sin(k,x)[A2, sin(£22,t) + By, cos(ant)]}, (39)

n=s+1

(6) hy = w1, 1y > a5, when C = 2(Sk2m)'/?, ¢ > [(SK2 + 2kym]'/* — (Sk2m)'/?,

r—1
Wi, 1) = e-’“f{z Sin(k,)[A 1 Sinh(P1,0) + Bry cosh(1,0)] + sin(k, A1t + By,]

n=1

n=r+1

+ Z Sin(knx)[Aln Sin(anl) + Bln COS(anZ)]}

e { D sinknX)[ A, sinh(¥,1) + Bay c0sh(¥,0)]

n=1

+ ZL: sin(k,x)[A42, sin(Q2,,t) + By, cos(ant)]}, (40)

n=s+1
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(7) hy > 1, hy <wss, when C>2(Sk*m)'/?, e<[(Sk2 + 2kym]'/> — 0.5C,

wia(x, t) = e_hl’{z sin(k,x)[A1, sinh(¥1,t) + By, cosh(V1,7)]

n=1

+ i sin(k,X)[A1n SIn(Q1n1) + Biy COS(anZ)]}

n=r+1

s—1
+e Mt {Z sin(k,,x)[A2, sinh(¥5,1) + By, cosh(¥y,1)]

n=1

+ i sin(k,x)[Aan sin(Qan) + Boy cos(anZ)]}, (41)

n=s

(8) hy > Wiy, hy = w5, when C>2(Sk2m)'/?, ¢ = [(SKk2 + 2kym]'/? — 0.5C,

wia(x, 1) = eh"{z sin(k,x)[A1, sinh(¥1,¢) + By, cosh(¥1,1)]
n=1

+ i sin(kpx)[A1n sIn(Q1,1) + Biy COS(anl)]}

n=r+1

s—1
+e ! { Z sin(k,x)[A2,sinh(¥2,t) + Ba,cosh(¥o,1)]

n=1

+ Sin(ksx)[AZSt + B2s] + 2 Sin(knx)[AZn Sin(QZnt) + B2n COS(anl)]}, (42)

n=s+1

9) hy > 1y, hy > w5, when C>2(Sk2m)'2, ¢ > [(Sk2 + 2k)ym]'/? — 0.5C,

wia(x, 1) = e_h"{z sin(k,x)[A41, sinh(¥1,,t) + By, cosh(V,1)]
n=1

n=r+1

+ i Sin(knx)[Aln Sin(an[) + By COS(anZ)]}

te { > sin(kyx)[ A2, sinh(Paut) + Bou cosh(¥,1)]

n=1

+ i sin(k,x)[A2, sin(Q2,t) + B», cos(anl)]}, (43)

n=s+1
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where n,r,s = 1,2,3, .... In those cases where r, s = 1, the expressions Z::l(---), Zfl;ll(u-), must
be assumed equal to zero.

In order to formulate the final form of free responses (35)—(43) the initial-value problem should
be solved. The unknown integration constants A;, B;, (i =1,2) can be determined from the
assumed initial conditions (3). The solutions obtained are expressed by the combinations of time
functions describing the damped harmonic vibration (for the underdamped case) and damped
aperiodic motion (for the critically damped and overdamped cases). It is seen that a double-string
system executes two types of free vibrations (motions), synchronous and asynchronous. The
synchronous vibrations correspond to the synchronous mode shapes, and are characterized by the
parameters iy, w1, 21, Y1, These quantities are not functions of a damping coefficient ¢ and
stiffness modulus of viscoelastic layer k. The simplifying assumptions introduced cause the system
to vibrate as a whole without any relative motion between two strings. This implies that the
connecting layer is not deformed in the transverse direction. The asynchronous vibrations
correspond to asynchronous mode shapes, and parameters characterizing this motion are /,, ®,,,
25, ¥»,. The deflections of both strings in the corresponding component motions are identical.

3.3. Undamped forced vibrations

For the sake of completeness, solutions of forced vibrations in the case of undamped system are
also determined. The motion of such a system is governed by Egs. (5) taken in the form

mw, — Sw’ll + k(wy — wo) = fi(x, 1), minp — Sw'2' + k(wy — wy) = fo(x, 7). (44)

To this end, particular solutions of alternative non-homogeneous partial differential equations
(7), in which terms expressing damping are omitted, should be found

miiy — Su| = Fi(x,t), miiy — Suy + 2kuy = F>(x, 1). (45)

These solutions can be sought by using the modal expansion method [1-14,16,38], and are
assumed to be of the general form

(X, 1) =Y Xiu(x)Pr(t) = ZXn<x>P1n<t) = sin(k,x)Pru(2),
n=1 n=1 n=1

(1) = Xon(x)Py(1) = Z Xo(x)P(1) = Z sin(kyX) P(1), (46)
n=1 n=1 n=1

where Py,(f) and P,,(f) the unknown time functions corresponding to the natural frequencies ;,,
which are to be determined.
Substituting solutions (46) into Egs. (45) results in the relationships

0 0
Z[Pln + w%nPln]Xn = m71F1 (X, t), [P2n + w§nP2n]Xn = milFZ(xa Z)'
n=1

n=1
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The above relations are multiplied by the eigenfunction X, then they are integrated with respect
to x from 0 to /. Next, the classical orthogonality condition is applied

! /
/ X, X, dx = / sin(kpx)sin(knx) dx = dSpm,
0 0

i 1
d=d> = / X2 dx = / sin?(k,x) dx = 0.5, (47)
0 0

where §,,,, 1s the Kronecker delta function: §,,, = 0 for m+#n, and 9,,,, = 1 for m = n.
Finally, the two independent infinite sequences of ordinary differential equations for the
unknown time functions are obtained from

”in+w' in — fl’lts l: 5~ n= 9 Ly Ty ey
P 2P 0) 1,2 1,2,3 (48)

where
! !
H,(t) = (dm) ™! / Fi(x, )sin(k,x) dx = 2M ! / Fi(x, t)sin(k,x) dx, M = Im. (49)
0 0
The solutions of Egs. (48) satisfying homogeneous initial conditions are [14,16]
t
Pault) =0, [ Hu@sinfon - o) ds
0
(ropl
= 2(Mw;,) ! / [/ Fi(x, 7)sin(k,x) dx} sinfw,(t — 1)) dr, i=1,2. (50)
0o LJo
Then, solutions (46) take the form

ul(x, t) = an(x)Pln(t) = i C01_nlSin(knx) /OtHln(T)Sin[wln(t - T)] dT:
n=1 n=1

MQ(X, t) = i/Yn(X)PM(t) = i a)z_nlsin(knx) /OIH2n(T)Sin[w2n(t - T)] dr. (51)
n=1 n=1

The undamped forced vibrations of a double-string system are described by the versatile
formulae

2 o0 2 t
Wi, ) =053 ui(x,0) =05 sin(k,x) Y o / H,(v)sin[wg(t — 7)]dx,
i=1 n=1 i=1 0

2 o0 2 t
wax, 1) =053 aui(x, 1) = 0.5 sin(k,x) Y amory,! / Hy(Dsin[wa(t — 0]dt,  (52)
i=1 n=1 i=1 0

where Ay, =dy = —dyy = —dy = 1.
In Ref. [16], analogous solutions are obtained for more general system of two different strings.
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3.4. Damped forced vibrations

The damped forced responses of the system due to arbitrarily distributed transverse continuous
loads are represented by the particular solutions of the governing non-homogeneous partial
differential equations (5). These solutions will be found after solving a derived auxiliary
uncoupled set of Egs. (7)

miiy + City — Su) = Fi(x,1), miiy + (C + 2¢)ita — Suly + 2kus = F>(x, 1). (53)

Applying the modal expansion method, the solutions are assumed to be in the following form:

i) = 3 X(PW0) = 3 Y0P = S sinll, ) Pru(o)
n=1 n=1 n=1

(X, 1) =Y Xoy(x)Poy(1) = Z Xo(0)Pao() =) sin(ky ) Pan(1), (54)
n=1 n=1 n=1

where Py, (¢) and P,,(¢) are the unknown time functions to be determined.
Substituting solutions (54) into Egs. (53) results in the relationships

o0
Z[pln + 2h Py + @f, Pl X, = m™ Fi(x, ),

n=1

.
S [Bon + 2 Pay + 03, Pl Xy = ™ Fai, 1),

n=1

Multiplying the above relations by the eigenfunction X,,,, then integrating them with respect to x
from 0 to / and applying the orthogonality condition (47), one gets the differential equations for
the unknown time functions

P+ 20iPyy + @0k Py = Hy(1), i=1,2, n=1,273,.., (55)

where
/ !
Hy(t) = (dm)™! / Fi(x, t)sin(k,x) dx = 2M ! / Fi(x, t)sin(k,x) dx. (56)
0 0

Searching for their particular solutions, three possible cases must be considered [1-13,39,40].
(1) Undercritical damping: h; <,

t
Pi(t) = Q! / H;y(1)e " 9sin[Qy,(r — 1)]dr, i=1,2, (57)
0
where

Qin = (a)l2n - h?)l/za
Qi = (SK2m™ ' —025CPm )12, @y, = (SK2 + 2kym™" — 0.25(C + 2¢)*m2]'/2.
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(2) Critical damping: h; = wy,,
t
Py (1) = / H,-n(f)efh"(’ff)(t —7)dr, i=1,2.
0
(3) Overcritical damping: h; > w;,,

t
Pu() =¥, / Hiy(1)e " =Isinh[¥,,(r — 7)]dr, i=1,2,
0

where

Vin = — 7)),

¥, = (0.25C*m2 — Sk2m~ )2, ¥y, = [0.25(C + 2¢)*m=2 — (Sk2 + 2kym~'1"/2.

Setting solutions (10) for the damped forced vibrations of the system

2 o0 2 o0 2
Wi, ) =05 u(x, ) = 0.5 Xu(x) D> Piu(t) =05 sin(kyx) > Pinl0),
i=1 n=1 i=1 n=1 i=1

2 o] 2 o0 2
wa(x, 1) =053 " au(x,1) = 0.5 ) X,(0) Y auPin(t) = 0.5 sin(knx) > _ ainPin(?),
i=1 n=1 i=1 n=1 i=1

where ay, = a; = —ay, = —ap = 1, the following nine possible cases have to be shown:
(1) hy <1,y <ang, when C<2(Sk2m)'?, ¢ <[(Sk? + 2kym]'/? — 0.5C,

r—1 t
wia(x, £) :0.5{2 ¥ Isin(k,x) / Hy,(v)e M Isinh[¥,(1 — 1)]dt
n=1 0
o0 t
+ ngnlsin(knx) / Hy,(v)e M Isin[Q,(1 — r)]dr}
n=r 0
s—1 t
iO.S{Z ¥, Lsin(k,x) / Hop(v)e = Isinh[ W, (1 — 1)]dt
0

n=1

© t
+ Z Qz’nl sin(k;,x) / Hoy(t)e U Isin[Q,,,(1 — r)]dr},
n=s 0

(58)

(39)

(60)

(61)



Z. Oniszczuk | Journal of Sound and Vibration 264 (2003) 253-271
(2) hy <1,y = wog, when C<2(Sk2m)'?, ¢ = [(Sk2 + 2kym]'/* — 0.5C,

r—1 t
wia(x, £) :o.s{z ¥, Isin(k,x) / Hy,()e MIsinh[¥,(r — 1)]dt
n=1 0

n=r

%© t
+ Z Q; }sin(k,x) / Hy,(0)e ™ =sin[Q,,(1 — f)]df}
0

s—1 t
io.s{z ¥, Lsin(k,x) / Hop(v)e U Isinh[ ¥, (1 — 1)]dt
n=1 0
t
+ sin(k,x) / Hoy(t)e 0=9(r — 1)dt
0

© t
+ Z Q, Isin(k,x) /0 Hgn(r)ehZ(’T)sin[an(t—r)]dr},

n=s+1

(3) hy <1,y > w5, when C<2(Sk2m)'?, ¢ > [(SK? + 2kym]'/> — 0.5C,

r—1 t
wi2(x, ) :o.s{z ¥, sin(k,x) / Hy,(0)e " =Isinh[¥,(f — 1)]dt
0

n=1

© t
- ZQl_nlsin(knx) / H(v)e M Isin[Q,,(r — T)]df}
0

n=r

s t
io.s{z ¥, lsin(k,x) / Ho,(1)e 2= Isinh[ ¥, (1 — 1)]dt
n=1 0

x t
+ Z Qz_nlsin(knx) / Hop(v)e ™ Isin[Q,,,(1 — ‘L')]d‘[}’
0

n=s+1
(4) hy = 1y, iy <o, when C = 2(Sk2m)'?, ¢ <[(Sk2 + 2kym]'/* — (Sk*m)'/?,

r—1 t
wia(x, £) :0.5{2 ¥ Lsin(k,x) / Hi,(v)e M Isinh[¥,,(r — 1)]de
n=1 0

t
+ sin(k,x) / Hy,(t)e M= — 1)dr
0

n=r+1

o0 t
+ Z Q; lsin(k,x) / Hln(r)eh'(”)sin[an(l—r)]dr}
0

s—1 t
+ 0.5{2 ¥, Lsin(k,x) / Hop(v)e 20D sinh[ ¥, (1 — 7)]dt
0

n=1

© t
+) @ sin(k,x) / Hoy(t)e 0 Isin[ Qs (1 — f)]df},
0

n=s

267

(62)

(63)

(64)
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(5) hy = w1,y = o, when C = 2(Sk2m)'?, ¢ = [(Sk? + 2kym]'/? — (SkZm)/?,

r—1 t
wia(X, £) :0.5{2 ¥, lsin(k,x) / Hi,(t)e M Isinh[¥,,(r — 1)]dt
n=1 0
t
+ sin(k,x) / Hy(t)e M9 — 1)dr
0

o0 t
+ Z Q; lsin(k,x) / Hl,,(r)e’“W)sin[gln(z—r)]dr}
0

n=r+1

s—1 t
io.s{z ¥, lsin(k,x) / Hop(v)e " 2Isinh[ W, (1 — 1)]dt
n=1 0
t
+ sin(k,x) / Hoy(t)e =9t — 1)de
0

© t
+ Z Q,,'sin(k,x) / Hz,,(r)e’12<”>sin[92,,(z—f)]df},
0

n=s+1
(6) hy = w1, hy > w5, when C = 2(Sk2m)'/?, ¢ > [(SK? 4 2kym]'/? — (Sk2m)'/?,
r—1 t
wia(x, 1) —0.5{2 ¥, lsin(k,x) / Hy,(1)e " =Isinh[¥),.(r — 1)]dt
n=1 0
t
+ sin(k,x) / Hy,(0)e 9 — 1)de
0

x t
+ > Q) sin(k,x) / Hln(f)e—’“<’—f>sin[gl,1(t_f)]df}
0

n=r+1

s t
iO.S{Z w5 lsin(k,x) / Hop(1)e 2= Isinh[ W, (f — 1)]dt
n=1 0

o0 t
+ Z Q;nISin(kizx)A H2n(f)e_hz(t_r)5in[g2n(t_T)]df}:

n=s+1

(7) hy > 01, hy <wss, when C>2(SkXm)'/?, ¢ <[(Sk> + 2kym]'/> —0.5C,
r t
wia(x, 1) = O.S{Z ¥ Lsin(k,x) / Hi(v)e M Isinh[¥,,(r — 1)]dt
n=1 0

o0 t
+ Z Q; }sin(k,x) / Hl,,(r)eh‘(")sin[an(t—r)]dr}
0

n=r+1

(65)

(66)
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s—1 t
+0.5¢ > Wy, lsin(kyx) / Hoy(t)e " Isinh[¥,,(¢ — 1)]dt
n=1 0

0 t
+ Z Q, lsin(k,x) / Hop(v)e "2 Ds5in[Q,,,(1 — ‘L')]d’l.’}, (67)
0

n=s

(8) hy > w1, hy = a5, when C>2(Sk*m)'/?, ¢ = [(SK2 4 2kym]'/> — 0.5C,

r t
wia(x, 1) :0.5{2 ¥ Lsin(k,x) / Hi,(t)e MIsinh[¥,,( — 1)]dt
n=1 0

© t
+ Z Q, lsin(k,x) /O Hln(r)eh‘(’T)sin[an(t—r)]dr}

n=r+1

s—1 t
- 0.5{2 ¥, sin(k,x) / Hop(v)e " 2Dsinh[ W, (1 — 1)]dt
0

n=1

t
+ sin(k;x) / Hoy(r)e 9(¢ — 1)dr
0

o0 t
+ Z Q, lsin(k,x) /0 Hzn(r)e]’Z(IT)Sin[QZn(l—r)]dr}, (68)

n=s+1

9) hy > 01y, hy > w5, when C>2(Sk2m)'2, ¢ > [(Sk2 + 2kym]'/> — 0.5C,

r t
wia(x, 1) = o.s{z ¥ Lsin(k,x) / Hi(v)e M Isinh[¥,,(r — 1)]dt
n=1 0

0 t
+ Z Q, Jsin(k,x) / Hln(r)eh1<ff>sin[91n(z—r)]dr}
0

n=r+1

S t
io.s{z ¥, lsin(k,x) / Ho,(1)e 2 Isinh[ W), (t — 7)]dt
n=1 0

+ i Q,,'sin(k,x) / rHz,,(r)e_hZ(t_”sin[Qz,,(z—r)]dr}. (69)
0

n=s+1

These formulae for the case of arbitrarily distributed transverse continuous loads are
sufficiently versatile, to allow the solutions for any type of non-inertial stationary or moving
loading to be found.

4. Conclusions

The paper deals with the theoretical investigation of damped vibrations for a system of two
viscoelastic strings connected by a viscoelastic layer of a Kelvin—Voigt type. The motion of this
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system is described by a coupled set of two non-homogeneous partial differential equations. The
introduction of corresponding principal co-ordinates leads to the decoupling of the differential
equations of motion which are easily solved by application of two classical fundamental
mathematical methods: the method of separation of variables and the modal expansion method.
Exact analytical solutions for damped free and forced responses of strings subjected to generally
distributed transverse continuous loads and due to arbitrary damping are formulated. It is
relevant to note that coefficients shaping the solutions are explicitly expressed in terms of the
physical parameters characterizing the system. Nine possible different solutions for free motion
are described by the combinations of time functions expressing the damped harmonic vibrations
(for undercritical damping cases), as well as the damped aperiodic motions (for critical and
overcritical damping cases), according to the mutual relations between physical parameters of the
system. In the case of forced vibrations, nine possible solutions are also determined. Although
solutions relating to underdamped cases are only useful in vibration analysis, but consideration of
all complete possible solutions of the problem makes possible a better understanding of the
vibration phenomena occurring in damped complex continuous systems. The solutions obtained
in this paper can be a basis for the formulation of damped responses for more general double-
string systems characterized by arbitrary geometrical and physical parameters.
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