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Abstract

In designing finite horizon discrete time H,, controllers, the associated H ., -Riccati difference equations
must be solved. But the Riccati equation has a non-negative solution only when y~2 is small enough. So it is
important to get the upper bound of the parameter, i.e., the critical value that ensures the existence of the
solution to the Riccati equation. The solution sequence of the Riccati difference equation can be
constructed by the conjoined basis of an associated linear Hamiltonian difference system. Based on this
expression and the Hamiltonian difference system eigenvalue theorems, the equivalence between the critical
value and the first order eigenvalue of the linear Hamiltonian difference system is presented. Since the
critical value is also shown to be the fundamental eigenvalue of a generalized Rayleigh quotient, an
extended form of Wittrick—Williams algorithm is presented to search this value.
© 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The existence of a full information discrete time H., controller depends on the existence of a
non-negative solution to the associated Riccati difference equation and a matrix inequality [1].
Similar to Riccati differential equations of continuous time H,, control and filtering problems,
the Riccati difference equation has a non-negative solution only for a small enough parameter y 2.
Therefore it is important to determine the upper bound of y~2, namely the critical value y_2, which
ensures the existence of solutions of the Riccati difference equation. According to eigenvalue
theorems of discrete linear Hamiltonian systems [2], the solution of the Riccati difference equation
tends to infinity at the initial point when y~2 is the fundamental eigenvalue of the Hamiltonian
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difference system. Which indicates that the fundamental eigenvalue y;2 equals to y,2. It is also
presented in the paper that y_? is equivalent to the fundamental eigenvalue of a generalized matrix
eigenvalue problem. The argument is based on the concept of the generalized Rayleigh quotient
with two kinds of variables and the discrete Legendre transformation.

For continuous time H,, control systems, on the basis of the correspondence between y,,> and
the fundamental eigenvalue of a generalized Rayleigh quotient, the extended form of Wittrick—
Williams (W-W) algorithm [3] is proposed to calculate 7% [4]. The W-W algorithm is derived in
Ref. [5] based on the Rayleigh quotient and used in structural mechanics, then a mathematical
proof of this algorithm is presented in Ref. [6]. To overcome numerical ill-conditioning in
computation, the extended W—W algorithm is proposed in Ref. [3] based on the analogy between
structural mechanics and LQ control [7]. In this paper, another version of the extended algorithm
is presented for the critical value computation of the H,., difference Riccati equations.

Section 2 briefly describes the full information discrete time H, control problem and the
associated Riccati difference equation according to Refs. [1,8]. Section 3 presents the relationship
of the critical value 72, the first order eigenvalue of the Hamiltonian difference system and the
generalized Rayleigh quotient. With the discrete Legendre transformation, an equivalent
generalized matrix eigenvalue problem is also presented for the purpose of deriving the extended
W-W algorithm. And the algorithm is formulated in Section 4. Section 5 summarizes the
computational results of numerical examples.

2. Riccati difference equation of discrete H,, control

Consider the following linear discrete time system:

Xii1 = ArXg + Brug + Dewy,  x9 =0, (2.1)

z; = Hixy + Siuy, (2.2)

where k[0, N — 1], state vector x; € R", disturbance vector wy € R/, control vector u € R”, output
vector z; € RP. Ay, By, Di, H; and S, are matrices with appropriate dimensions. It is also assumed
that S,{[Hk S =1[01], Hsz = Q.. The object of H,, control is to find a control strategy {u} in
the square summable space #»[0, N — 1] such that

3 Z 7,7 +§x;Qfo<§y2 Z W, Wi, (2.3)
k=0 k=0

where we £5[0,N — 1], y >0, Q; is a symmetric positive-definite matrix. The feedback control
law is

u, = Kxi (2.4)
in which K is the feedback gain matrix. A solution to the problem was given by Basar and

Bernhard [1], Yaesh and Shaked [8,9] as follows.
There exists a unique feedback controller that guarantees (2.4) if and only if the condition

I —-DIM;. Dy >0, ke[0,N — 1] (2.5)
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holds, where the non-negative definite matrices sequence My, ; is generated by the Riccati
difference equation

My = Q; + A{My [T+ (BB — ) °DiD)M; 1] 'Ar, My = Q. (2.6)
The state feedback control law and the disturbance are given by
w = B M, Z,  Arxy, (2.7a)
Wi = 72D My Z Arxg, (2.7b)
where
Zi =1+ (BB} — 7y ’DD)My, . (2.8)

Since Eq. (2.6) has a solution on finite horizon [0, N — 1] only when 772 is small enough, it is
important to determine the upper bound 7> of 72 first.

The results of the time-invariant system control are similar, except that system matrices Ay, By,
Dy, H;. and S; are time invariant as shown in the following system:

X1 = AXg + Bug + Dwy, (2.9)
7, = Hx; + Suy. (2.10)
There exists a feedback controller if and only if the condition
71— DMy D>0 (2.11)
holds, where My is the solution of the Riccati recurrence equation
M = Q + ATM[l + (BBT —y°DD)M1]7'A, My = Q; (2.12)

in which Q = H'H. The results can also be extended to infinite horizon case, that the controller of
an infinite horizon H,, control problem exists if and only if

71— D'MD > 0, (2.13)
where M is the solution of the algebraic Riccati equation
M = Q + AT™[I + (BB" — y’DD")M]'A. (2.14)

3. Critical value of the H . -Riccati difference equation
3.1. Critical value and Hamiltonian difference system eigenvalue

The solution sequence of the Riccati difference equation (2.6) can also be constructed by the
conjoined basis of the following Hamiltonian difference equation:

Xii1 = ArXg + (72 DiDy — BBk, (3.1a)

M= HHex; + AL by (3.1b)
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with boundary conditions
X = 0, )VN = QfXN- (32)
The equivalent standard form of (3.2) is

ool{o -l sl (o)

And the general form of boundary conditions of Hamiltonian difference system presented in

Ref. [2] is
—RY 0 ](-x R, 0 ][x 0
o S - (3.4)
0 RN Xy 0 RN ] )\«N 0
in which the n x n matrices Ry, Rg, Ry, Rﬁ satisfy
R Ry |
rank[ z = rank 2’ =n,
Rg N |

RoR? =R/R], RyR% =R%R}.

The general form of boundary condition (3.4) is for the use of theorems of Ref. [2] later.

The conjoined basis (X, A) of Hamiltonian difference equation (3.1) is composed of the n x n
matrices sequence Xy and A (instead of the vectors xj, Ax), which are solved from the matrix
form of Eq. (3.1), i.e.,

Xir1 = AeXy + (72D Dy — ByB)Ago 1, (3.5a)
Ar = HIH X + AT Agy (3.5b)
and satisfying
XT
rank | % | =n, (3.62)
k
X{Ar = A X (3.6b)
Let P, = AkX,;l, Eq. (3.5) can be rewritten as
Pr = H{H; + AP (XXl )7 (3.7a)
I=AXi X!, + (7? DD — BiB))Pis 1. (3.7b)

Since condition (2.5) implies the non-singularity of I+ (BkBZ — y*ZDkDZ)PkH [1], Egs. (3.7a)
and (3.7b) provides the recurrence equation

P, = H H; + AP, [1 + (BB} — 7y °DiD})P; 1] 'A;. (3.8)

It is obvious that Eq. (3.8) is the same as the Riccati equation (2.6).

Besides constructing the solution of the Riccati equation, the conjoined basis which satisfies the
boundary conditions, also plays a key role in the eigenvalue problem of the Hamiltonian
difference system. A number y~2 is said to be an eigenvalue of the Hamiltonian difference system
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(3.1) and (3.4) if (3.1) has a non-trivial solution (xg,A;) which satisfies the general form of
boundary conditions (3.4), and the solution is called an eigenfunction corresponding to the
eigenvalue 772, According to Ref. [2], if (X, A) is a conjoined basis of Eq. (3.1) with

Xy = —R}, (3.92)

Ay =RY (3.9b)

then =2 is an eigenvalue of (3.1) and (3.4) if and only if the # x n-matrix Rg Xo + RoAy is singular.
Comparing the boundary conditions (3.3) and (3.4) gives

Xy =1, (3.10a)
Ay =Q,, (3.10b)
R =0, (3.11a)
R} =1. (3.11b)

Therefore, the matrix RO#XO + RoAg = Xy is singular if and only if 772 is an eigenvalue of the
Hamiltonian difference system (3.1) and (3.3). In this case, the solution of Riccati equation tends
to infinity at k = 0 since Py = AoX ! which means the nonexistence of solution at k = 0 when y—2
is an eigenvalue. In addition, just as the finite escape phenomena of H . -Riccati differential
equations [1], when y~2 is larger than the first order eigenvalue y;2, the determinant of matrices
M, of the solution to the Riccati equation (2.6) may change abruptly from positive to negative in
[0, N — 1]. But for y=2 = y72, the solution matrix My tends to infinity at k = 0 only. Since the
critical value y_,? is the upper bound of y~2 which ensures the existence of positive definite solution
matrices to the Riccati difference equation (2.6), it is obvious that y.> = y;2, as that in the case of
continuous-time H,, optimization problems [4].

It is well known that eigenvalues of distributed systems are precisely stationary values of a
Rayleigh quotient [10]. As shown in Refs. [3.4], the eigenvalues of a linear Hamiltonian
differential system are stationary values of a generalized Rayleigh quotient with two kinds of
variables. It is also easy to show that the eigenvalues of the Hamiltonian difference system (3.1)
and (3.3) are stationary values of a generalized Rayleigh quotient of discrete form. The necessary
condition of Eq. (3.12) having a stationary value with non-trivial solution is equivalent to the
existence of a non-trivial solution to the Hamiltonian difference system (3.1) and (3.3).

N—-1
TR = (“hgXest — 3 0 BB
k=0
+ 19720 DDt + A A+ 1x0Quxi) + 1x 3 Qxy. (3.12)

It is easy to show that the variational principle

ST, (x,0) =0 (3.13)
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leads to the generalized Rayleigh quotient

) H] N
v =St i=1,2.3, .., (3.14)
where
N—-1
I = (M Xert — b Arxe — Ix0Qux + 1, BiBiAL, ) — x4, Qpxy, (3.15a)
k=0
N—-1
=1 0 DDy (3.15b)
k=0

The stationary values of the generalized Rayleigh quotient can be arranged as y72<y52< -+, i.e.,
Y1 =7, = ---. With Legendre transformation, it will be shown in next section that the generalized
Rayleigh quotient stationary value (eigenvalue) problem (3.14) and (3.15) equals to a generalized
matrix eigenvalue problem.

3.2. Relation between the generalized Rayleigh quotient and the matrix eigenvalue

Considering the generalized matrix eigenvalue problem

(K — pM)d =0, (3.16)
where the symmetric matrices K>0, M > 0, and the vector de RV"*+",
_KaaO KabO i
Kbe + Kaal Kabl
K = Kpp1 + Koz , (3.17a)
symmetry T | (P
i Kpoy + Q!
"M, .
M,
M= M, , (3.17b)
L My |
d=1[d;,d},d],....d;y]" (3.17¢)

in which Kg,;eR"™", Kp;eR"”" are symmetric matrices, bii = Kp,i e R, d;eR" (i=
0,1,...,N). It is well known that eigenvalues p; of Eq.(3.16) are stationary values of the
Rayleigh quotient

d"Kd
d"™™Md’

p;=st i=1,2,3, ... . (3.18)
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Considering the initial value of Eq. (2.1), let dy = 0, then Eq. (3.18) becomes
. S Udi, digr) + 13 Q; dy

J N-1 I

5

where
UL(dy, dis1) = 2d Kaaedi + i Kpaedie + 3 a0 Kppped .
The eigenvalue problem (3.16) is equivalent to the variational problem
ST (K — pM)d] = 0,

1.e.,
N-1 N-1
0 Z Up(di, di ) + 3 d3Q; dy — Z Lpdl \Mpi1diyr | = 0.
k=0 k=0
Denoting

Uc(di, dicy1) = UL (e, diey 1) — 3 pdl My 1diey o,

309

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

the variational equation (3.22) can be transformed into the canonical form by discrete Legendre

transformation. Introducing

oU,
np = —* = Kol + Kopidi 1,
ody,
oU,
Nt = ——— = —Kppidir 1 + pMy1dis 1 — Kpaedy,
Ody 11

then Ui(d, di, 1) can be expressed as
Ur(d, dist) = 3mgd — Inl diyy.
Let Hy(ng,d;. 1) denote the Hamiltonian function
Hi(ny, di 1) = —dj iy — Urldi, disy).
Solving for ni,; and d; from Eq. (3.24) gives the dual equations

N1 = Fng — Grdq,

di = Exny 4+ Fldgy g,
where

Fr = —Kpu K}

aak>

E, =K !

aak>
Gi = Kink — Kpa K i Kok — pMyci1 = G — pMy, .
Then the Hamiltonian function Hy(ng,di 1) is given as
Hi(ng, dii1) = —3nEeng — d, Feng + 140, Grdiy.

(3.24a)

(3.24b)

(3.25)

(3.26)

(3.272)

(3.27b)

(3.28a)
(3.28b)

(3.28¢)

(3.29)
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Let dy = Qsny, the canonical form of the variational problem (3.22) is

N-1
s [Z (=0 Ayt — He(ng, desr)) + 50y Qpny
k=0

=

= 5[ (—di et + A Feng + 0 Eeng — 1d, Gediyt) +1n,Qumy | (3.30)

T

0

Therefore, the variational principle (3.19) can be transformed to be an equivalent generalized
Rayleigh quotient with two kinds of variables

p; = staz, (3.31)
where
N-1
@ = (d me — L Fen — InfEene + 1) Gldiyr) — 1njyQny, (3.32a)
k=0
N—-1
Gy = 14 My di. (3.32b)
k=0

Egs. (3.31) and (3.14) have the identical formulation, and the algorithm for the search of the
fundamental eigenvalue of Eq. (3.31) can also be used for the computation of y,%. Since de RN+,
the dimension of the eigenvalue problem (3.16) may be very large. But the H., control problem
needs only the fundamental eigenvalue, so it is reasonable to consider a special algorithm for the
eigenvalue computation. As mentioned in Section 1, the W—W algorithm can only be applied to
the eigenvalue problem of one kind of variables, such as Eq. (3.16) or (3.18). For the eigenvalue

problems such as Eq. (3.31), the W—W algorithm should be extended [3.4].

4. Algorithm for critical value computation
4.1. The Wittrick—Williams algorithm
The W-W algorithm for the computation of eigenvalues is based on the eigenvalue count of a
specified interval [5]. Consider the eigenvalue problem
(A —pB)yd =0, 4.1)
where de R”, AT = A, and B" = B being positive definite. The number of eigenvalues, which are

less than the given value py, is defined as the eigenvalue count of the eigenvalue problem (4.1). Let
J(py) denote this number, then

J(py) = s{A — puB;, (4.2)

where s{C} denotes the number of negative eigenvalues of the symmetric matrix C, note that
s{C} = s{C 1.
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If the matrices and vector are partitioned as

Aaa Aab da —0 43
db - ( . )

Apa  App
where d,eR", dye R"". And r constraints are given as d, = 0, then the eigenvalue problem is
reduced to be

P Baa Bab
By, B

(App — pBpp)d), = 0. (4.4)
Let Jo(px) be the eigenvalue count of Eq. (4.4), and denote the reduced matrix as
D(ps) = Aua — PBaa — (Aab — puBus)(Asp — puBes) ™ (Aba — pisBia). (4.5)
Then, the eigenvalue count of Eq. (4.1) is
J(py) = Jo(py) + s{D(py)}- (4.6)

For an eigenvalue problem of continuum, the degrees of freedom n— oo, and D(p) becomes a
transcendental eigenvalue problem of p, for which Eq. (4.6) still holds [5,6].

4.2. The extended Wittrick—Williams algorithm
To simplify the expression, introducing the dynamic stiffness matrix (A — pB) = C(p) and the

eigenvalue problem is written as Cd = 0.
Consider the eigenvalue problem of a segment of Egs. (3.16) and (3.17)

Caal Cubl dk—l
Coat Cu2 +Corp1 Cup2 d. | =0, 4.7)
Cra2 Cop2 | | dis1

where

Caal = Kaak - pMaak, Caa2 - Kaa,k+l - pMaa,k+1:
Cunt = Kk — pPMupie,  Cpar = Kpak — pMpar,
Cur = Kap 1 — PMap i1, Copi2 = Kpair1 — pPMpajes1,

Copt = Kppie — pPMppies,  Cppo = Kpp 1 — pMppjes1.-

All the eigenvalue problems in this section are expressed in terms of dynamic stiffness matrix.
According to Egs. (3.28a)—(3.28c), let

Fi=—CpC,L, i=12, (4.82)
E =C, (4.8b)
G; = Cppi — CpiiC, Cupi. (4.8¢)

Then
Cpui = —FE !, (4.9a)
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Cui = E; !, (4.9b)
Cwi = G; + FE; 'F], (4.9¢)
where i = 1,2. Define for the segments k and k + 1
n, = F]llk,1 — G]dk, (4103)
di 1 =Em_ +Fldg, (4.10b)
N = Fong — Godyy g, (4.10¢)
di = Eong + Fody g (4.10d)
and for the combined segment
e = Fen | — Gedi gy, (4.11a)
di 1 =Eamy | +Fldg. (4.11b)
The following matrix merging equations are derived [7]:
G. =G, + Fy(G,' + E») 'F}, (4.12a)
E. =E, +F/(E;' +G) 'Fy, (4.12b)
F, = F,(I+ G,E>) 'F,. (4.12¢)
Let the constraint be denoted as d;.; = 0, the eigenvalue problem (4.7) is reduced to
Cua Can | [di
1 ’! =0 (4.13)
Coar Caaz + Copr | | di
Since the identity
Cu C. I 0] [Cuw C.
! | ] : S (4.14)
Cbal Cbbl + Caaz CbglC;al 1 i 0 Caaz + Cbbl — CbglC;mCabl

is valid for any given p,, the eigenvalue count of Eq. (4.13) is
Jre(p) = 5{Caa2 + Copt — Cpar Co Cant} +5{Caat} = s{G1 + By} +s{E{ ). (4.15)
Let Jri(py) = s{Kua1}, Jr2(py) = s{Kua2}, then
Tre(ps) = Jri(pw) + Jro(ps) — s{E2} + s{G1 + E; '} (4.16)

Executing this equation repeatedly with the merging equation (4.12) derives the eigenvalue count
of eigenvalue problem (3.31), which corresponds to the case of no boundary constraint.
It is easy to show that the eigenvalue count of the eigenvalue problem

CaaZ Cab2 dk
1 = (4.17)
Craz Cpp2 + Q;
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is
Tro2(py) = $1Q; " + Go} + 5{Cu2} = Jra(ps) + s{Q; ' + Ga}.
Now consider the following eigenvalue problem:
Cuar Can di
Coat Cuaz + Cpp Car2 d | =0.
Cha2 Copa + Qs ' | | diy

Let di,1 = 0, the eigenvalue count of the following eigenvalue problem:
Cua C, di
[ . Cun [ k ] Y
dy

Cbal CaaZ + Cbbl
Jo(p) = Jre(py)-
According to Eq. (4.5), D(p4) of this problem is

18

-1
Caal Cabl

D(py) = (Q;' + Cppo) — [0 Cyy,
(pw) = Q7' + Cp) — | ba2 | Coi Copt + Con

Using the matrix inversion lemma and Eq. (4.12a) gives
D(py) = Q;' + Gy + Fo(I+ G Ey) 'GiF] = Q;' + Ge.

The final eigenvalue count equation of Eq. (4.19) is

]RQc(p#) = JRc(p#) =+ S{Qf_'l + Gc}-

0
CabZ ‘

313

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

Executing this equation repeatedly with the interval merging Eq. (4.12) derives the eigenvalue

count of the eigenvalue problem (3.31).

4.3. Procedure of critical value computation

This section describes the computational procedure for time-invariant systems. The procedure

can be readily generalized to time-variant systems according to Section 4.2.
Finite horizon case

0. {Select a suitable y;%; G = BB" —y>DD"; F = A; E = H'H},
LAE =E G =G, Fi =F, Jg1 =0, E; = Qf; G, =0; F, = I; Jgy = 0},
2. {for(k=1, k<SN—-1; k++)
{

{Compute E., G, F. and Jgo. from (4.12a) to (4.12c) and (4.16)}

{Ex = E; Gy = G Fo =F; Jror = Jroe}

if (']RQC > 0)

{yx? is an upper bound (ub) of 7,2, jump out of loop

and restart from step 0 with lower 7,2}
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3. {Now y~2 is a sub-optimal parameter and is a lower bound (/b) of y.?}
if (ub—1b)>¢1(e; > 0)
{increase y~2 and restart from step 0}
else
{break}.

The iteration for 75> should be continued until the specified precision is reached, i.e. (ub—Ib)<e;
is achieved. The lower bound is taken as y_2. It should be noted that the sequence E, generated by
the above procedure is just the sequence My, i.e., the solution of Eq. (2.6) or (2.12) [7]. As N
approaching infinity, My becomes the solution of the Riccati algebraic equation (2.14) of the
infinite-horizon case [1,8].

Infinite horizon case

1. {Select a suitable y~2; F, = A; G, = BB' — y2DD'; E. = H'H; Jz. = 0},
2. {while (||F || > &) (&2 > 0,]||F|| is the 2-norm of matrix F.)}

{
{Ei=E2=E; G =Gy=G; Fi =F, =F; Jr1 = Jra = Jre}
{Compute E., G, F. and Jg, from Egs. (4.12a) to (4.12c), (4.16)}
if (Jge>0)
{Jump out of the loop; restart from step 1 with a lower y~2}
}

At the end of the iteration, E. equals to the solution of the Riccati algebraic equation (2.14) of
the infinite horizon control problem, which is also the stable solution of the Riccati equation
(2.6) or (2.12).

5. Examples

Example 1. For the convenience of comparing, this example is taken from Ref. [11]. The data of a
discrete time system are

1 0 —0.1 0 001 O —0.004 0

0 1 0 —0.1 D— 0 0.01 B— 0 —0.004
0.033 —0.033 1 0 |’ 0 0 |’ 0.085 0 ’
0.033 —0.033 —0.007 1 0 0 0 0.085

o5 05 0 o0
T | 2113 2113 0375 0375

The critical values of the Riccati equation of finite horizon of different length are shown in Table
1. As N tends to infinity, the critical value of the associated Riccati difference equation
approaches the critical value of the Riccati algebraic equation of infinite horizon case. It should be
noted that even when N increases from 2% to 2!, the amount of calculation increases just a
little.
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Table 1

Critical value y,, of Example 1

N 22 23 25 28 210

Ver 0.13803 0.15944 0.18870 0.18884 0.18884
Table 2

Critical value y,, of Example 2

N 22 23 24 25 26 27 28 29 210

Yer 8.5082 8.5748 8.6235 8.8429 17.100 20.217 20.237 20.237 20.237

According to Table 1, the critical value is 7, ~0.18884 when N is large enough. One can also
obtain the same value of y,. by using of the algorithm of the infinite horizon case. Furthermore,
the algorithm also gives the solution of the Riccati equation. When y = 0.25 and N = 28, the
solution of the Riccati difference equation at k = 0 is

73.198 —73.786 —42.565 32.735
96.810 39.473 —48.329
symmetry — 38.820 —22316 |’
40.685

which is also the solution of the algebraic Riccati equation. According to Eq. (2.7a), the state
feedback gain matrix is

K = —B"P[I + (BBT —y2DD")M]'A
3226 —2952 —3.086 1.739
—2.536 3762 1732 —3.228]

which is identical to the results in Ref. [11].

Example 2. The data of the second discrete time system are

1.0 3237 00 322 00 0.7 00] [ 0.0 ] 00 ]
—0.00014 1.0 100 00 20 00 03 0.0 —0.001064
—0.0111 —3472 10 00 00 14 00 0.2 —0.338

A=]| 00 00 1.0 10 00 00 00|, B=]0.0005|,D= 00 |,
0.0 00 00 00 10 00 17 0.1 0.2
0.0 ~10 01 32 00 10 00 0.02 0.1
0.0 0.1 —10 00 00 00 10] | 0.01 | 0.0l

H = diag(0.5,0.5,0.5, 1.0, 1.0, 1.0).
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The critical values of the associated Riccati equation of different finite horizon are shown in
Table 2. As N tends to infinity, the critical value tends to a constant, which is also the critical
value of the associated Riccati algebraic equation.

6. Conclusions

The formulation of the extended W—W algorithm fit for the critical value computation of the
H ,,-Riccati difference equation of discrete-time H,., control system is presented. Which is based
on the equivalence between 7.2 and the first order eigenvalue of the associated Hamiltonian
difference system. The generalized Rayleigh quotient and discrete Legendre transformation bridge
the linear Hamiltonian eigenvalue problem and the matrix eigenvalue problem. Based on this
relation, some key computational issues of discrete time H., filtering and H, measurement
feedback control problems can also be solved by the algorithm.
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