
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 264 (2003) 317–342

Passive reduction of gear mesh vibration using a
periodic drive shaft

D. Richards, D.J. Pines*

Alfred Gessow Rotocraft Center, Department of Aerospace Engineering, University of Maryland, College Park, MD

20742-3015, USA

Received 20 June 2001; accepted 29 June 2002

Abstract

In this paper, a passive approach to reduce transmitted vibration generated by gear mesh contact
dynamics is presented. The approach utilizes the property of periodic structural components that creates
stop band and pass band regions in the frequency spectra. The stop band regions can be tailored to
correspond to regions of the frequency spectra that contain harmonics and sub-harmonics of the gear mesh
frequency, attenuating the response in those regions. A periodic structural component is comprised of a
repeating array of cells, which are themselves an assembly of elements. The elements may have differing
material properties as well as geometric variations. For the purpose of this research, only geometric
variations are considered and each cell is assumed to be identical. A periodic shaft is designed and machined
in order to reduce transmitted vibration of a pair of spur gears. Analytical and experimental results indicate
that transmitted vibrations from gear mesh contact to the bearing supports are reduced at a variety of
operational speeds under static torque preload.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

One of the major sources of cabin noise in helicopters can be attributed to gear impact loads
that occur during normal operation of a transmission. These loads are caused by a stiffness
variation which occurs as gear teeth mesh. Impact load induced vibrations are transferred through
the internal components of the gearbox to the housing structure. From there, the vibrations are
transferred to the cabin panels through load paths from the gearbox mounting supports.
Although there is a high noise level within the gearbox, the air pressure levels inside the gearbox
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are generally not sufficient to excite the housing panels considerably [1]. Thus, the primary source
of cabin noise is derived from structure-borne noise generated by gear contact dynamics.
Minimizing the effect of these dynamics is complicated by the fact that the vibrations occur at
multiple harmonics of the gear mesh frequency. These vibrations generate sound pressure levels
inside the cabin that have been measured up to 100 dB in the frequency range of 500–6000 Hz; a
frequency range that is important to human speech [2]. Fig. 1 shows the noise spectrum obtained
from within the cabin. The acoustic noise level is dominated by peaks which correspond to the
mesh frequencies and associated harmonics thereof.

2. Background

There have been a variety of passive methods used to reduce gear noise [5–8]. Much of this
work has focused on tooth profile modifications [3,4]. As gear teeth engage, they make contact at
the mesh point which travels along the profile of the tooth. Therefore, the torque applied causes a
deflection of the teeth which varies as the teeth engage. This translates directly to a mesh stiffness
variation. This stiffness change generates a dynamic load which not only reduces the useful torque
capacity, but contributes to gear noise. Profile modifications may include tip and/or root relief. In
addition, crowning of the tooth profile is possible. All these methods have been shown to reduce
dynamic loads on teeth and transmission error, but each has its limitations. For tip/root relief, the
dynamic load reduction is torque load specific, implying that there is a certain torque load
condition for which the tooth profile is designed. Operating at a torque load which differs from
the design load may generate increased transmission error and subsequently higher gear noise [5].
Also, such an approach is sensitive to manufacturing inaccuracies. Crowning is sensitive to
inaccuracies as well and can affect torque capacity. Too much crowning may cause the center of
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Fig. 1. S-76 gearbox noise spectrum.
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the tooth to be overloaded and produce excessive Hertzian contact stresses. If there is too little
crowning, lead error and/or misalignment can cause excessive loads at the end of the tooth,
resulting in accelerated fatigue failures [6]. Optimal design of the entire gearbox for low noise was
investigated by Inoue et al. [7].
The use of snap rings was investigated by Okamura et al. [8]. This is a simple passive approach

in which rings of material are placed within the rim of the gear. The ‘‘snap ring’’ is not a
completely enclosed ring. A cut is made in the ring, allowing for the expansion of the ring due to
centrifugal forces which generates an increase in contact pressure at the mesh point. This assists in
reducing the noise level. They have been shown to work well for helical gears, but the performance
for spur gears is minimal.
Active methods have also been used to reduce gearbox vibrations. Researchers have

investigated the effectiveness of using piezoelectric actuators integrated to the cabin panels
[9,10], the bearing outer race [11], and the gearbox struts [12,13]. The difficulty with these
approaches is that they require a large number of actuators and a source of external power. For
the gearbox struts, actuators would be needed at each loadpath from the gearbox. Also, the
actuators presently available are effective at controlling one harmonic of the gear mesh frequency.
Controlling multiple harmonics would require either multiple actuators or a novel control law.
The use of magnetic bearings for active control was investigated by Lee and Chen [14–16].
Reduction of torsional waves in a shaft has been investigated passively through profile
modification [4] and viscoelastic damping [17], and actively through active constrained layer
damping [18].
The passive method investigated in this work attempts to show that the introduction of

periodicity into the shaft of a gear system may reduce vibrations transferred along the shaft
and therefore prevent gear mesh vibrations from being transmitted into the gearbox bearings
and support members. A periodic shaft is comprised of repeating shaft segments with
either varying geometry, varying material properties, or some combination thereof. Disconti-
nuities in the shaft scatter the waves as they are encountered and create pass and stop bands
in the frequency spectra. This property of the shaft can be used to design stop bands that
correspond to particular harmonics of the gear mesh contact dynamics. In this work, the use of a
periodic shaft is shown to significantly reduce vibrations associated with spur gear mesh
vibrations.

3. A periodic beam model

A periodic structure consists of an assembly of identical elements connected in a repeating array
which together form a completed structure. Examples of such structures are found in many
engineering applications. These include bulkheads, airplane fuselages, and apartment buildings
with identical storeys. Each such structure has a repeating set of stiffeners which are placed at
regular intervals. The study of periodic structures has a long history. Wave propagation in
periodic systems has been investigated for approximately 300 years [19]. Typically, the studies
have been related to crystals, optics, and the like. It is only recently that the wave motion in
periodic structures has been studied. The salient feature of such structures is the fact that waves
can propagate through the structure in some frequency bands (pass bands) and not in others (stop
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bands) [20–25]. The present work focuses on the application to a spur gear pair system and the
prevention of the propagation of waves transmitted through the shaft into the bearings and
supports.
Spectral finite element analysis [26] will be used to analyze the shaft vibrations (both torsional

and transverse vibrations) and determine the propagation parameter, m: This parameter indicates
the regions for which there is attenuation of the vibrations transmitted through the structure (stop
bands) and where waves are allowed to transmit energy (pass bands) [27,28].
This section will begin with the development of spectral finite element analysis for transverse

vibrations of a beam will be developed and the effect of geometrical changes in the cell structure
will be presented. Finally, the inclusion of the gear inertia on transverse beam dynamics with a
finite length and pinned boundary conditions will be presented.
For a beam (see Fig. 2), the equation of motion may be shown to be (neglecting the rotational

inertia term rI .f and considering a beam section with uniform properties)

EIv
0000
þ rA.v ¼ 0 ð1Þ

which has the solution

vðx;oÞ ¼ a1e
�ikx þ a2e

ikx þ a3e
�kx þ a4e

kx ð2Þ

with

a ¼ f a1 a2 a3 a4 g
T: ð3Þ

The nodal displacements of the element are given by

D ¼

vL

yL

vR

yR

8>>><
>>>:

9>>>=
>>>;

ð4Þ

and evaluating the solution at the left and right nodes,

D ¼ Pa; ð5Þ
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Fig. 2. Shaft geometry.
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where P is given by

½P
 ¼

1 1 1 1

�ik ik �k k

e�ikL eikL e�kL ekL

�ike�ikL ikeikL �ke�kL kekL

2
66664

3
77775: ð6Þ

The nodal forces and moments must satisfy the following at the right and left ends of the beam
segment (see Fig. 3):

FL ¼ EIvxxxxjx¼0; ð7Þ

ML ¼ �EIvxxxjx¼0; ð8Þ

FR ¼ �EIvxxxxjx¼L; ð9Þ

ML ¼ EIvxxxjx¼L: ð10Þ

The nodal forces and moments are

F ¼

FL

ML

FR

MR

8>>><
>>>:

9>>>=
>>>;

¼ fa ¼ fP�1D; ð11Þ

where f is given by

f ¼ EI

ik3 �ik3 �k3 k3

k2 k2 �k2 �k2

�ik3e�ikL ik3eikL k3e�kL �k3ekL

�k2e�ikL �k2eikL k2e�kL k2ekL

2
66664

3
77775: ð12Þ
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Thus, the stiffness matrix is then given by

½K 
 ¼ fP�1: ð13Þ

The forces at the ends of the element are related to the displacements by the relation

FL

ML

FR

MR

8>>><
>>>:

9>>>=
>>>;

¼ ½K 


vL

yL

vR

yR

8>>><
>>>:

9>>>=
>>>;
: ð14Þ

When considering a series of cells, one may derive a relation between consecutive left-end of
elements (i to i þ 1). It is given by

vL

yL

FL

ML

8>>><
>>>:

9>>>=
>>>;

iþ1

¼ ½T 


vL

yL

FL

ML

8>>><
>>>:

9>>>=
>>>;

i

: ð15Þ

Then, the transfer matrix, T ; may be constructed using the transformation

T ¼
�K�1

LRKLL K�1
LR

KRRK�1
LRKLL � KRL �KRRK�1

LR

" #
; ð16Þ

where

K ¼
KLL KRL

KLR KRR

" #
: ð17Þ

Thus, the eigenproblem is formulated as

½T 


vL

yL

FL

ML

8>>><
>>>:

9>>>=
>>>;

i

¼ l

vL

yL

FL

ML

8>>><
>>>:

9>>>=
>>>;

i

: ð18Þ

Note that the eigenvalues of T occur in pairs li and 1=li; which correspond to the attenuation
factor e�m: Combining the eigenvalue pairs results in a relation by which one may determine m: By
definition of the hyperbolic cosine,

e�m þ em ¼ 2 coshðmÞ ð19Þ

or

m ¼ a cosh
em þ e�m

2

� �
¼ a cosh

li þ 1=li

2

� �
: ð20Þ
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For the cell geometry shown in Fig. 2 analysis was performed in order to determine the
attenuation characteristics. First the geometry was decided. LA and LB were chosen to be 1000

each. The diameter of element A was still 100; but that of element B was made 300: First, the
propagation parameter was determined for the beam cell. Note in Fig. 4 that there are two
propagation parameters associated with the beam cell. One corresponds to the near-field waves
(both rightward and leftward travelling) and it has a real component for all frequencies. The other
is associated with the propagating waves (leftward and rightward travelling). In Figs. 5–7 the
magnitudes of the response at the left and right end of a beam (free–free end conditions with a
harmonic excitation force at the right end) composed of 1-, 3-, and 5-cell structures are compared.
It may be seen that periodic beams composed of greater numbers of cells exhibit the attenuation
regions more clearly. Also, when inverting the elements of the cell structure (i.e., B–A rather than
A–B), the B–A cell structure does not alter the left-end response, but it does have an appreciable
effect on the collocated response at the right end (see Figs. 8–10). Note that the propagation
parameter is unaffected by the choice of cell structure (B–A or A–B) for this two element example.
Next, the effects of geometric variations in terms of the cell length ratio ðlLÞ were determined

for 1000; 2000; and 3000 total cell lengths. The results, plotted against the non-dimensional frequency
ðo ¼ %o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrIp=GJÞ

p
%L2Þ; are shown in Fig. 11. Increasing the cell length shifts the attenuation

regions to lower frequency ranges. Also, the density of attenuation regions increases with
increasing cell length.
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Fig. 4. Propagation parameter for a periodic beam cell: - - -, new field; —, propagating.
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4. Effect of addition of the gear inertia

Up to this point, the analysis of the periodic shaft has focused on the vibration response of the
shaft as a beam. In this initial stage of the research, the rotational effects were not treated in the
model. These effects will be added to the analysis in future work. The high stiffness of the shaft
and the low rotational velocity of the experiment encouraged the making of the assumption that
the rotational effects would be negligible. The main focus of the testing performed for this paper
was the verification of the implementation.
In this section, the effects of integrating the gear inertia and boundary conditions are described.

To account for the gear inertia, additional elements were added to the transfer function chain of
the periodic shaft. Waves are assumed to propagate through the gear elements as if they were part
of the same material as the shaft. The element material properties and geometry were made to
reflect those of the steel gears available in the lab. The actual configuration for the transverse
vibration testing is shown in Fig. 12. The model must also consider the added inertia of the
bearings at either end of the shaft in order to accurately predict the propagation parameter. The
analysis considers the bearings to be effectively pinned boundary conditions (see Fig. 13).
The shaft was tested in two orientations (see Fig. 14). The propagation parameter for the

periodic shaft in both configurations are shown in Figs. 15 and 16. Note that there are attenuation
regions at lower frequencies for the periodic shaft including the bearing and gear inertias than for
the shaft without their inclusion (see Fig. 17). The propagation parameter of a uniform shaft with
the mass of the gear added is shown in Fig. 18. Note that although the shaft alone has no
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Fig. 11. RealðmÞ for various beam cells: (a) Lcell ¼ 10 in; (b) 20 in; (c) 30 in:
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attenuation regions, that with the addition of the gear inertia introduces attenuation regions,
albeit very small. Thus, the addition of inertia is beneficial in terms of the propagation parameter,
causing additional attenuation regions to appear at lower frequencies.
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Fig. 12. Driven shaft with gear and bearing shown.

Fig. 13. Driven shaft analytical model.

Fig. 14. (a) Primary and (b) inverted configurations.
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Fig. 15. Propagation parameter for periodic shaft without bearing and gear inertia included: - - -, new field; —,

propagating.
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Fig. 16. Propagation parameter for periodic shaft: - - -, new field; —, propagating.
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Fig. 17. Propagation parameter for inverted periodic shaft: - - -, new field; —, propagating.
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Fig. 18. Propagation parameter for uniform shaft with gear inertia included: - - -, new field; —, propagating.
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5. Transmission test rig set-up

A periodic shaft was fabricated to integrate with a spur gear system (see Figs. 19 and 20). The
University of Maryland Transmission Test Rig (see Fig. 21) was used to evaluate the performance
of the periodic shaft. The spur gear pair had a 1:1 gear ratio and 50 teeth per gear. There was a 5
in pitch diameter and a contact ratio of 1.75. Any reduction of transmitted vibrations generated
by gear tooth contact would be measured at the bearing supports. The test instrumentation for the
transmission rig tests are shown in Figs. 21–23.

6. Periodic shaft design

To evaluate the attenuation properties of a periodic shaft, a periodic shaft was manufactured
and mounted between two bearings. At one end, a spur gear was attached and allowed to engage
with another spur gear. Two accelerometers were attached to each bearing support. A comparison
of the acceleration response vector at these two bearing supports will demonstrate the attenuation
characteristics of the shaft. The drive motor of the test rig was run at several operating speeds,
thus generating a variety of mesh excitation frequencies. The periodic shaft was tested in both
orientations as well as a uniform shaft for comparison purposes (see Table 1 for a comparison of
the shafts). Table 2 shows the operating speeds and torque loads that were used to evaluate the
performance of the periodic shaft.
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Fig. 19. Periodic test shaft geometry.

Fig. 20. Periodic shaft.
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The attenuation properties in bending of the shaft are indicated in Fig. 24 (the primary
configuration) and Fig. 25 (the inverted configuration). These two configurations are defined in
Fig. 14. Notice that strong attenuation is achieved in the frequency range from 600 to 1200 Hz
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Fig. 21. Transmission test rig.
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Fig. 22. Accelerometer placement at top bearing.

Fig. 23. Accelerometer placement at bottom bearing.
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and 1250 to 2000 Hz for both configurations, though the inverted configuration should exhibit
stronger attenuation and slightly larger attenuation zones.

7. Experimental results

Experimental results for testing the periodic shaft were obtained at a variety of rotation rates.
Representative results are presented for the 450 r:p:m: case. The acceleration at each bearing for a
given shaft are compared as well as comparisons of the uniform and periodic shafts at a given
bearing in Figs. 26–33. The level of attenuation varies with r.p.m. as well as configuration of the
periodic shaft (primary or inverted). For the primary configuration, there is attenuation achieved
at the top bearing but only at the expense of increased vibration at the bottom bearing. The
inverted shaft shows attenuation at either bearing and is therefore shown to be the superior
configuration. The same general attenuation characteristics occur at all operating speeds.
However, at low operating speeds, the magnitude of forces is small, and, for higher frequencies,
the magnitude of the vibration at either bearing is on the order of the noise of the system and the
attenuation characteristics of the shaft are not readily apparent. For the shaft in the primary
configuration, the analysis shows attenuation regions between 400 and 500 Hz; 600 and 1150 Hz;
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Table 1

Comparison of periodic and uniform shafts

Periodic Periodic (Inverted) Uniform

Weight 3:03 kg 3:03 kg 2:42 kg
Stiffness 268:2 Nm2 (0.500 dia) 268:2 Nm2 (0.500 dia) 4290:7 Nm2

ðEIÞ 21 721:5 Nm2 (1.500 dia) 21 721:5 Nm2 (1.500 dia)

Length 2700 2700 2700

Shaft resonances 36:5 Hz 35:5 Hz 111:3 Hz
(with gear 176:5 Hz 136:9 Hz 444:9 Hz
and bearing 500:0 Hz 350:5 Hz 1002:0 Hz
inertias) 1750:2 Hz 633:01 Hz 1781:1 Hz

Table 2

Experimental operating speeds and measured torque loads

Operating speed (r.p.m.) Torque load Torque load Torque load

(periodic shaft) ðin lbÞ (periodic shaft inverted) ðin lbÞ (uniform shaft) ðin lbÞ

100 20 26 34

150 37 44 50

200 54 70 68

250 72 84 88

300 90 103 101

350 106 118 123

400 122 133 143

450 139 153 161
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Fig. 24. Periodic shaft propagation parameter: - - -, new field; —, propagating.
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Fig. 25. Periodic shaft propagation parameter (inverted shaft): - - -, new field; —, propagating.
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Fig. 26. Experimental results for the periodic shaft at 450 r.p.m.: —, bottom bearing; - - -, top bearing.
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Fig. 27. Experimental results for the uniform shaft at 450 r.p.m.: —, bottom bearing; - - -, top bearing.
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Fig. 28. Experimental results for the top bearing at 450 r.p.m.: —, periodic; - - -, uniform.
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Fig. 29. Experimental results for the bottom bearing at 450 r.p.m.: —, periodic; - - -, uniform.
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Fig. 30. Experimental results for the periodic shaft (inverted configuration) at 450 r.p.m.: —, periodic; - - -, uniform.
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Fig. 31. Experimental results for the uniform shaft at 450 r.p.m.: —, bottom bearing; - - -, top bearing.
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Fig. 32. Experimental results for the top bearing at 450 r.p.m. (with periodic shaft in inverted configuration): —,

periodic; - - -, uniform.
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Fig. 33. Experimental results for the bottom bearing at 450 r.p.m. (with periodic shaft in inverted configuration): —,

periodic; - - -, uniform.
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and 1250–2000 Hz: The region between 1150 and 1250 Hz; where a pass band exists is plainly
visible in the test data. For the inverted-shaft configuration, the pass bands between the stop
bands are also visible. There are attenuation regions for the uniform shaft which the analysis
failed to predict. In the frequency bands of 500–600 Hz and 1500–1700 Hz; there are clear
indications of attenuation. However, the analysis predicts only small attenuation regions and at
different frequencies. Future work should address this issue to determine the cause of these
attenuation regions.
Tables 3 and 4 demonstrate the overall attenuation characteristic of the shafts considered.

Table 3 compares the power of the signals across the frequency band considered at the bearings.
This was calculated as the area under the frequency spectra. The ratio of the acceleration at the
top bearings to that at the bottom bearing gives some indication of the level of attenuation for the
shaft considered. Overall, the periodic shaft in the primary configuration appears to provide the
greatest end-to-end attenuation. But recall that the vibration level at the bottom bearing for this
configuration was higher than the inverted configuration and the uniform shaft. Table 4 compares
the periodic shaft in both configurations to the uniform shaft. With the uniform shaft as a
reference, it may be inferred that the inverted-shaft configuration results in the lowest overall
vibration level at both bearings.
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Table 4

Summary table of reduction achieved with respect to the uniform shaft

Operating speed Periodic shaft Periodic shaft Periodic shaft Periodic shaft

(r.p.m.) Bottom bearing Top bearing (inverted) (inverted)

Bottom bearing Top bearing

100 3:54%k 65:96%k 81:06%k 94:32%k
150 45:26%k 70:03%k 83:85%k 82:12%k
200 17:70%k 82:39%k 79:49%k 94:73%k
250 26:66%k 69:91%k 73:77%k 95:89%k
300 70:88%k 87:22%k 89:61%k 85:07%k
350 20:97%k 78:09%k 71:69%k 82:91%k
400 10:90%k 91:29%k 69:01%k 97:52%k
450 18:52%k 96:52%k 28:18%k 98:19%k

Table 3

Summary table of reduction achieved

Operating speed (r.p.m.) Periodic shaft Periodic shaft (inverted) Uniform shaft

100 71:03%k 75:40%k 17:92%k
150 77:72%k 54:94%k 59:31%k
200 84:13%k 80:94%k 25:83%k
250 83:59%k 93:73%k 60:01%k
300 89:40%k 65:29%k 75:84%k
350 83:59%k 64:27%k 40:83%k
400 88:02%k 90:20%k 22:64%m
450 90:53%k 94:41%k 121:79%m
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8. Conclusions

The goal of this research has been to demonstrate the use of periodic structures in drivetrains
in order to reduce the mesh frequency vibrations and their higher harmonics from being
transmitted through structural components. First a dynamic model was developed and then
used to simulate an operating system and predict the excitation forces generated at the meshing
point. Next, a spectral finite element analysis method was used to determine the frequency
spectra and propagation parameters for beams with geometric periodicity in the longitudinal
direction. Then a periodic shaft was fabricated and tested in the University of Maryland
Transmission Test Rig. The analysis proved to closely predict the attenuation properties of the
test shaft. The test data shows distinct attenuation regions for the periodic shaft which do not
appear for a uniform shaft. Test results showed that it is possible to not only reduce the
transmitted vibrations along the shaft, but also those at the point of application of the excitation
force. The present work has only considered the use of an isotropic structure. Future work may
focus on the use of shafts with material property variations as well as geometric. In a transmission
system for a helicopter, the supporting struts might also be designed using the analytical tools
presented in this paper to filter out frequency bands critical to reducing vibration transmitted
from the gearbox.

Appendix A. Nomenclature

E Young’s modulus
I moment of inertia
v transverse beam deflection
K dynamic stiffness matrix
T cell transfer matrix
La;b element length
lL cell length ratio ðLa=LbÞ
m propagation parameter

%o frequency ðrads=sÞ
o non-dimensionalized frequency
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