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1. Introduction

Solution of the Duffing equation in a non-linear vibration problem is studied in the paper. The
governing equation for the problem was formulated in Refs. [1,2]. In the case of e being a small
parameter, the equation is solved by using the Lindstedt–Poincare technique, the method of
multiple scales, and the method of averaging [1,2]. Almost all perturbation methods are based on
small parameters so that the approximate solutions can be expressed in a series of small
parameters. The limitation of the perturbation method was pointed out in Refs. [3,4]. Clearly, in
the case of e being a larger value, the perturbation method is no longer valid.
Recently, the target function method is used to evaluate the motion of the Duffing equation [5].

The method is an accurate one without the limitation of e being a small value. The method is
effective and it mainly depends on the computer computation.
In this paper, one more method for the solution of the Duffing equation is suggested. In the

method, the motion of the Duffing equation ðd2u=dt2 þ o20uð1þ eu2Þ ¼ 0Þ under some initial
boundary conditions is evaluated by using its general properties. The approximate motion is
assumed in the form of a Fourier series. The main idea developed is that let the quantitative
properties in the approximate motion be close to those in real motion as much as possible. For
example, let the trajectory of the velocity–displacement (v versus u) in the approximate motion
approach the counterpart in the real motion. The used quantitative properties include: (a) the
trajectory of the velocity–displacement (v versus u) on the phase plane, (b) the imposed initial
boundary conditions, (c) the acceleration at the starting point and (d) the maximum velocity
achieved in the real motion. The qualitative property used is that the actual circular frequency op

must be higher than o0; which is present at pure harmonic motion (e ¼ 0 case). A three-parameter
ðop; c1; c3Þ formulation is suggested, where the frequency op is the actual circular frequency, and
c1; c3 are the coefficients in the Fourier series. Four-parameter ðop; c1; c3; c5Þ formulation is also
suggested. All these parameters can be achieved from a solution by using the mentioned
properties.
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In order to verify the particular advantage of the suggested method, several numerical examples
are given. It is proved that a higher accuracy of solution is achieved in the four-parameter
formulation. Note that, in the present study, the parameter e need not be a small value.

2. Analysis

In following analysis, the Duffing equation is defined by [1,2]

NðuÞ ¼
d2u

dt2
þ o20uð1þ eu2Þ ¼ 0; ð1Þ

where o0 is the circular frequency, e is a constant which may not be a small value. In Eq. (1), N(u)
is a non-linear operator as indicated. The imposed initial boundary conditions take the form

u t¼0 ¼ A;j
du

dt
t¼0j ¼ 0; ð2a;bÞ

where A is a positive value. In the formulation, the values of o0; e and A are given beforehand. In
solution, the velocity of motion is defined as

v ¼
du

dt
: ð3Þ

The general properties of the Duffing equation are defined such that they are derived from
Eqs. (1) and (2). On the contrary, they are not independent in general. The first property is about
the trajectory of motion on the phase plane. Clearly, after multiplying both sides of Eq. (1) by 2du

and making integration, we have

v2 þ FðuÞ ¼ E; ð4Þ

where

F ðuÞ ¼ 2o20

Z u

0

uð1þ eu2Þ du ¼ o20 u2 þ
eu4

2

� �
; ð5Þ

E ¼ F ðuÞju¼A ¼ o20 A2 þ
eA4

2

� �
: ð6Þ

The second property of motion is about the acceleration ðd2u=dt2Þ: Clearly, the acceleration at
the starting time is as follows:

d2u

dt2
t¼0j ¼ ½�o20uð1þ eu2Þ� t¼0 ¼ �o20Að1þ eA2Þ

�� : ð7Þ

The third property is qualitative, and it is about the circular frequency of the motion.
Obviously, since ð1þ eu2Þ > 1 in general, the actual circular frequency op must be larger than o0;
or op > o0:
From the above analysis, we see that none of the mentioned properties of motion is

independent, and they are derived form Eq. (1) and initial condition (2a,b). The aim of this study
is to derive an approximate motion such that:

(a) The trajectory in approximate motion on the phase plane is very near the one defined by
Eq. (4).
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(b) The approximate motion satisfies conditions (2a,b) and (7) exactly.
(c) The approximate motion may not satisfy governing equation (1) exactly.
(d) We assume a circular frequency op in the approximate motion, which is equal to the actual

circular frequency in motion of the Duffing equation. From analysis cited below, we see that
the assumed frequency op can be obtained in the process of solution.

The motion of Duffing equation can be assumed in the form

uðtÞ ¼
X

j¼1;3;5

cj cos ð joptÞ; 0poptp2p: ð8Þ

This form is obtained on the fact that if at time opt ð0ooptop=2Þ; the displacement and the
velocity (u; v) are ðu0;�v0Þ; then at times p� opt; pþ opt; and 2p� opt; the relevant values should
be ð�u0;�v0Þ; ð�u0; v0Þ; and ðu0; v0Þ; respectively.
On the basis of the above-mentioned assumption, the three-parameter formulation ðop; c1; c3Þ is

introduced first. In this case, the approximate motion is assumed in the form [5]

uaðtÞ ¼ c1 cosðoptÞ þ c3 cosð3optÞ; 0poptp2p; ð9Þ

where the subscript ‘‘a’’ denotes the approximate solution.
In order to evaluate the three parameters (op; c1; c3), the following conditions are imposed:

u t¼0 ¼j ua t¼0j ; ð10Þ

du

dt
max ¼j

dua

dt
maxj or v max ¼j va maxj or

du

dt
opt¼3p=2 ¼
�� dua

dt
opt¼3p=2

�� ; ð11Þ

d2u

dt2
t¼0 ¼j

d2ua

dt2
t¼0j : ð12Þ

The formulation gives accurate results in some ranges of ‘‘A’’ and ‘‘e’’. Since a very accurate
solution for the problem has been obtained previously, the relative deviation for the circular
frequency can be estimated immediately. For examples, in the case of A ¼ 1 and e ¼ 10; the
maximum deviation of aðop=o0Þ is 1.102%, and in the case of A ¼ 2 and e ¼ 10; the maximum
deviation of aðop=o0Þ is 1.333%.

3. Four-parameter formulation

Clearly, the four-parameter formulation ðop; c1; c3; c5Þ is more accurate. Four-parameter
formulation for the solution of the Duffing equation is studied below. In the present case, the
displacement, velocity and acceleration are assumed in the form

uaðtÞ ¼ c1 cosðoptÞ þ c3 cosð3optÞ þ c5 cosð5optÞ; 0poptp2p; ð13Þ

vaðtÞ ¼
duaðtÞ
dt

¼ �op½c1 sinðoptÞ þ 3c3 sinð3optÞ þ 5c5 sinð5optÞ�; 0poptp2p; ð14Þ

d2uaðtÞ
dt2

¼ �o2p½c1 cosðoptÞ þ 9c3 cosð3optÞ þ 25c5 cosð5optÞ�; 0poptp2p: ð15Þ
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In the formulation, the mentioned four parameters are op; c1; c3; c5: In the following analysis,
we denote

h ¼ eA2; a ¼
op

o0
; g1 ¼

c1

A
; g3 ¼

c3

A
; g5 ¼

c5

A
: ð16Þ

Clearly, in order to find the four parameters op; c1; c3; c5; it is necessary to propose four
conditions. Three conditions shown by Eqs. (10)–(12) are still used in the present case. As before,
after using these conditions, we have

c1 ¼ A � c3 � c5 or g1 ¼ 1� g3 � g5; ð17Þ

o20 1þ
h

2

� �
¼ o2pð1� 4g3 þ 4g5Þ

2; ð18Þ

o20ð1þ hÞ ¼ o2pð1þ 8g3 þ 24g5Þ: ð19Þ

One more condition is derived as follows. Letting opt ¼ 7p=4; from Eqs. (13) and (14), the
relevant displacement and velocity are obtained as follows:

uaðdÞ ¼
1ffiffiffi
2

p ½c1 � c3 � c5�; ð20Þ

vaðdÞ ¼
opffiffiffi
2

p ½c1 þ 3c3 � 5c5�: ð21Þ

In fact, the (uaðdÞ; vaðdÞ) pair corresponds the point pðdÞ on the trajectory on the phase plane
(Fig. 1).
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Fig. 1. The ‘‘v’’ versus ‘‘u’’ trajectory for solution of the Duffing equation on the phase plane.
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Meantime, we can get the real velocity vðdÞ at the assumed displacement uaðdÞ from Eq. (4), and it
will result in

v2ðdÞ ¼ o20 A2 þ
eA4

2

� �
� o20 u2aðdÞ þ

eu4aðdÞ
2

 !
: ð22Þ

Finally, the fourth condition is obtained as follows:

vðdÞ ¼ vaðdÞ or v2ðdÞ ¼ v2aðdÞ: ð23Þ

Note that the value vðdÞðvaðdÞÞ is the velocity in the real motion (the approximate motion)
respectively, for the same assumed displacement uaðdÞ shown by Eq. (20). Generally, the vðdÞ value
may not be equal to vaðdÞ; as indicated in Fig. 1. In fact, the imposed condition (23) will make the
approximate motion to be closer to the real motion. From Eqs. (21)–(23) we get the fourth
condition

o20 2þ h � q21 �
h

4
q41

� �
¼ o2pð1þ 2g3 � 6g5Þ

2; ð24Þ
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Table 1

a value and the calculated Fourier coefficients for the solution of the Duffing equation by using the four-parameter
formulation (see Eqs. (13), (16))

A=1 case

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a 1.0367 1.0720 1.1060 1.1389 1.1708 1.2017 1.2318 1.2612 1.2898 1.3178

c1 0.9971 0.9945 0.9923 0.9903 0.9885 0.9869 0.9854 0.9840 0.9828 0.9817

c3 0.0029 0.0054 0.0077 0.0096 0.0114 0.0130 0.0144 0.0157 0.0169 0.0180

c5 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0003

e 1 2 3 4 5 6 7 8 9 10

a 1.3178 1.5691 1.7844 1.9760 2.1503 2.3115 2.4620 2.6039 2.7383 2.8665

c1 0.9817 0.9740 0.9697 0.9670 0.9652 0.9638 0.9627 0.9619 0.9612 0.9606

c3 0.0180 0.0253 0.0294 0.0319 0.0337 0.0350 0.0359 0.0367 0.0373 0.0379

c5 0.0003 0.0007 0.0009 0.0011 0.0012 0.0013 0.0013 0.0014 0.0015 0.0015

A=2 case

e ¼ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a 1.1389 1.2612 1.3719 1.4739 1.5691 1.6586 1.7435 1.8243 1.9017 1.9760

c1 1.9805 1.9681 1.9594 1.9530 1.9480 1.9441 1.9409 1.9382 1.9360 1.9341

c3 0.0193 0.0314 0.0398 0.0460 0.0507 0.0544 0.0574 0.0599 0.0620 0.0638

c5 0.0002 0.0005 0.0008 0.0011 0.0013 0.0015 0.0017 0.0019 0.0020 0.0021

e 1 2 3 4 5 6 7 8 9 10

a 1.9760 2.6039 3.1069 3.5390 3.9237 4.2739 4.5975 4.8998 5.1845 5.4543

c1 1.9341 1.9238 1.9195 1.9173 1.9158 1.9148 1.9141 1.9136 1.9131 1.9128

c3 0.0638 0.0734 0.0773 0.0794 0.0808 0.0817 0.0823 0.0829 0.0832 0.0836

c5 0.0021 0.0028 0.0031 0.0033 0.0034 0.0035 0.0035 0.0036 0.0036 0.0037
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where
q1 ¼ 1� 2q2 ¼ 1� 2g3 � 2g5; q2 ¼ g3 þ g5: ð25Þ

Finally, from Eqs. (17)–(19) and (24), the solution of four parameters ðop; c1; c3; c5Þ (or
op; g1; g3; g5) can be obtained. For compactness of the present note, the detail solution technique
for obtaining the parameters will not be mentioned.
By using the four-parameter formulation for the cases of A ¼ 1 and 2; e ¼

0:1; 0:2;y; 1:0; 2:0;y; 10:0; the obtained results are listed in Table 1. As before, the obtained
results are compared with the previously obtained accurate results in Ref. [5]. The following
relative deviations are found: (a) 0.00% for the case of A ¼ 1 and e ¼1, (b) –0.0035% for the case
of A ¼ 1 and e ¼ 10; (c) 0.00% for the case of A ¼ 2 and e ¼ 1 and (d) –0.0092% for the case of
A ¼ 2 and e ¼ 10: From the mentioned results, we see that the solution from the four-parameter
formulation is a very accurate one within the range of assumed values for A and e:
After the solution is obtained, the deviation to satisfy the ODE can be evaluated by the value

NðuaÞ; which is obtained by substituting the obtained solution into the left-hand term of Eq. (1).
The obtained NðuaÞ may expressed in turn as

NðuaÞ ¼ GðoptÞ; 0poptpp: ð26Þ

From Eqs. (1) and (13), it is easy to find the following property:Z p

0

GðTÞ dT ¼ 0 ðletting T ¼ optÞ: ð27Þ

This result means that the average of NðuaÞ on the interval 0poptpp always vanishes.
From the above mentioned analysis, a rule for the motion of the Duffing equation is found. The

rule can be summarized as a theorem as follows:

Theorem. Assume that there are many pairs of the values ðei;AiÞ; if eiA
2
i preserves a constant

ðeiA
2
i ¼ cÞ; the magnitude factors ‘‘a’’ of the circular frequency for all pairs must be the same, and the

magnitude of motion is directly proportional to ‘‘Ai’’.

Proof. It is assumed that the equation

N1ðu1Þ ¼
d2u1

dt2
þ o20u1ð1þ e1u21Þ ¼ 0; u1 t¼0 ¼ A1;j

du1

dt
t¼0j ¼ 0 ð28Þ

has a solution u1ðoptÞ: Clearly, the statement in the theorem is equivalent to prove the following
alternative statement. In the condition of satisfying e1A21 ¼ e2A22; the equation

N2ðu2Þ ¼
d2u2

dt2
þ o20u2ð1þ e2u22Þ ¼ 0; u2 t¼0 ¼ A2;j

du2

dt
t¼0j ¼ 0 ð29Þ

must have a solution as follows:

u2ðoptÞ ¼
A2

A1
u1ðoptÞ: ð30Þ

In fact, substituting Eq. (30) into Eq. (29) yields

N2ðu2Þ ¼
A2

A1

d2u1

dt2
þ o20u1 1þ

e2A22
A21

u21

� �� �
¼

A2

A1

d2u1

dt2
þ o20u1ð1þ e1u21Þ

� �
¼ 0: ð31Þ
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Also, it is easy to see that the function u2ðoptÞ satisfies the initial conditions in Eq. (29). Thus,
the proof of theorem is completed. &

The introduced theorem can also be verified from the calculated results in Table 1.

4. Conclusions

Previously, when the straightforward expansion method or the Lindstedt–Poincare technique
were used, it was invariable to meet the secular term. In this case, one has to use a lot of effort to
explain why this term is not reasonable [2, Chapter 4]. In the present study, instead of using the
ODE and initial boundary value conditions, the properties of the Duffing equation were used to
get the final solution of the equation. It is found in the present study that there is no step, which is
relating to the direct solution of ODE. This is a particular advantage of the present study.
Secondly, since the basic properties of the real motion were modelled in the approximate motion,
the obtained solution must possess a higher accuracy, particularly, in the case of using the four-
parameter formulation. This situation can be seen from Table 1 and the previously obtained
results [5]. If more terms are assumed in the Fourier series of motion, it is expected to use the
suggested method in the case of more wide range of the parameters of ‘‘e’’ and ‘‘A’’.
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