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Abstract

The dynamics of a linear periodic substructure, weakly coupled to an essentially non-linear attachment
are studied. The essential (non-linearizable) non-linearity of the attachment enables it to resonate with any
of the linearized modes of the subtructure leading to energy pumping phenomena, e.g., passive, one-way,
irreversible transfer of energy from the substructure to the attachment. As a specific application the
dynamics of a finite linear chain of coupled oscillators with a non-linear end attachment is examined. In the
absence of damping, it is found that the dynamical effect of the non-linear attachment is predominant in
neighborhoods of internal resonances between the attachment and the chain. When damping exists energy
pumping phenomena are realized in the system. It is shown that energy pumping strongly depends on the
topological structure of the non-linear normal modes (NNMs) of the underlying undamped system. This is
due to the fact that energy pumping is caused by the excitation of certain damped invariant NNM
manifolds that are analytic continuations for weak damping of NNMs of the underlying undamped system.
The bifurcations of the NNMs of the undamped system help explain resonance capture cascades in the
damped system. This is a series of energy pumping phenomena occurring at different frequencies, with
sudden lower frequency transitions between sequential events. The observed multi-frequency energy
pumping cascades are particularly interesting from a practical point of view, since they indicate that non-
linear attachments can be designed to resonate and extract energy from an a priori specified set of modes of
a linear structure, in compatibility with the design objectives.
r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this work the dynamics of a linear structure weakly coupled to a local non-linear attachment
possessing essential stiffness non-linearity is studied. It was shown recently [1–3] that under
certain conditions this type of essentially non-linear attachment can passively absorb energy from
a linear non-conservative (damped) structure, in essence, acting as non-linear energy sink. Then,
energy pumping from the linear structure to the attachment occurs, namely, a one-way, irreversible
transfer of energy.

As discussed in Ref. [2], energy pumping from the linear non-conservative structure to the
attachment is due to resonance capture. This is a transient dynamical phenomenon that has been
theoretically studied in previous works [4–7]. It occurs (among other types of dynamical systems)
in coupled non-conservative oscillators and leads to transient capture of the dynamical flow on a
resonance manifold of the system. The main aim of this work is to show that the physics of the
energy pumping/resonance capture phenomenon in the non-conservative system under
consideration can be understood and explained by studying the energy dependence of the non-
linear free periodic solutions (non-linear normal modes—NNMs [8]) of the corresponding
conservative system that is obtained when all damping forces are eliminated. Hence, a dynamical
phenomenon will be presented that, although it takes place only when damping (non-
conservativeness) exists, it is mainly influenced by the dynamics of the underlying undamped
(conservative) system.

After providing a general mathematical formulation of the problem of structure–attachment
interaction the work will focus on the specific application of a finite linear chain of coupled
oscillators weakly coupled to an essentially non-linear end attachment. The dynamics of linear/
non-linear periodic chains with local attachments (‘defects’) is a research area with many
interesting applications, such as, optical and magneto-optical waveguide periodic arrays,
semiconductor superlattices, layered composite media, micro- or nano-lattices as thermal barriers,
photonic band-gap materials (photonic crystals) and bio-molecular engines [9,10]. Analytical
works on solitons and solitary waves in linear or non-linear periodic systems with local non-linear
defects have also been reported [11–13]. In these works solitary waves and their bifurcations were
studied, and techniques were provided for analyzing the stability of the derived solutions under
certain classes of perturbations. In this work the response of the finite linear chain will be
expressed in terms of its modes and then the dynamic interaction of the modal oscillators with the
weakly coupled non-linear attachment will be studied. The existence of localized and non-localized
periodic oscillations in the free problem will be proved, and the occurrence of energy pumping
from a modal oscillator to the attachment in the forced case. In the later case, it will be shown that
there exists even the possibility of resonance capture cascades whereby, the attachment resonates
sequentially with a set modal oscillators, extracting energy from each at a different frequency
range. The important role of damping for the realization of these phenomena will be discussed.

2. Preliminaries: modal formulation

Consider the system of Fig. 1, composed of a linear substructure with (N þ 1) degrees of
freedom (d.o.f.) that is weakly coupled to a local essentially non-linear attachment at point O: The
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attachment consists of a non-linearizable stiffness non-linearity of the third order in parallel with
a viscous dashpot that models energy dissipation; throughout this work the mass of the NES will
be taken m ¼ 1: The coupling stiffness between the linear and non-linear parts is assumed to be
linear and weak, of order e; 0oe51: In addition, the connection between the two systems is
assumed to be one dimensional.

Introducing modal co-ordinates amðtÞ; m ¼ 0;y;N for the linear substructure, its response
y0ðtÞ at the point of attachment O is expressed in the following modal form:

y0ðtÞ ¼
XN

k¼0

fðkÞ
0 akðtÞ; ð1Þ

where fðkÞ
0 denotes the element at position O of the kth mass normalized eigenvector; in general,

fðiÞ
j denotes the element at position j of the mass-normalized eigenvector

%
fðiÞ of the uncoupled

linear substructure with e ¼ 0: In Eq. (1) it is assumed that the uncoupled linear substructure
possesses ðN þ 1Þ mass-normalized eigenvectors

%
fðiÞ corresponding to (N þ 1) distinct eigen-

frequencies oi; i ¼ 0; 1;y;N: Taking into account Eq. (1), the (N þ 1) equations of motion of the
combined system are expressed in the following form:

.vðtÞ þ Cv3ðtÞ þ el’vðtÞ þ e v �
XN

k¼0

fðkÞ
0 akðtÞ

 !
¼ 0;

.amðtÞ þ o2
mamðtÞ þ el ’amðtÞ þ e

XN

k¼0

fðkÞ
0 fðmÞ

0 akðtÞ � fðmÞ
0 vðtÞ

 !
¼ 0; m ¼ 0; 1;y;N; ð2Þ

where the viscous damping forces are also weak and ordered by the small parameter e: In Eq. (2)
the equations of motion are expressed in terms of the (N þ 1) modal oscillators of the uncoupled
linear substructure.

Of interest is to study resonance interactions between the non-linear attachment and individual
modes of the linear substructure. As shown in Refs. [1–3,14] such resonance interactions can lead
to interesting resonance capture [5] and energy pumping phenomena, whereby externally imparted
energy in the linear system gets transferred (pumped) to the non-linear attachment in a one-way

y
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p 

    O 

yp(t) 

Linear 
Substructure 

Nonlinear 
Attachment 

Fig. 1. Linear (main) substructure with a weakly connected local non-linear attachment.
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irreversible fashion. In that case the non-linear attachment acts, in essence, as a non-linear energy
sink.

Assuming that the linear substructure is excited by the impulsive excitation FðtÞ ¼ YdðtÞdðy �
ypÞ at position p (where y and yp are body co-ordinates), the response of the system at t ¼ 0þ is a
free oscillation with initial conditions, aið0þÞ ¼ 0; ’aið0þÞ ¼ YfðiÞ

p ; vð0þÞ ¼ ’vð0þÞ ¼ 0; i ¼
0; 1;y;N: For the sake of simplicity, we assume that the non-linear attachment is in resonance
interaction with only the leading modal oscillator 0 of the linear substructure. Hence, the study
will focus on oscillations of the non-linear attachment at frequencies close to the lowest
eigenfrequency o0 of the substructure. The same methodology, however, can be followed to study
resonance interactions of the attachment with any of the other modal oscillators in Eq. (2). Then,
correct to Oð1Þ the responses of the remaining N modal oscillators are not affected by the non-
linear attachment, and thus decay exponentially in time,

aiðtÞ ¼
YfðiÞ

p e�elt=2

oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

i

q sin oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

i

q
t þ OðeÞ; i ¼ 1;y;N; ð3Þ

where zi denotes the viscous critical damping ratio for the ith linearized mode. Taking into
account Eq. (3), the non-linear resonance interaction is governed by the following reduced system:

.vðtÞ þ Cv3ðtÞ þ el’vðtÞ þ eðv � fð0Þ
0 a0ðtÞÞ

¼ e
XN

k¼1

fðkÞ
0 fðkÞ

p Y

ok

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

k

q e�elt=2 sin ok

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

k

q
t þ Oðe2Þ;

.a0ðtÞ þ o2
0a0ðtÞ þ el ’a0ðtÞ þ eðfð0Þ2

0 a0ðtÞ � fð0Þ
0 vðtÞÞ

¼ �e
XN

k¼1

fðkÞ
0 fð0Þ

p fðkÞ
p Y

ok

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

k

q e�elt=2 sin ok

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � z2

k

q
t þ Oðe2Þ ð4Þ

ntioned initial conditions. From Eq. (4) note that the non-resonant modal oscillators introduce
OðeÞ non-homogeneous, high-frequency terms on the right-hand sides of the above equations.
Moreover, it is implicitly assumed in Eq. (4) that there are no resonance interactions of the form
ðop : om : y : okÞ involving purely modal oscillators, e.g., that there are no additional internal
resonances in (2) other than the resonances ð0 : omÞ;m ¼ 0;y;N between the attachment and
each of the modal oscillators.

Eq. (4) is similar in form to the two-degree-of-freedom system studied in Refs. [1,2,14]. As
shown in these works, under certain conditions energy pumping occurs in these systems, whereby
energy from a linearized mode gets transferred into the non-linear attachment in a one-way
irreversible fashion. As discussed in Ref. [2] the mechanism that governs energy pumping is
resonance capture on a 1–1 resonance manifold of the combined system. It is well established that
resonance capture is only possible in the non-conservative system (e.g., damping is required for its
realization), and that for fixed structural parameters energy pumping can occur only above a
certain threshold of the externally induced energy.

A different perspective regarding the dynamics governing energy pumping will be presented in
this work. In particular, it will be shown that the topological structure in parameter space of the
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non-linear normal modes (NNMs) of the undamped, unforced system (2) is mainly responsible for
energy pumping in the corresponding damped and forced system. By NNMs are denoted the free
periodic and synchronous oscillations of the undamped, unforced system, that are, in essence, the
non-linear analogs of the linear modes of classical vibration theory [8]. Hence, it will be shown
that even though damping and forcing are prerequisites for energy pumping, this phenomenon is
governed in essence by the dynamics of the corresponding undamped and unforced system.

3. Mathematical analysis of the undamped and unforced system

Setting l ¼ 0 in Eq. (2) and omitting the initial conditions (e.g., forcing) one introduces the
following partition of Eqs. (2):

.vðtÞ þ Cv3ðtÞ þ e vðtÞ � fð0Þ
0 a0ðtÞ �

XN

k¼1

fðkÞ
0 akðtÞ

 !
¼ 0;

.a0ðtÞ þ o2
0a0ðtÞ þ e fð0Þ2

0 a0ðtÞ � fð0Þ
0 vðtÞ þ

XN

k¼1

fðkÞ
0 fð0Þ

0 akðtÞ

 !
¼ 0;

.amðtÞ þ o2
mamðtÞ þ e

XN

k¼0

fðkÞ
0 fðmÞ

0 akðtÞ � fðmÞ
0 vðtÞ

 !
¼ 0; m ¼ 1;y;N: ð5Þ

The study of the NNMs of Eq. (5) will be performed at frequencies close to the linearized
eigenfrequency o0; that is, the free, synchronous periodic oscillations of the system will be
analyzed when it vibrates in-unison with frequency close to the eignfrequency of the zeroth modal
oscillator. In this way the resonance interaction of the non-linear attachment with linear mode 0
of the undamped substructure will be investigated. As mentioned previously, the primary focus
will be in single mode resonance interaction with the attachment and possible complications
resulting from additional mutual interactions between modes of the linear substructure due to
internal resonances will be omitted.

The analysis is complexified by introducing the following new complex variables:

cv ¼ ’v þ jo0v;

c0 ¼ ’a0 þ jo0a0;

ck ¼ ’ak þ jokak; k ¼ 1;y;N; ð6Þ

where j ¼ ð�1Þ1=2: Expressing the real variables in Eqs. (5) and (6) (where superscript star denotes
complex conjugate),

v ¼
cv � cn

v

2jo0
; .v ¼ ’cv �

jo0

2
ðcv þ cn

v Þ; v3 ¼
j

8o3
0

ðcv þ cn

v Þ
3;y : ð7Þ
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Eqs. (5) are expressed in the following complex form:

’cv �
jo0

2
ðcv þ cn

v Þ þ
jC

8o3
0

ðcv � cn

v Þ
3

�
je

2o0
ðcv � cn

v Þ � fð0Þ
0 ðc0 � cn

0Þ �
XN

k¼1

fðkÞ
0

o0

ok

� �
ðck � cn

kÞ

" #
¼ 0;

’c0 � jo0c0 �
je

2o0
fð0Þ2

0 ðc0 � cn

0Þ � fð0Þ
0 ðcv � cn

v Þ þ
XN

k¼1

fðkÞ
0 fð0Þ

0

o0

ok

� �
ðck � cn

kÞ

" #
¼ 0;

’cm � jomcm �
je

2o0

XN

k¼0

fðkÞ
0 fðmÞ

0

o0

ok

� �
ðck � cn

kÞ � fðmÞ
0 ðcv � cn

v Þ

" #
¼ 0; m ¼ 1;y;N: ð8Þ

Expressions (8) are exact up to this point. The complex variables (6) are expressed in the following
form:

cv ¼ jve
jo0t; c0 ¼ j0ejo0t; cm ¼ jmejomt; m ¼ 1;y;N; ð9Þ

where the complex time-varying amplitudes ji represent ‘slowly’ varying quantities compared to
the fast multiplying exponentials; hence, with Eq. (9) a partition between slow and fast dynamics
in the problem is introduced. The specific forms of the multiplying exponentials in (9) (that govern
the fast dynamics) are dictated by the physics of the resonance interaction under consideration
herein; namely, the amplitudes of the zeroth modal oscillator and of the non-linear attachment are
assumed to possess a fast frequency equal to the zeroth linearized eigenvalue o0; whereas the fast
frequencies of each of the higher (non-resonant) modal oscillators are identical to their
eigenfrequencies. These fast frequencies are perturbed by slow modulations introduced by the
(slow) variation of the complex amplitudes ji:

Substituting Eq. (9) into Eq. (8), the first two equations are averaged over their (common) fast
frequency o0; and each of the remaining equations over its corresponding fast frequency om;
m ¼ 1;y;N: Then, the following approximate averaged equations are obtained governing the
evolutions of the slow modulations ji:

’jv þ
jo0

2
jv �

3jC

8o3
0

jv



 

2j�
v �

je
2o0

ðjv � fð0Þ
0 j0Þ ¼ 0;

’j0 �
je

2o0
ðfð0Þ2

0 j0 � fð0Þ
0 jvÞ ¼ 0;

’jm �
je

2o0
fðmÞ2

0

o0

om

� �
jm ¼ 0; m ¼ 1;y;N: ð10Þ

The slowly varying complex amplitudes are expressed in polar form

jv ¼ cve
jgv ; j0 ¼ c0ejg0 ; jm ¼ cmejgm ; m ¼ 1;y;N; ð11Þ

where ci represent real, slowly varying amplitudes and gi slowly varying (e.g., at most of OðeÞ) real
phases that govern the slow frequency modulations. In essence, the approximate set (10) governs
the slow flow (with time-scale et) of the dynamical system (5). Substituting Eq. (11) into Eq. (10)
and equating the real parts to zero one obtains the following modulation equations for the real
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amplitudes ci:

’cv �
e

2o0
fð0Þ

0 c0 sinðg0 � gvÞ ¼ 0

’c0 þ
e

2o0
fð0Þ

0 cv sinðg0 � gvÞ ¼ 0

9>=
>;) c2

v þ c2
0 ¼ r2;

’cm ¼ 0 ) cm ¼ Am; m ¼ 1;y;N; ð12aÞ

where Am are real constants. The integral relation derived by combining the first two equations is
a consequence of the conservation of energy during the resonance interaction between the non-
linear attachment and the zeroth linearized mode of the main substructure; hence, r2 is an energy-
like quantity. The remaining N equations in (12) indicate that the amplitudes of the non-resonant
N modal oscillators in (5) are approximately [correct to OðeÞ] constant.

Equating the imaginary parts of Eq. (10) to zero one obtains the following real phase
modulation equations:

cv’gv þ
o0

2
cv �

3C

8o3
0

c3
v �

e
2o0

cv � fð0Þ
0 c0 cosðg0 � gvÞ

h i
¼ 0;

c0 ’g0 �
e

2o0
fð0Þ2

0 c0 � fð0Þ
0 cv cosðg0 � gvÞ

h i
¼ 0;

’gm ¼
e

2o0
fðmÞ2

0

o0

om

� �
; m ¼ 1;y;N: ð12bÞ

Note that the last N equations in Eq. (12b) indicate that the (slow) phase modulations of the non-
resonant modes are of OðeÞ; hence small. This is in agreement with the earlier assertion that during
free oscillations the fast frequencies of the modal oscillators are perturbed by slowly varying
frequency modulations. From the results above one concludes that during free oscillation the mth
non-resonant modal oscillator possesses the approximate frequency,

OmEom þ
e

2o0
fðmÞ2

0

o0

om

� �
:

For the sake of simplicity, it will be assumed that the initial conditions of the system are such that
the (constant) amplitudes of the non-resonant modes in Eq. (12a) are equal to zero, e.g., that
Am ¼ 0; m ¼ 1;y;N: Further, assuming that cvc0a0 one combines the first two of Eq. (12b) by
introducing the slow phase difference variable y ¼ g0 � gv:

’y�
e

2o0
fð0Þ2

0 � fð0Þ
0

cv

c0
cosðg0 � gvÞ

� �
�

o0

2
þ

3C

8o3
0

c2
v þ

e
2o0

1 � fð0Þ
0

c0

cv

cosðg0 � gvÞ
� �

¼ 0: ð12cÞ

Eq. (12) govern the slow flow evolution of the real amplitude and phase modulations of the modal
oscillators and the non-linear attachment during unforced and undamped free oscillation.

Of interest is to study the free periodic solutions of the slow flow, e.g., the NNMs of the
combined system for frequencies close to o0: This is performed by requiring that the derivatives in
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Eqs. (12a) and (12c) are equal to zero, obtaining the following set of equations:

cv ¼ Av; c2
0 ¼ r2 � A2

v ;

sinðg0 � gvÞ ¼ 0 ) g0 � gv ¼ 0;

e
2o0

fð0Þ2
0 � fð0Þ

0

Av

A0

� �
þ

o0

2
�

3CA2
v

8o3
0

�
e

2o0
1 � fð0Þ

0

A0

Av

� �
¼ 0: ð13Þ

For fixed structural parameters and specified energy-like quantity r2; this represents a system of
two non-linear coupled algebraic equations with unknowns the amplitudes Av of the attachment
and A0 of the zeroth modal oscillator of the linear substructure. Provided that the frequency
modulations (12b) are kept small (much less than the fast frequency o0) Eq. (13) solve
approximately [correct to OðeÞ] the problem of resonance interaction between the essentially non-
linear attachment and the linear substructure for frequencies close to the lowest eigenfrequency.
Recalling the co-ordinate transformations introduced previously, one derives the following
approximate solutions for the motions of the attachment and the connecting point of the main
substructure:

vðtÞ ¼
Av

o0
sinðo0t þ gvðtÞ þ Oðe2ÞÞ þ OðeÞ; ’vðtÞ ¼ Av cosðo0t þ gvðtÞ þ Oðe2ÞÞ þ OðeÞ;

y0ðtÞ ¼ fð0Þ
0

A0

o0
sinðo0t þ gvðtÞ þ Oðe2ÞÞ þ OðeÞ;

’y0ðtÞ ¼ fð0Þ
0 A0 cosðo0t þ gvðtÞ þ Oðe2ÞÞ þ OðeÞ: ð14Þ

The corresponding frequency of the synchronous oscillation of the combined system when it
vibrates on the NNM is approximated as

O0Eo0 þ ’gv ¼ o0 þ ’g0 ¼ o0 þ
e

2o0
fð0Þ2

0 � fð0Þ
0

Av

A0

� �
: ð15Þ

Consistent with the earlier assertions, O0 is in the vicinity of the eigenfrequency o0:
As an application, the system depicted in Fig. 2 is considered, consisting of a linear repetitive

chain of (N þ 1) coupled oscillators weakly connected to a non-linear attachment; setting N ¼ 1;
attention is focused in a chain of two coupled oscillators, with fð0Þ

0 ¼ 1=
ffiffiffi
2

p
: In Fig. 3 the

amplitudes Av and A0 are depicted as functions of the energy-like parameter r for o0 ¼
0:9487; o1 ¼ 1:3784; d ¼ 0:5; C ¼ 5:0; and e ¼ 0:1; all particles of the system are of unit mass

Fig. 2. The (N þ 1) d.o.f. linear periodic chain with a weakly coupled non-linear end attachment.
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m ¼ 1; i.e., equal to the mass of the NES. Note that there exist four branches of synchronous free
periodic oscillations (NNMs), one of which is unstable. These numbers are labelled from 1 to 4.
For sufficiently small energies there exist two solutions; namely NNM branch 1 corresponding to
oscillations localized at the attachment, and NNM branch 2 with oscillations predominantly
confined to the zeroth modal oscillator with small movement for the attachment. For sufficiently

Fig. 3. Amplitudes Av and A0 as functions of the energy-like parameter r for NNMs in the vicinity of the lowest

linearized mode: ——— Stable, � � � unstable NNMs.

Fig. 4. Frequencies O0ðtÞ as functions of the energy-like parameter r for NNMs in the vicinity of the lowest linearized

mode: ——— Stable, � � � unstable NNMs. Dashed line indicates the lowest eigenfrequency o0:
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large energies, again there exist two solution branches: Branch 1 now corresponds to relatively
large motion of the linear substructure in its zeroth mode, and moderate oscillation of the
attachment; and branch 4 corresponding to strongly localized motion at the attachment. In Fig. 4
the corresponding frequencies of the four branches of NNMs are depicted as functions of the
energy-like parameter r:

For the 3-d.o.f. under consideration the analysis is repeated for free periodic oscillations close
to the highest eigenfrequency o1 ¼ 1:3784: In doing one studies the effect of the non-linear
attachment on the highest linearized mode of the combined system. The analysis was performed
by assuming fast oscillation with frequency o1; and it is similar to that performed previously for
the lower mode. The results are depicted in the frequency–energy plot of Fig. 5, where there are
also shown the previous results derived near the frequency o0: In Fig. 5 the modulated frequencies
O0 and O1 of the combined system are depicted for free periodic oscillations close to the lower and
higher linearized modes, respectively. Since these results are valid only in the vicinity of the
corresponding eigenfrequencies, e.g., O0Eo0 and O1Eo1; there is the need to ‘calibrate’ them by
appropriately defining a common energy measure that is valid close to each linearized mode. This
was achieved by considering in each case the corresponding (conserved) physical energy of the
combined system. Hence, for NNMs in the vicinity of the lowest linearized mode this energy
measure was selected as

Rð0Þ ¼
CA4

v

4o4
0

þ fð0Þ
0 A2

0 þ OðeÞ;

whereas, for NNMs close to the higher linearized mode the physical energy was

Rð1Þ ¼
CB4

v

4o4
2

þ fð1Þ
1 B2

1 þ OðeÞ:

Bv and B1 denote the approximately constant amplitudes of the non-linear attachment and highest
linearized mode, respectively, that correspond to the NNM under consideration. Also depicted in
the plot of Fig. 5 are the ‘backbone curves’ of the uncoupled system with e ¼ 0: These curves show

Fig. 5. NNM Frequencies O0 and O1 as functions of the (conserved) energy R of the combined system: ——— Stable,

� � � unstable NNMs. Dashed lines indicate the ‘backbone curves’ of the uncoupled system with e ¼ 0:
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the energy dependence of the frequency of free oscillation of the system. Clearly, the disjoint linear
substructure possesses two (energy-independent) modes at frequencies o0 and o1; whereas the
non-linear attachment possesses the frequency o ¼ ½pC1=2=2Kð1=2Þ
ð4R=CÞ1=4; where Kð1=2Þ is
the complete elliptic integral of the first kind, and R the level of physical energy.

From the results of Fig. 5 one notes that the effect of the non-linear attachment on the free
dynamics of the system is more profound at points of internal resonance, e.g., at neighborhoods
of the points of crossing of the ‘backbone curves.’ In addition, one notes that there are similar
topological structures for the NNMs in each of the neighborhoods of o0 and o1; with two similar
saddle-node bifurcations taking place near each of the linearized eigenfrequencies. In these
bifurcations a stable/unstable pair of NNMs is generated or eliminated with increasing energy.
For the NNMs in the vicinity of o1; the bifurcation where the pair of modes is eliminated occurs
at the energy value R

ð1Þ
bif E6:9182 (the plot of Fig. 5 is not extended up to that energy level for

reasons of clarity), which is much higher than the corresponding value for the lower frequency
modes, R

ð0Þ
bif E1:50046: As discussed in the next section, this observation has important

implications on the occurrence of resonance capture cascades in the strongly forced system.
Taking into account that at relatively high energies the motion of the combined system tends to

nearly localize to the non-linear attachment, and ‘bridging’ the two solutions
O0ðtÞEo0 and O1ðtÞEo1; one can construct a sketch of the synthesized frequency–energy plot
for the system by synthesizing the disjoint solutions that appear in Fig. 5. This sketch is depicted
in Fig. 6. Extending the labelling system introduced in Fig. 4 one numbers the NNM branches in
the synthesized sketch from 1 to 7, with NNMs 3 and 6 being unstable. NNMs 1 and 7 enter the
lower and upper attenuation zones of the infinite periodic chain, respectively. Both these NNMs
are localized at the non-linear attachment, with branch 1 corresponding to in-phase oscillations of
the particles of the chain, and branch 7 to anti-phase ones. There are two attenuation zones of the
infinite uncoupled chain of Fig. 2, namely, a low-frequency (lower), ½0;o0Þ; and a high-frequency

(upper) one,ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ 4d
q

;NÞ: Inside these zones the chain can only support standing waves with

exponentially decaying envelopes, e.g., nearfield solutions. The other NNMs of the system are

located always in the propagation zone of the infinite chain, ðo0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 þ 4d
q

Þ: Inside this zone the

Fig. 6. Sketch of the synthesized NNM Frequencies as functions of the (conserved) energy R of the combined system:

——— Stable, � � � unstable NNMs. With dashed lines we depict the ‘backbone curves’ of the uncoupled system

with e ¼ 0:
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chain supports travelling wave solutions. At the bounding frequencies between attenuation and
propagation zones the chain performs in-phase and out-of-phase normal oscillations.

4. Energy pumping and resonance capture cascades in the excited, damped system

In this section the excited and damped system is examined. The aim is to show that, provided
that no conditions for internal resonances between the modes of the linear substructure exist
(leading to non-linear modal interactions [15]), the energy variation of the NNMs of the
undamped, unforced system helps to explain the energy pumping phenomena in the damped and
forced one.

One starts by considering energy pumping in the system involving non-linear interaction of the
attachment with only a single mode of the linear substructure. As mentioned previously, energy
pumping is the transient one-way irreversible transfer of energy from a modal oscillator of the
linear substructure to the non-linear attachment. In essence then the attachment acts as a non-

linear energy sink. Considering again Eqs. (3) and (4), one recalls that they were derived under the
assumption of impulsive excitation of the linear substructure at position p; and non-linear
resonance interaction of the zeroth (lowest) mode with the attachment. Applying the complex-
ification analysis of the previous section in Eq. (4) and averaging over the ‘fast’ eigenfrequency o0;
the higher frequency terms on the right-hand side of Eq. (4) are averaged out and the equations
reduce to the form of a 2-d.o.f. damped, forced system similar to the ones discussed in detail in
Refs. [2,3]. Referring to the averaged analogs of (4) it can be analytically proven that provided
that the external impulse is above a certain threshold, there occurs energy pumping from the
modal oscillator to the non-linear attachment. Since this analysis was performed in the
aforementioned works it will not be repeated here, but instead numerical simulations will be
presented that substantiate our assertions.

For the simulations the system depicted in Fig. 2 was considered with N ¼ 9 (that is, a 10-d.o.f.
linear chain with end non-linear attachment), with each oscillator (including the non-linear
attachment) possessing a grounded weak viscous damper with constant equal to el: The
parameters of the system are chosen as, o2

0 ¼ 0:4; d ¼ 3:5; C ¼ 5:0; l ¼ 0:5; and e ¼ 0:1; with
initial conditions, vð0Þ ¼ ’vð0Þ ¼ 0; ymð0Þ ¼ 0; m ¼ 0; 1;y;N; and ’ymð0Þ ¼ 0; m ¼ 0; 1;
3;y;N; ’y2ð0Þ ¼ 4; these correspond to impulsive excitation of magnitude Y applied to the
third from the right end particle of the chain. In Fig. 7 the responses vðtÞ; y0ðtÞ and y9ðtÞ are
depicted, together with the variation of the instantaneous frequency of oscillation of the non-
linear attachment, OðtÞ; versus time. This instantaneous frequency was computed elsewhere [2] as

OðtÞ ¼ XI
1=3
1 ðtÞ;

where

L ¼
1

4C

� �1=6
3p

Kð1=2Þ

� �1=3

; X ¼
3p4C

8K4ð1=2Þ

� �1=3

; I1ðtÞ ¼
p2 ’v2ðtÞ

2L2X2K2ð1=2Þ
þ

v4ðtÞ

L4

� �3=4

:

Note, that this frequency differs from the frequencies of oscillation of the particles of the chain
during the damped motion of the system, since the transient dynamics is considered. This is in
contrast to the results of the previous section (cf. Figs. 3–6) where in the absence of damping and
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transient forcing the coupled system performs synchronous vibrations (e.g., NNMs) with a single
common frequency for the linear substructure and the attachment.

From the simulations of Figs. 7a and b it is clearly evidenced that there occurs energy pumping
from the linear chain to the non-linear attachment; indeed, for t > 70 the motion is nearly confined
to the non-linear attachment. Moreover, as indicated by the frequency plot of Fig. 7c, after some
early time multi-frequency transients (that involve very short resonance interaction with modal
oscillator 1 at frequency near o1), the energy pumping is mainly due to resonant interactions of
the non-linear attachment and the lowest modal oscillator 0. Note that even though the impulsive
force excites additional NNMs in the vicinities of higher linearized modes of the chain, the
imparted initial energy is not sufficiently large to cause resonance interactions of the attachment
with these higher frequency NNMs.

It is of interest to interpret the transient energy pumping phenomenon of Fig. 7 in terms of the
dynamics (e.g., the NNMs) of the corresponding undamped, unforced system, namely the
dynamics described in the plots of Figs. 3 and 4. First, one recognizes that since the excitation
used in the simulations is the impulse YdðtÞ; starting at t ¼ 0þ the system performs free
oscillations with initial energy equal to (Y 2=2). For sufficiently strong excitation (initial energy)
there exist two NNMs in the undamped system, namely, branches 1 and 4 (cf., Figs. 3 and 4). For
sufficiently small damping (as is the case herein) it can be shown that the NNMs are preserved in
the form of damped NNMs, e.g., decaying periodic (synchronous or asynchronous) oscillations of
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the system that take place on two-dimensional invariant manifolds in the phase space of the
motion [16,17]. These damped modes can be considered as analytical continuations for weak
damping of the NNMs of the undamped system. In what follows the damped analog of NNM p
are denoted as NNM damped invariant manifold p or simply, damped NNM p.

The external impulsive excitation excites precisely these damped NNM invariant manifolds (or
damped NNMs). Since the excitation is applied directly to the chain and the non-linear
attachment is initially at rest, the initial state of the system at t ¼ 0þfavors excitation of only
damped NNM 1 and not of damped NNM 4 (this mode cannot be excited at t ¼ 0þ since it
corresponds to strongly localized motions at the attachment and negligible motion of the chain,
e.g., has incompatible initial conditions). Indeed, it can be shown that the maximum amplitude of
oscillation reached by the attachment at the early stage of the motion is nearly identical to that
predicted by NNM 1. As time increases and energy decreases (due to damping dissipation) the
motion of the system mainly takes place on the damped invariant NNM 1 (once the motion
reaches this non-linear manifold it can never leave it due to invariance), which at low energies
corresponds to motions localized in the non-linear attachment. This is precisely what is observed
in the numerical simulations of Fig. 7.

The topological structure of the NNM branches of Figs. 3 and 4 also helps explain the existence
of a minimum threshold for the impulse magnitude, above which energy pumping can only occur.
Indeed, if the impulse (or equivalently, the energy at t ¼ 0þ) is of small magnitude, either the
damped NNMs 1 and 2, or all four damped NNMs 1–4 (with mode 3 being unstable) are excited.
In this case, the initial state of the system at t ¼ 0þ favors excitation of NNM invariant manifold
2, with nearly all energy being confined to the zeroth modal oscillator. In that case the damped
motion takes place predominantly on the two-dimensional invariant manifold of damped NNM
2, and, as a result most of the externally induced energy remains confined in the chain, with only a
small portion of this energy being ‘spreading’ to the attachment; hence, no energy pumping
occurs. In this case the maximum amplitude of vibration reached by the attachment at the early
stage of the motion is the one predicted by NNM 2. Similar conclusions can be drawn for the case
when the initial energy is such that four damped NNMs exist in the system; no energy pumping
can occur in that case either. From the discussion above one concludes, that in order for energy
pumping to occur it is necessary to excite the damped NNM 1 at sufficiently high energies,
namely, above the energy level corresponding to the bifurcation where the stable/unstable pair of
NNMs 2 and 3 is eliminated with increasing energy. Hence, it appears that the energy level where
this NNM bifurcation occurs can be regarded as a first estimate for the minimum energy threshold
required for energy pumping in the system.

It is now shown that by increasing the magnitude of the impulse, it is possible to get resonance
capture cascades in the system. By this, one denotes a sequence of multiple resonance interactions
of the non-linear attachment with more than one modal oscillators of the linear substructure. In
Fig. 8 the responses of the 11-d.o.f. system considered earlier are depicted, with the same
parameters and initial conditions, except for ’y2ð0Þ ¼ 10; this amounts to increasing the magnitude
of the impulse from 4 to 10. Judging from the instantaneous frequency of the non-linear
attachment, one notes that there occurs a cascade of resonance captures involving the lowest three
linearized modes of the chain. Referring to Fig. 8b, at the initial stage of the motion when the
energy is relatively high, the attachment resonates with linearized mode 2 and energy pumping
from the chain to the attachment takes place at frequencies near o2: As energy decreases due to
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damping there occurs a sudden lower frequency transition (jump) into a regime where the
attachment resonates with linearized mode 1; this results in energy pumping at frequencies near
o1: With further decrease of the energy, there occurs a second lower frequency transition in the
neighborhood of o0; at this third stage pumping is realized at frequencies near the lowest
eigenfrequency of the linear chain. One concludes that for sufficiently strong excitations energy
pumping from the chain to the attachment occurs at different frequency regimes that are reached
through sudden transitions (jumps) from higher to lower frequencies; these regimes of energy
pumping and resonance in the system represent resonance capture cascades.

As a final comment, note that the analytical results of Section 3 lead to an interesting conjecture
regarding the relation of resonance capture cascades to the topology of the NNMs of the
underlying undamped, unforced system. To show this, one considers for simplicity the synthesized
sketch of the NNM frequency branches of the 3-d.o.f. system depicted in Fig. 6. For sufficiently
strong impulses the initial state of the system at t ¼ 0þ favors motion of the system on the two-
dimensional NNM invariant manifolds that are the damped analogs of NNMs 4 and 1; indeed
both these modes correspond to moderate-amplitude motions of the attachment and large-
amplitude responses of the first (anti-phase) and zeroth (in-phase) linearized modes of the chain.
Moreover, it can be proven that ‘competitor’ damped invariant NNM manifolds that co-exist at
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high energies with the damped NNM manifolds 1 and 4 are either unstable (and thus not
physically realizable), or cannot be significantly excited by the impulse due to incompatibility of
the required initial conditions and the actual initial state of the system at t ¼ 0 þ : As energy
decreases due to damping the motion on the invariant manifold 1 leads to energy pumping at
frequencies near o0 and eventual localization of the motion in the attachment, as discussed
previously. The motion on the invariant manifold 4 gives rise to energy pumping at higher
frequencies near o1 and gradual localization of the motion to the attachment. However, near the
energy level where the NNMs 4 and 3 are eliminated through a saddle node bifurcation, there
occurs a sudden transition (jump) of the damped motion from the damped NNM manifold 4 to
the damped NNM manifold 1, driving the energy pumping process to lower frequencies. Hence
the conjecture is formulated, that the cascades of resonance captures are caused by bifurcations of
stable/unstable pairs of damped NNMs that abruptly eliminate as energy decreases the NNM
manifolds responsible for high-frequency energy pumping. Note that excitation of the damped
NNM 4 requires significantly large impulsive excitation, capable of inducing energy at t ¼ 0þ
above the level where the bifurcation of NNMs 6 and 4 occurs (cf., Fig. 6). This is compatible with
the previous numerical simulations, indicating that resonance capture cascading requires
sufficiently strong excitation of the system.

In an additional illustrative example of energy pumping, consider the 10-d.o.f. damped linear
chain with the non-linear end attachment considered previously, with the same parameters, and
initial conditions, vð0Þ ¼ ’vð0Þ ¼ 0; ymð0Þ ¼ 0; m ¼ 0; 1;y;N; and ’ymð0Þ ¼ 0; m ¼ 0; 1;
2;y; 8; ’y9ð0Þ ¼ 70: Hence, an impulsive excitation is applied to the most distant from the
attachment particle of the chain. In Fig. 9 the response of the attachment vðtÞ is depicted, together
with the variation of the instantaneous frequency of oscillation of the non-linear attachment
versus time. Note the vigorous resonance capture cascading involving as many as six of the
linearized modes of the chain (including both the highest and lowest linearized modes in the
frequency domain).

5. Discussion

The dynamics of a linear periodic substructure, weakly coupled to an essentially non-linear
attachment was studied. The requirement of essential (non-linearizable) non-linearity is an
important one, since this introduces a series of ð0 : omÞ internal resonances between the
attachment and each of the modal oscillators of the linear substructure. In other words, there is no
‘preferential’ resonance frequency for the attachment, and, depending on the energy and the initial
conditions, it can resonate with any of the modal oscillators. This feature increases the versatility
of the non-linear attachment to act as energy sink. Moreover, since no specific restriction was
posed on the configuration of the linear structure (other than it is discrete), the analysis is quite
general and applies to a wide class of spatially extended, discrete linear structures with local
essentially non-linear attachments. Placing more than one local non-linear attachments can also
be considered with no particular difficulty by extending the methodology presented here.

For the free and undamped system it was found that there exist saddle-node NNM bifurcations
where stable/unstable pairs of NNMs are generated or annihilated with increasing energy. There
exist two such bifurcations in the neighborhood of each of the linearized eigenfrequencies of the
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uncoupled linear substructure. In addition, two of the NNMs enter the attenuation zones of the
uncoupled infinite periodic structure and are localized to the non-linear attachment. These two
modes are essentially non-linear (e.g., are not analytic continuations of linear modes), having no
linear counterparts; the mode localizing at lower frequencies corresponds to in-phase oscillations
of the particles of the chain, whereas the one localizing at higher frequencies to anti-phase
motions. In general, the study of free dynamics indicates that the non-linear attachment has a
profound effect on the dynamics mainly in neighborhoods of internal resonances between the
attachment and the chain, e.g., at points of crossing of the ‘backbone curves’ of the two uncoupled
systems.

The impulsively forced and damped system was then considered. It was shown that this system
has energy pumping properties. Indeed, with proper choice of the system parameters and
sufficiently strong external forcing, energy gets passively transferred from the chain to the
attachment in a one way, irreversible action. Damping in the system is a prerequisite for
occurrence of energy pumping, since in the undamped system, at most, one can induce non-linear
beat phenomena between the chain and the attachment (energy exchanges), but not energy
pumping. An interesting finding of this work is that although energy pumping is realized only in
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the presence of damping, the energy pumping phenomenon strongly depends on the topological
structure of the NNMs of the underlying undamped system. Indeed, energy pumping occurs due
to the excitation of certain damped invariant NNM manifolds that are analytic continuations of
NNMs for small damping of the underlying undamped system. Which of these invariant
manifolds are eventually excited depends on the specific forcing distribution used and the initial
conditions of the system. Having this knowledge one may perform an optimization study,
designing the NNMs of the undamped system with the aim of achieving optimal energy pumping
in the damped case.

The bifurcations of the NNMs in the undamped system help explain another interesting
phenomenon observed in the dynamics of the damped system, namely, resonance capture
cascades. Provided that the forcing is sufficiently strong there occur multiple resonance captures,
e.g., a series of resonance interactions between the attachment and certain of the modal oscillators
of the linear substructure. This results in a series of energy pumping events occurring at different
frequencies, with sudden transitions to lower frequencies between sequential events. It is
conjectured that this cascading is caused by the sudden elimination through bifurcation of certain
damped NNM invariant manifolds with decreasing energy, forcing the motion to lower frequency
NNM invariant manifolds. The observed multi-frequency energy pumping cascades are
particularly interesting from a practical point of view, since they prove that non-linear
attachments can be designed to resonate and extract energy from an a priori specified set of modes
of a linear structure. Indeed, the set of modes that participates in the resonance capture cascades
can be selected to be compatible to the design objectives of the problem.
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