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Abstract

Scattering of a plane harmonic acoustic wave by an elastic cylindrical shell is considered. The procedure
based on matching of asymptotic models is developed. The long-wave models (the Kirchhoff–Love theory
(or its refinement) and the long-wave high-frequency approximation) are exploited in the vicinities of zero
frequency and thickness resonance frequencies, whilst the model of a fluid-loaded flat elastic layer is utilized
outside the aforementioned vicinities. Comparison with the exact solution demonstrates that the proposed
approach is highly efficient for total synthesis of the scattered pressure as well as for uniform
approximation of the resonant curves associated with partial modes.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

A modern version of the dynamic shell theory is based on matched asymptotic approximations
of 3-D elasticity (e.g., see, Ref. [1]). Apart from the classical Kirchhoff–Love theory, which may
be, to some extent, treated as the leading low-frequency approximation, there also exist two types
of high-frequency approximations. In the case of the high-frequency short-wave approximation
the effect of curvature becomes, as a rule, secondary. For example, the short-wave vibrations of a
cylindrical shell can be analyzed starting from the model of a flat layer. The high-frequency long-
wave approximation corresponds to the 2-D theory of thickness vibrations describing slowly
varying motions in the vicinities of thickness stretch and shear resonance frequencies.
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It is of particular importance that the ranges of applicability for the long-wave approximations
overlap that for the short-wave one. The relevant overlap regions lie near zero frequency and the
thickness resonance frequencies. The simplest numerical illustration for matching of the
aforementioned asymptotic models is presented in Ref. [2] (results of this paper are included in
the monograph [1]) dealing with the total synthesis of the dispersion curves for a cylindrical shell
starting from the Kirchhoff–Love theory, the theory of thickness (high-frequency long-wave)
vibrations and plane (anti-plane) elasticity.
The consideration below represents, in a sense, an extension of the procedure described in

Ref. [2] to problems of fluid–structure interaction. In the latter case all the asymptotic models
have to be adapted to the contact conditions simulating fluid loading. In particular, the traditional
low-frequency model of fluid–structure interaction based on the Kirchhoff–Love theory may be
considerably improved by taking into account the normal compression of a shell by a fluid along
with some other refinements (for details see, Ref. [3]). In this paper we introduce the model of a
fluid-loaded flat elastic layer for describing forced short-wave motions. Before the flat layer model
was used only for computing resonance scattering frequencies on the basis of Rayleigh–Lamb-
type dispersion equations (e.g., see Ref. [4]). Neither resonance curves nor form functions were
evaluated. We do not express in the equations of shell motion the scattered pressure in terms of
slowly varying displacement amplitudes when dealing with the high-frequency long-wave model.
A slightly different approach was developed in Ref. [5] (see also Ref. [1]).
In this paper the scheme making use of matching asymptotic models is applied to scattering of a

plane harmonic acoustic wave by a thin cylindrical shell. Efficiency of the proposed methodology
is demonstrated by comparison with the exact solution based on plane elasticity for describing
shell motion. Both the form function and the resonant curves for partial modes are analyzed.
Existence of overlap regions for the ranges of applicability in the case of various models is
thoroughly investigated.
The paper is organized as follows. The original scattering problem is specified in Section 2. In

particular, the series in Bessel functions are written out for the pressure in the incident and
scattered waves. The utilized asymptotic models are introduced in Sections 3–5. All the basic
relations are accompanied by necessary explanations. The relevant analytic solutions are obtained
for the scattered pressure. In addition, the exact solution, corresponding to plane elasticity for
cylindrical co-ordinates, is presented in the appendix. Section 6 is the key one for the paper. It
represents a numerical illustration of the developed matching procedure.

2. Statement of the problem

Let the plane acoustic wave

pi ¼ p0 exp �iðkxþ otÞ½ � ð2:1Þ

be scattered by a circular cylindrical shell.
In the formula above pi is the pressure in the incident wave, p0 is a constant, o is the circular

frequency, k is the wave number, t is the time, x and is the distance from the shell axis.
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Now introduce the dimensionless parameters

k ¼
r
r1
; bi ¼

ci

c
ði ¼ 1; 2Þ; W ¼

c2

c1
; k ¼

o
c
; ð2:2Þ

where c1 and c2 are the dilatation and distortion wave speeds in the material of the shell, r1 is the
mass density of the shell, c is the sound speed in the fluid, and r is the mass density of the fluid.
The shell half-thickness h and the radius of the mid-surface R can be expressed in terms of its inner
and outer radii a and b as h ¼ ða � bÞ=2 and R ¼ ða þ bÞ=2:
In cylindrical co-ordinates r; y (x ¼ r cos y) the pressure in the incident wave becomes [6]

pi ¼ p0 expð�iotÞ
XN
n¼0

Enð�iÞ
n JnðkrÞcos ny ð2:3Þ

with

E0 ¼ 1; En ¼ 2 ðnX1Þ;

where Jn is a cylindrical Bessel function of the first kind.
The scattered pressure can be written as

ps ¼ p0 expð�iotÞ
XN
n¼0

Enð�iÞ
nBnH

ð1Þ
n ðkrÞ cos ny; ð2:4Þ

where Hð1Þ
n is a Hankel function of the first kind. It is clear that representations (2.3) and (2.4)

satisfy the Helmholz equation describing fluid motion. In addition, the scattered pressure ps obeys
the radiation condition at infinity. The coefficients Bn have to be defined by solving the contact
problem for the equations of shell motion. The solution corresponding to plane elasticity is
presented in the appendix.
Below a start is made from asymptotic models of fluid–structure interaction oriented to thin

shells. For the latter

Z ¼
h

R
-0: ð2:5Þ

3. Fluid-loaded flat elastic layer

The flat layer model is based on an analogy between the peripheral waves arising in thin shells
when scattering acoustic waves and the well-known Lamb waves propagating in flat elastic layers.
Its range of applicability is restricted only to short-wave shell motions that are not strongly
affected by the shell curvature. Therefore, the model is not valid in the vicinities of zero frequency
and thickness resonance frequencies in which long peripheral waves occur. The model of a ‘‘dry’’
flat elastic layer previously was intensively used only for estimation of resonance frequencies (see,
e.g., Ref. [4]). The related procedure involves substituting of a co-sinusoidal law for the nth mode
(see series (2.3) and (2.4)) into the equations of plane elasticity for a flat layer with traction free
faces, specified in Cartesian co-ordinates. In this case the number n corresponds to the wave
number of Lamb waves. The developed model of a fluid-loaded flat elastic layer represents a
natural generalization of the dry layer model incorporating the contact with environment along
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the outer shell face; in doing so, it allows calculating of the scattered pressure as well as the
resonant curves for partial modes.
In Cartesian co-ordinates y; z (z ¼ r=R � 1), the equations of short-wave shell motion become

Dpjþ b�21 k2R2j ¼ 0; Dpcþ b�22 k2R2c ¼ 0 ð3:1Þ

with

Dp ¼
@2

@z2
þ

@2

@y2
; ð3:2Þ

where j and c are the Lame potentials. The displacements and stresses are expressed as follows:

ur ¼
1

R

@j
@z

þ
@c
@y

� �
; uy ¼

1

R

@j
@y

�
@c
@z

� �
ð3:3Þ

and

sr ¼ r1c
2 1

R2
�k2R2jþ 2b22

@2c
@z@y

�
@2j

@y2

� �� �
;

sry ¼ r1c
2 1

R2
k2R2cþ 2b22

@2j
@z @y

þ
@2c

@y2

� �� �
: ð3:4Þ

Eqs. (3.1)–(3.4) are valid provided that

@

@y
B
oR

c2
b1; ð3:5Þ

i.e., for short-wave motions associated with large number of partial modes (nb1). In this case the
original equations of motion written in curvilinear (cylindrical) co-ordinates allow, in the leading
order, replacing them by Cartesian co-ordinates; in doing so, one keeps only highest derivatives
and fix the radial co-ordinate on the mid-surface of the shell.
All the other relations of the scattering problem considered do not change. In particular, the

boundary conditions on shell faces can be written as

srjz¼Z¼ � pi þ psð Þjr¼a; urjz¼Z¼
1

rc2k2

@

@r
pi þ psð Þ

����
r¼a

;

sryjz¼Z¼ 0; srjz¼�Z¼ 0; sryjz¼�Z¼ 0 ð3:6Þ

with pi and ps defined by Eqs. (2.3) and (2.4), respectively.
By solving the formulated problem we determine the sought-for coefficients Bn: They are

Bn ¼ �
J0nðxÞd1 � 2k3R3kJnðxÞd2

Hð1Þ0
n ðxÞd1 � 2k3R3kHð1Þ

n ðxÞd2
; ð3:7Þ

where

d1 ¼ 4DsDa; d2 ¼ a1 sinhða1ZÞsinhða2ZÞDa þ coshða1ZÞcoshða2ZÞDsð Þ;

x ¼ ka
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and where

Ds ¼ g4 coshða1ZÞsinhða2ZÞ � 4b42n
2a1a2 sinhða1ZÞcoshða2ZÞ;

Da ¼ g4 sinhða1ZÞcoshða2ZÞ � 4b42n
2a1a2 coshða1ZÞsinhða2ZÞ

with

g2 ¼ 2n2b22 � k2R2; ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � b�2i k2R2

q
ði ¼ 1; 2Þ:

4. Kirchhoff–Love theory of shells and its refinement

The classical Kirchhoff–Love theory as well as its refinement may be treated as low-frequency
asymptotic expansions of the dynamic equations in elasticity. Therefore, these theories are
adequate only near zero frequency. In this paper, we utilize the refined Kirchhoff–Love theory
adapted for the problems in fluid–structure interaction in Ref. [3] (also see Ref. [1]). In addition to
the classical formulation, it takes into account the normal compression of a shell by a fluid and
more sophisticated distributions along the shell thickness and allows better approximations for
‘‘exact’’ dispersion curves.
The equations of motion in the aforementioned refined theory are

1þ
1

3
Z2

� �
@2v

@y2
þ

@w

@y
�
1

3
Z2
@3w

@y3
þ
1� n
2

R2
o2

tg

c22
v þ

nð1þ nÞR
2E

@m

@y
¼ 0; ð4:1Þ

@v

@y
�
1

3
Z2

@3v

@y3
þ w þ

1

3
Z2

@4w

@y4
�
1� n
2

R2 o
2
tr

c22
w þ

nð1þ nÞR
E

m þ
ð1� n2ÞR2

2Eh
Z ¼ 0;

where

Z ¼ 1�
8� 3n

10 1� nð Þ
Z2

@2

@y2

 !
pi þ psð Þ

�����
r¼a

; m ¼ � pi þ psð Þjr¼a; ð4:2Þ

o2
tgv ¼ o2 v þ Z2ðb0 þ b1z

2 þ b2z
4Þ
@2v

@y2

� �
; ð4:3Þ

o2
trw ¼ o2 1þ a1z þ a2z

2 þ a3z
3

� �
w ð4:4Þ

with

b0 ¼ �
n2

3ð1� nÞ2
; b1 ¼ �

n2ð3� 5n� n2Þ

45ð1� nÞ3
;

b2 ¼
n2ð�17þ 56n� 33n2 � 28n3 þ 5n4Þ

1260ð1� nÞ4
; ð4:5Þ
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a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1� nÞ

r
17� 7n
15ð1� nÞ

; a2 ¼
1179� 818nþ 409n2

2100ð1� nÞ
;

a3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ð1� nÞ

r
5951� 2603nþ 9953n2 � 4901n3

126 000ð1� nÞ2
ð4:6Þ

and

z ¼
oh

c2
: ð4:7Þ

Here v is the tangential displacement of the mid-surface along the axis y; w is the transverse
displacement of the mid-surface, E is Young’s modulus, and n is the Poisson ratio.
The impenetrability condition for the refined theory is

w þ
nZ2

2ð1� nÞ
@2w

@y2
�

nZ
ð1� nÞ

@v

@y
¼

1

ro2

@

@r
ðpi þ psÞ

����
r¼a

: ð4:8Þ

The underlined terms in equations above take into account the normal compression of a shell
by a fluid in Eq. (4.1), improved approximations for dispersion curves in Eqs. (4.3) and (4.4),
correction for fluid loading in Eq. (4.2) and deviation of the mid-surface deflection w from that on
the outer surface r ¼ a in the impenetrability condition (4.8). By neglecting all of them one arrives
at the model corresponding to the classical Kirchhoff–Love theory. The quantities pi and ps in the
formulae above are given by Eqs. (2.3) and (2.4) as before.
In the case under consideration the coefficients Bn become

Bn ¼ �
d1J

0
nðxÞ þ

1
4
kRb�22 ðe2d2 þ e1d3ÞkJnðxÞ

d1H
ð1Þ0
n ðxÞ þ 1

4
kRb�22 ðe2d2 þ e1d3ÞkHð1Þ

n ðxÞ
; ð4:9Þ

where

d1 ¼
a11 a12

a21 a22

�����
�����; d2 ¼

a12 a11

a32 a31

�����
�����; d3 ¼

a21 a22

a31 a32

�����
�����

with

a11 ¼ �n2 1þ
1

3
Z2

� �
þ
1� n
2

R2
o2

tg

c22
; a12 ¼ �n 1þ

1

3
Z2n2

� �
; ð4:10Þ

a21 ¼ �n 1þ
1

3
Z2n2

� �
; a22 ¼ 1þ

1

3
Z2n4 �

1� n
2

R2 o
2
tr

c22
;

a31 ¼ �
n

1� n
Zn; a32 ¼ 1�

n
2 1� nð Þ

Z2n2;

e1 ¼ �nn; e2 ¼ n�
1� n
Z

1þ
8� 3n

10 1� nð Þ
Z2n2

� �
:
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As it is mentioned in Ref. [3], the range of applicability for the refined model is given by

oR

c2
5Z�1: ð4:11Þ

Whilst that for the model based on the classical Kirchhoff–Love theory is only

oR

c2
5Z�1=2: ð4:12Þ

Thus, both of these theories describe only the zero order Lamb-type waves S0 and A0 (or the
fluid-born wave A). The relevant mode numbers lie in the ranges n5Z�1 and n5Z�1=2 for the
refined asymptotic model and the Kirchhoff–Love theory, respectively.

5. Long-wave high-frequency approximation

To describe first modes of higher order Lamb-type waves we start from the asymptotic theory
for long-wave high-frequency vibrations of fluid-loaded shells. The latter represents, in the sense,
a high-frequency analog of the classical Kirchhoff–Love theory dealing with slowly varying
motions that arise in the vicinities of cut-offs located near thickness resonance frequencies of a flat
layer with traction free faces. Similar to the classical shell theory the long-wave high-frequency
model assumes reduction to lower dimensional equations by excluding the normal co-ordinate. In
doing so, it operates with sinusoidal-type approximations along the shell thickness.
The theory in question (e.g., see, Refs. [1,5]) involves two types of asymptotic approximations.

The transverse approximation (the transverse shell displacement dominates) is applicable in the
vicinities of the thickness stretch resonance frequencies, i.e., at z � Lstj j51; where z is defined by
formula (4.7) and Lst ¼ pm=W (for antisymmetric motions) or Lst ¼ p 2m � 1ð Þ=2W (for symmetric
motions); m ¼ 1; 2;y . The relevant one-dimensional equation is

Z2 T
@2w0

@y2
þ T0

Rw0

� �
þ z2 � L2

st

� �
w0 ¼ 7

ð�1Þmh

r1c
2
2

pi þ psð Þ 1þ
1

2
Z

� �
ð5:1Þ

with

T0
R ¼

1

4W2
� 4; T ¼

1

W2
8

8

Lst

tanLst

cotLst

( )
; ð5:2Þ

where w0ðyÞ is the 1-D long-wave amplitude of the transverse displacement; here and further the
upper (lower) sign and the upper (lower) expression in braces corresponds to antisymmetric
(symmetric) modes.
The impenetrability condition can be written as

7ð�1Þmw0 1�
1

2
Z

� �
¼

1

ro2

@

@r
ðpi þ psÞ

����
r¼a

: ð5:3Þ

In the vicinities of thickness shear resonance frequencies the tangential approximation (the
tangential displacements exceed considerably the transverse one) is adequate. In this case the
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governing equation becomes

Z2 P
@2v0

@y2
þ P0

Rv0

� �
þ ðz2 � L2

shÞv0 ¼
2ð�1Þmþ1hWZ

Lshr1c
2
2

@ðpi þ psÞ
@y

cotðWLshÞ

tanðWLshÞ

( )
ð5:4Þ

with

P0
R ¼ �

15

4
; P ¼ 17

8W
Lst

cotðWLshÞ

tanðWLshÞ

( )
; ð5:5Þ

where v0ðyÞ is the 1-D long-wave amplitude of the tangential displacement.
Now the impenetrability condition reduces to

2ð�1ÞmWZ
Lsh

@v0

@y
cotðWLshÞ

tanðWLshÞ

( )
¼

1

ro2

@

@r
ðpi þ psÞ

����
r¼a

: ð5:6Þ

In Eqs. (5.4)–(5.6) Lsh ¼ pð2m � 1Þ=2 (for antisymmetric motions) and Lsh ¼ pm (for the
symmetric motions); m ¼ 1; 2;y: They are valid at z � Lshj j51:
Then representations (2.3) and (2.4) for the pressure pi and ps have to be introduced into

Eqs. (5.1) and (5.4). By solving systems (5.1) and (5.3) or (5.4) and (5.6) the coefficients Bn are
determined. In particular, for the antisymmetric tangential motions they are

Bn ¼ �
SJ0nðxÞ � 4n2hkb�21 ðcot2ðWLshÞ=L2

shÞkJnðxÞ

SHð1Þ0
n ðxÞ � 4n2hkb�21 ðcot2ðWLshÞ=L2

shÞkH
ð1Þ
n ðxÞ

ð5:7Þ

with

S ¼ �Pn2 þ P0
R þ Z�2ðz2 � L2

shÞ: ð5:8Þ

It is essential that solutions like Eq. (5.7) are applicable only for a few first modes (n5Z�1). At
the same time, in the vicinities of thickness resonance frequencies we observe the resonances of
higher angular modes (nBZ�1) associated, for example, with zero order Lamb-type waves.
Therefore, for numerical computation of the scattered pressure the long-wave high-frequency
approximation should be combined with the flat layer model.

6. Matching of asymptotic models

Consider matching of the asymptotic models involved. First, we study the resonance
components of partial modes [4]. In the case of an acoustically rigid background they are
expressed as

zn ¼
4ffiffiffiffiffiffi
px

p Bn þ
J0nðxÞ

Hð1Þ0
n ðxÞ

�����
�����: ð6:1Þ

The resonance components for the Lamb-type wave S0 corresponding both to the refined
Kirchhoff–Love theory and the flat layer model are plotted in Fig. 1. They are computed by
formulae (6.1). The coefficients Bn are defined either by Eq. (4.9) (the refined Kirchhoff–Love
theory) or by Eq. (3.7) (the flat layer model). The exact solution corresponding to plane elasticity
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(see the appendix) is also shown in this figure. The problem parameters are

c1 ¼ 5960 m=s; c2 ¼ 3240m=s; c ¼ 1493m=c;

r ¼ 1000 kg=m3; r1 ¼ 7700 kg=m3; Z ¼ 1
39
:

ð6:2Þ

ARTICLE IN PRESS

Fig. 1. The resonance components of the partial modes for the S0 wave. The thick solid line corresponds to the exact

solution, the dotted line to the refined Kirchhoff–Love theory and the thin solid line to the flat layer model.
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The observation of Fig. 1 shows that both models possess a high accuracy over the region
30tnt100: For small number modes (nt30) the refined Kirchhoff–Love theory provides a
better approximation, whereas for large number ones (n\100) the flat layer model appears to be
more appropriate. Thus the ranges of applicability of two simplified numerical schemes overlap.
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Fig. 2. The resonance components of the partial modes for the A and A0 waves. Keys are as in Fig. 1.
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An analogous comparison is presented in Fig. 2 for the fluid-born wave A (beginning with
n ¼ 25 it transforms to the Lamb-type wave A0). In this case the overlap region may be roughly
estimated by the inequality 20tnt80:
In Fig. 3 the resonance components for the Lamb-type wave A1 corresponding to the exact

solution are compared with those associated with the flat layer model and the long-wave high-
frequency approximation. For the latter the coefficients Bn are defined by Eq. (5.7). Fig. 3
demonstrates matching of lower quality compared with that in Figs. 1 and 2.
The approximation errors for dispersion curves are given in Fig. 4. In the case of a dry

cylindrical shell similar calculations were presented in Ref. [2]. As usual in resonance scattering
theory (e.g., see, Ref. [4]) the discrete mode number n in Fig. 4 is associated with the wave number
of peripheral waves. The deviation Dn is plotted where

Dn ¼ napp � nexj j ð6:3Þ

ARTICLE IN PRESS

Fig. 3. The resonance components of the partial modes for the A1 wave. The thick solid line corresponds to the exact

solution, the dotted line to the long-wave high-frequency approximation and the thin solid line to the flat layer model.
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and nex is calculated on the basis of plane elasticity, napp corresponds to various versions of the
Kirchhoff–Love theory or the flat layer model (for Figs. 4a and b) and the long-wave high-
frequency approximation or the flat layer model (for Fig. 4c).
Fig. 4 involves more specific numerical data related to overlap regions. These are located near

the points where the curves meet corresponding to different asymptotic models. The flat layer
model always provides better approximations above the frequencies corresponding to the
aforementioned points while all the long-wave theories possess higher accuracy beyond them. The
values Dn calculated at these points determine maximal approximation errors. The inequality
Dno1 means that the error does not exceed the distance between neighboring resonance
frequencies. Hence for a good approximation Dn51 is required.
The results related to synthesis of the form function for the far field (r-N) in the case of

backscattering (y ¼ 0) are presented in Figs. 5 and 6. Starting from the formula

p ¼
2ffiffiffiffiffiffi
px

p XN
n¼0

EnBnð�1Þ
n

�����
�����; ð6:4Þ

the long-wave high-frequency approximation is utilized beginning with the first thickness
resonance frequency and only for no10: The rest of series (6.4) is evaluated by the flat layer
model. The point is that the former does not describe large number resonance modes of the zero
order waves S0 and A0(or A) occurring over this frequency domain. Location of the overlap
regions in Figs. 5 and 6 agrees with observations above. The graphs in these figures confirm

ARTICLE IN PRESS

Fig. 4. The approximation error for the S0 wave (a), for the A (A0) wave (b), for the A1 wave (c). The dashed line

corresponds to the refined Kirchhoff–Love theory in (a) and (b) and to the long-wave high-frequency approximation in

(c). The solid line corresponds to the flat layer model in all three figures and dotted–dashed line in (a) and (b) to the

classical Kirchhoff–Love theory.
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Fig. 5. Comparison of the form functions computed on the basis of the refined Kirchhoff–Love theory, the flat layer

model and plane elasticity. Keys are as in Fig. 1.
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efficiency of the proposed scheme consisting in utilizing three simpler matching models instead of
the original one.
The form functions computed on the basis of the classical Kirchhoff–Love theory, the flat layer

model and plane elasticity are plotted in Fig. 7. Comparison of the numerical data presented in
Figs. 5 and 7 indicate a considerable advantage of the refined Kirchhoff–Love theory. However,
for a thinner shell the classical Kirchhoff–Love theory may also be matched with the flat layer
model since its accuracy increases, as the shell thickness tends to zero.

7. Concluding remarks

The numerical data presented demonstrate a high efficiency of the developed methodology. The
latter may be easily generalized to scattering problems for shells of more complicated shape

ARTICLE IN PRESS

Fig. 6. Comparison of the form functions computed on the basis of the flat layer model, the long-wave high-frequency

approximation and plane elasticity. Keys are as in Fig. 3.
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subjected to arbitrary acoustic excitation. It is important to emphasize two peculiarities of the
asymptotic models involved:

1. The refined version of the Kirchhoff–Love theory appears to be a better approximation in
comparison with its classical analog. The former represents a model of the same complexity
possessing a wider range of applicability.

2. The numerical procedures, utilized near thickness resonance frequencies, have to include both the
long-wave high-frequency approximation and the model of a fluid-loaded flat elastic layer. The first
is oriented to evaluate long-wave components (a few first terms in series (2.4)), while the second
usually deals with short-wave components (all other terms in series (2.4)). The latter involve large
number resonance modes associated, for example, with the zero order Lamb-type waves.
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Appendix

In terms of plane elasticity shell motion is described by

Djþ b�21 k2R2j ¼ 0; Dcþ b�22 k2R2c ¼ 0; ðA:1Þ

ARTICLE IN PRESS

Fig. 7. Comparison of the form functions computed on the basis of the classical Kirchhoff–Love theory, the flat layer

model and plane elasticity. The thick solid line corresponds to the exact solution, the dotted line to the Kirchhoff–Love

theory and the thin solid line to the flat layer model.
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where
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þ
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The boundary conditions are given by Eqs. (3.6). The coefficients Bn in formula (2.4) can be
written as

Bn ¼
LnJnðxÞ � xJ0nðxÞ

LnH
ð1Þ
n ðxÞ � xHð1Þ0

n ðxÞ
ðA:5Þ

with

Ln ¼
kDð1Þ

n

D
ð2Þ
n

; Dð1Þ
n ¼

b11 b12 b13 b14

b31 b32 b33 b34

b41 b42 b43 b44

b51 b52 b53 b54

���������

���������
; Dð2Þ

n ¼

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

b51 b52 b53 b54

���������

���������
; ðA:6Þ

where

b11 ¼ x1J
0
nðx1Þ; b13 ¼ nJnðx2Þ; ðA:7Þ

b21 ¼ 2
x2
1

x2
2

1

2

x2
2

x2
1

� 1

� �
Jnðx1Þ � J00nðx1Þ

� �
; b23 ¼ 2

n

x2
2

Jnðx2Þ � x2J
0
nðx2Þ

� �
;

b31 ¼ �2n Jnðx1Þ � x1J
0
nðx1Þ

� �
; b33 ¼ �2 ð1

2
x2
2 � n2ÞJnðx2Þ þ x2J

0
nðx2Þ

� �
and where

xi ¼ b�1i x ði ¼ 1; 2Þ: ðA:8Þ

The coefficients in the second and the fourth columns and in the third and the fourth rows of
matrices (A.6) can be obtained from their analogs (A.7) by replacing the Bessel functions Jn by Yn

and the quantities xi by

*xi ¼
a � 2h

a
xi ði ¼ 1; 2Þ: ðA:9Þ
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